
161 

Image Representation Using Finite State Automata 

Charles Quenneville et Jean Meunier 

Departement d'informatique et de recherche operationnelle, 

Universite de Montreal, Montreal, Quebec Canada H3C 317 

514-343-7107 

e-mail address:meunier@iro.umontreal.ca 

ABSTRACT 

Image representation using quadtrees is useful in many 
applications and is well known in computer graphics. It has 
been shown that we can represent quadtrees asrationallan
guages that are recognizable by finite state automata (FSA) 
[1]. These FSA can use less memory and are more flexible 
than their corresponding quadtrees. Binary image represen
tation using FSA follows these two main steps: (1) FSA 
construction based on quad trees and (2) FSA minimization 
[2]. This approach can be easily adapted to represent gray 
scale images, colors images or volume data (octrees). Image 
representation using FSA supports all quad tree operations 
(union, intersection, rotations, ... ) as well as all FSA-defined 
operations. 

KEYWORDS: image representation, automaton, quadtrees. 

INTRODUCTION 
The weakness of quad trees appears for patterned images, 
because those quad trees contain some redundancy; this 
redundancy can be minimized by using FSA [2]: 

M = <Q, L, 0, qO, F> 
where M is the FSA, Q the set of states that forms the FSA 
L the set of symbols that the FSA accepts, 0 the transitio~ 
function from a state of the FSA to another state according 
to a symbol of L, qO the initial state of the FSA and F the set 
of final or accepting states. In our application, the set L is 
{0,1 ,2,3}, each symbol corresponding to a label of a quad
rant of the image. 
To construct the FSA from an image, we follow two steps: 
FSA construction and FSA minimization. 

FSA CONSTRUCTION 
The construction of an FSA uses any quadtree construction 
algorithm, but instead of adding a branch to the quadtree, if 
a quadrant of the image is not of the same color, we add a 
transition in the FSA on the symbol corresponding to the 
label of that quadrant; the branches to the leaves corre
sponds to the transitions to the final state of the FSA (fig 1). 
The set F of an FSA that represents binary images is a sin
gleton. For gray scale images, the cardinality of that set is 
the number of gray levels. To represent color images, we 
can use three FSA, one for each RGB component. Finally, 
for volume data, the set L becomes {0,1,2,3,4,5,6,7} and 
represents each octant of the octree. 

° 
3 

l~~ 
2~At\J1\ - ~ 

Figure 1. An image, its quadtree and its FSA. 

FSA MINIMIZATION 
The minimization algorithm is unique to FSA. It takes the 
redundancy in the FSA and, based on the equivalence 
between states, merges states that yield an equivalent transi
tion on the same symbols. The result is an FSA with a num
ber of states smaller or equal to the FSA before 
minimization. In figure 1, the FSA is minimized to three 
states. 

RESULTS 
Here are some results for binary images (fig 2): 

Figure 2. Coded images. 

CONCLUSION 
We have shown the potential of FSA to represent images 
and volume data with a better efficiency than quadtrees or 
octrees and with full support of all image operations [3]. 

REFERENCES 
1. Berstel, J. Compact Representation of Patterns by Finite 

Automata, Comm. Pixim '89, Paris, septembre 89. 
2. Hopcroft, J. Introduction to Automata Theory, Languages 

and Computation, Addison-Wesley, 1979. 
3. Quenneville, C. Memoire de Maitrise, U. de M. 1993. 

Graphics Interface ' 93 ~~ 


