
166

Conservative Visibility Preprocessing for
Efficient Walkthroughs of 3D Scenes·

Harry Plantinga
Department of Computer Science

University of Pittsburgh
(412) 624-8407

e-mail address: planting@cs.pitt.edu

ABSTRACT
In this paper I address the problem of pre-computing visi
bility information to increase the efficiency of interactive
walkthroughs of large 3-D CAD models such as buildings.
The approach presented assumes the use of graphics hard
ware including hidden-surface removal hardware. The
goal is to automatically partition viewpoint space into re
gions and pre-compute visibility information for each re
gion that is conservative in the sense that the display list
computed for a region is a superset of the set of objects
that are weakly visible from that region. To render a view
from a region, the display list for the region is processed
with hidden-surface removal hardware, so that the correct
scene is rendered. However, only a small fraction of the
faces in a scene may have to be rendered from any view
point. The conservative nature of the visibility computa
tion makes possible the use of many techniques for speed
ing the preprocessing phase and reducing storage require
ments for visibility information, including the partitioning
of scene faces into objects and the selection of large scene
faces (called walls) for occlusion tests. The amount of
time and space required for the visibility pre-computation
depends only on the number of objects and walls and not
the size of the scene, so it is possible to adjust the amount
of pre-computation time and space used, with correspond
ing effects on the efficiency of the on-line walkthrough.
Results concerning the number of faces that must be ren
dered under various object selections are presented for an
example model.

INTRODUCTION

For architectural modeling, CAD, or virtual reality appli
cations, it is desirable to be able to interactively "walk
through" a model of a building or similar scene. A charac
teristic of this problem is that the number of polygons or
other primitives in the model is often large, but the average
number of polygons visible from a viewpoint is much
smaller. It is possible to address this problem by rendering
the whole scene with a Z-buffer at each frame, but this ap
proach is inefficient when the number of visible polygons
is much smaller than the scene size. The bottleneck in
such an application is typically the number of Z-buffered
shaded 3-D polygons that can be rendered per second by

*This research was supported in part by NSF Grant No.
CCR-9007612 and by the Central Research Development
Fund of the University of PittSburgh.

the graphics hardware. The problem considered here is to
reduce the number of polygons rendered per frame by
identifying polygons that are not visible from viewing re
gions in a pre-computation phase, so that they need not be
rendered on-line. In this paper, I assume that the size of
the model is large, so that the amount of space available
for additional visibility data is limited, perhaps to about
the size of the model or another prescribed limit.

On-line culling is a partial answer to reducing the number
of polygons rendered at each . frame, but sophisticated
culling algorithms do not remove enough polygons or re
quire too much time. Another approach is a complete vis
ibility pre-computation, described elsewhere [10]. In that
approach viewpoint space is partitioned into regions of
constant aspect or topological appearance. From any
viewpoint, the corresponding region and thus the exact set
of visible polygons (and parts of polygons) is known.
However, that approach requires too much preprocessing
time and storage for large models and unrestricted viewer
motion. Furthermore, it doesn't take advantage of hidden
surface removal hardware.

In this paper I discuss modifications of the visibility-pre
computation approach that make it practical for large mod
els and that take advantage of hidden-surface-removal
hardware. The result is an approach to visibility pre-com
putation in which the amount of time and space needed to
compute and store visibility information are adjustable. It
is possible to decide in advance how much pre-computa
tion time and space are available and to compute visibility
data subject to those limits. The on-line walk through will
be correspondingly more efficient.

CONSERVAT1VE VISIBILITY, OBJECTS, AND WALLS

In the complete visibility pre-computation approach to the
walkthrough problem, the pre-computation results in a
partition of viewpoint space into maximal regions of con
stant topological appearance. These regions are bounded
by events, or viewpoints at which the image changes
topologically. At each boundary is stored a representation
of the change that occurs in the image: typically, a list of
polygons that disappear, appear, or change in topological
appearance. A data structure called an event graph stores
all of these boundaries together with add and delete lists
for each. A display list is maintained as the viewpoint
moves. In this approach, only the polygons (and parts of

Graphic s Interface ' 93

polygons) that are actually visible in a frame are rendered.
This approach maximizes the speed of the on-line portion
of the algorithm, and a Z-buffer is not required.

In an earlier paper [10] this approach was applied to 360°
rotations of polyhedral scenes of small-to-moderate size
(up to about 2000 faces). A rotation of a scene is
equivalent to moving the viewpoint in a circle around the
scene, so for this problem viewpoint space is I-D. Event
viewpoints along the circle are stored, and at each there is
an add list and a delete list for faces that appear and
disappear. In that case, it was found that the approach is
practical for models of this size. The amount of data that
must be stored was a few times the amount of data in the
model for visually complex models of that size. An im
plementation showed that using this approach makes pos
sible the rotation of such polyhedra in real time (e.g. 20
frames per second), with hidden lines removed, on an IBM
RS6000/320 workstation without graphics hardware. The
frame rates were limited by vector drawing speed only;
objects were rotated at about the same speed that would
have been possible without hidden line removal.

Unfortunately, extending the above approach to larger
models and greater viewer freedom presents problems.
Plantinga and Dyer [9] show that the number of topologi
cally-distinct regions into which viewpoint space is parti
tioned is 8(n3), 8(n6), or 8(n9) for 1-,2-, or 3-dimen
sional viewpoint spaces in the worst case for scenes with n
vertices. Even a convex polyhedron of n faces generates
8(n2) regions in a 2-D viewpoint space. The worst case
only occurs for pathological scenes (e.g. a grid behind a
grid), and the number of regions for natural scenes is typi
cally orders of magnitude better. Still, the amount of data
that must be represented for large scenes can be astronom
ical. Furthermore, this approach does not take advantage
of hidden-surface removal hardware when it is available.

This paper presents modifications of this approach to re
duce the storage and preprocessing time requirements and
take advantage of such hardware. Since walkthroughs are
to be interactive, I will use a 2-D viewpoint space, typi
cally the plane parallel to the ground and at eye level. This
allows the user to move around and to look around or up or
down, but the user cannot move up or down. It is possible
to store many such planes, connected in various ways, to
allow for buildings with multiple floors, stairs, etc. The
approach also generalizes very simply to 3-D viewpoint
space and unrestricted viewer motion, possibly at the ex
pense of additional storage requirements and preprocess
ing time for a given efficiency.

The goals of taking advantage of both visibility pre-com
putations and hardware for hidden surface removal may at
first seem difficult to reconcile. However, it turns out that
they complement each other nicely . Graphics hardware
always has a limit on the number of faces that can be ren
dered per frame, so visibility pre-computation is desirable.
When hidden-surface removal hardware is available, it is

167

possible to relax the requirements on visibility computa
tions, so that they need only be conservative rather than
exact. A conservative visibility computation is one in
which objects are represented as being invisible or possi
bly weakly visible from a region, where a face is said to be
weakly when it is at least partly visible from some view
point in that region. Thus, if a face is represented as invis
ible from a region, it is known that the face is not even
partly visible from any viewpoint in that region. If it is
represented as possibly weakly visible, it mayor may not
be visible from some viewpoints. It is then necessary to
perform hidden surface removal in order to correctly ren
der the scene, but the number of faces that must be ren
dered may be much smaller than the number of faces in the
scene. For any scene, many different conservative visibil
ity computations are possible, varying in visibility data
storage requirements from no additional data to as much
data as is required for the exact visibility computation. In
principle, it is possible to decide in advance how much
space is available for visibility information and to compute
exactly that amount of visibility information.

If visibility computations are conservative, it is no longer
necessary to compute and represent a huge number of re
gions with different visibility characteristics. A smaller
number of regions with conservative visibility information
suffices. Also, it is no longer necessary to compute and
store events concerning a change in a polygon's appear
ance due to occlusion; hidden portions may be automati
cally removed by the hidden surface removal hardware.
Furthermore, a few moving objects may easily be handled
by representing them as always possibly visible.

Another result of the use of conservative visibility compu
tations is that it is possible to group sets of scene faces to
gether into objects. The visibility status of an object as a
whole is represented, rather than the visibility status of the
individual faces. When any face of the object is possibly
weakly visible from a region, the object is possibly weakly
visible. If the faces selected for an object have approxi
mately the same visibility characteristics, this technique
can result in a great space savings without much penalty in
the efficiency of the visibility computation. A set of faces
will have approximately the same visibility characteristics
if the faces are in close proximity and if no other large face
divides the set. If a scene is constructed from a number of
primitives from a library, such as pieces of furniture or
mechanical parts, these primitives make natural choices for
objects. If no such construction-time information is avail
able, objects may be chosen as sets of the desired number
of faces that are spatially compact and not separated by
other large faces. In this paper I assume that the separation
into objects is given.

Objects may consist of hundreds or thousands of faces, and
visibility computations that involve all of the faces of an
object would be expensive. For greater efficiency, the
minimal bounding box with edges parallel to the coordi
nate axes is used for each object. Visibility computations

Graphics Interface '93 ~

are done on the bounding box rather than on the individual
object faces. From any viewpoint outside the box, if the
box is invisible, then all of the faces in the box are known
to be invisible. For viewpoints inside the box, the object is
said to be possibly weakly visible. Thus, conservatism is
preserved. An additional benefit of the use of bounding
boxes is that curved or arbitrary primitives or moving ob
jects may be used as long as a box bounding the primitive
can be found.

Note that large faces such as walls of a building contribute
significantly to the occlusion of objects, while small faces
do not contribute as much. When determining the regions
of viewpoint space from which an object is invisible, it is
possible to ignore the small faces and test for occlusion
only with the large faces, while maintaining the conserva
tive nature of the visibility computation. This technique
can result in significant time savings in the visibility com
putations when there are many small faces and a few large
faces, as may be the case in a model such as a building
with furniture. A possible approach is to use a fixed num
ber of the faces of the scene that have the largest area for
occlusion tests. These faces will be called walls, but they
should not be confused with walls of buildings; if the
model is a building, the actual set of faces used may be
much larger or smaller than the set of building walls.
Also, I will not try to represent events involving faces
whose invisibility may easily be determined on-line by
backface culling or viewing-pyramid clipping.

Viewpoint space is automatically partitioned by this algo
rithm into regions of constant conservative visibility char
acteristics. These regions will be called cells. With a 2-D
viewpoint space, cells are bounded by edges and quadratic
curve segments. Along with each cell boundary is stored a
list of objects that become invisible and a list of objects
that become possibly weakly visible.

Clearly, the choice of walls and objects affects how the
display list for a cell (Le. the set of possibly weakly visible
objects) compares to the set of weakly visible faces for that
cell. All of the faces on the display list must be sent into
the coordinate-transformation, clipping, and culling part of
the rendering pipeline. I have assumed that clipping and
culling can efficiently be done on-line, so that the display
list for a cell contains the faces that are visible from all
viewing directions. However, it is also possible that for
large enough display lists, most of which are clipped and
culled away, transforming, clipping, and culling may also
be a bottleneck. Therefore two measures of the efficiency
of a conservative visibility computation will be used: et,
the transform efficiency, which is a measure of the number
of invisible faces on the display list for a cell that must be
transformed and clipped or culled away, and er, the render
efficiency, which is a measure of the proportion of invisi
ble faces that remain on the display list after clipping and
culling and must be rendered.

168

Given a particular scene with a bounded viewing region,
let

ft = the total number of faces in the scene

mt = average number of faces partly visible from a
viewpoint in the scene (before clipping and
culling)

Ct = the average number of faces on the display list for
any viewpoint as a result of a conservative visi
bility computation for the scene.

The transform efficiency. et, of that conservative visibility
computation for the scene is then defined as

(Eq. 1)

Thus, et is a measure of how close display lists are to ideal.
When each face is an object and a wall, efficiency is max
imized (et = 1); when no walls are used so that all objects
are always on the display list, et = O.

In order to measure render efficiency, let

fr = the average number of faces in the scene that re
main after clipping after clipping and culling from
a viewpoint

mr = average number of faces partly visible from a
viewpoint in the scene, after clipping and culling

cr = the average number of faces on the display list for
any viewpoint as a result of a conservative visi
bility computation for the scene, after clipping
and culling

The render efficiency. er. for a conservative visibility
computation for the scene is then defined as

(Eq.2)

Render efficiency is a measure of the number of extrane
ous faces that must be rendered on average for a particular
scene and conservative visibility computation. When each
face is an object and a wall, only partly visible faces are
rendered and efficiency is maximized (er = 1). When all
faces in the scene must be rendered except those clipped or
culled away, efficiency is minimal (er = 0).

COMPUTING THE VIEWPOINT SPACE PARTITION
For a given set of objects and walls, viewpoint space is
partitioned into maximal cells from which the same set of
objects is possibly weakly visible, using only the given
walls in occlusion tests. This partition is called the View
point Space Partition (VSP). The algorithm for construct
ing the VSP works by computing events, which are view
points from which the image changes topologically upon
an arbitrarily small change in viewpoint. These events
form the boundaries of the VSP and the faces that generate

Graphics Interface '93

them detennine the add and delete lists for the VSP
boundaries. The description of the algorithm here will be
brief, with emphasis on differences from earlier work [9-
11].

Visual events occur at viewpoints from which an edge and
a vertex of the scene appear to intersect (EV events) or
from which three edges of the scene appear to intersect
(EEE events). Examples of image scenes near event view
points are shown in Figure 1; it is possible to enumerate all
configurations of an edge and a vertex or three edges and a
face of the scene that may result in an event [9] . I will
speak of the edges participating in an event and the face
occlu?ed at the event. The face occluded at the event may
contam one of the edges participating in the event, but in
some cases it does not.

,.'

..... ::~ .. ~: ... :

Figure 1. The image from viewpoints near events.
Four different examples are shown.

When a vertex and an edge or when three edges appear to
intersect, there is a line of sight from the event viewpoint
that passes through the edges participating in the event
without intersecting any other face. For EV events, the
line of sight in question lies in the plane containing the
vertex and the edge. In the case of EEE events, the line of
sight passes through three object edges (see Figure 2).

169

Figure 2. The line of sight through point P on El that
passes through E2 and E3.

In Figure 2, the dotted line is the line of sight that passes
through the three edges. It is the intersection of the plane
containing P and E2 and the plane containing P and E3. If
edge El is given by PI + sal, E2 by P2 + S2 a2, and E3
by P3 + S3 a3, then for any point P = PI + s al on El, the
direction of the line of sight is given by

Notice that d is a quadratic function of s. The locus of
event viewpoints for an EEE event is a surface in 3-D
made up of lines of sight intersecting all three edges; but
since d is a quadratic function of s, the lines do not lie in
the same plane. The surface that results is a warped
quadric surface. The intersection of such a surface with
the viewing plane is a quadratic curve.

Potential event points are defined as points that are on
lines of ~ight that start at a viewpoint v and intersect edges
of faces In such a way that an event would be generated if
no other face were occluding that line of sight. For EV
events, potential event points form lines of sight on a
plane, and for EEE events they form lines of sight on a
warped quadric surface. This plane or warped surface is
said to be the potential event surface. If any of these lines
of sight is unoccluded by other faces in the scene, the in
tersection of that line of sight with viewpoint space is an
event viewpoint.

In the computation of weak visibility events, the face oc
cluded at an event is a face of the bounding box of one of
the objects. The edges participating in the event are edges
of walls. In order to construct the VSP in this case, it thus
suffices to find all sets of three wall edges and an object
face configured in a way that results in a potential event.

Graphics Interface '93 ~~

The corresponding event surface is intersected with all
walls to fmd the lines of sight that reach the viewing plane
unoccluded. The intersection of these surfaces with view
point space is a set of line segments (for EV events) or
quadratic curve segments (for EEE segments) that partition
viewpoint space. The set of faces visible from the initial
viewpoint is computed using a standard hidden-surface
removal algorithm such as that of Mulmuley [6].

The algorithm for constructing the conservative VSP is as
follows. To handle EV-events, every set consisting of a
wall edge and a wall vertex, or a wall edge and an object
vertex, or a wall vertex and an object edge must be consid
ered. Each set is tested to determine whether the items are
configured in a way that results in a potential event by
comparing the configuration with the list of potential event
configurations. In the case of a wall edge and a wall ver
tex, the object face that appears or disappears at the event
must also be found. Then for appropriately arranged sets,
the parts of the potential event surface that intersect other
walls of the scene are removed. The remaining lines of
sight-those not blocked by any scene wall between view
point space and the faces participating in the event-inter
sect viewpoint space in conservative event viewpoints.
The intersection will be a set of segments on a line. EEE
events are handled similarly, except that the sets of object
features that may form an EEE event are sets consisting of
three wall edges or two wall edges and an object edge. In .
the case of three wall edges, the object face that becomes
occluded at that event must be found. In this case, the
VSP boundaries that result in viewpoint space are
quadratic curve segments rather than line segments. Miller
and Goldman [5] describe an efficient and robust method
for finding the intersection of a quadric surface with a
plane.

The above description of the algorithm does not say how
to find the lines of sight of a potential event surface that do
not intersect any walls. This may be done for w walls of
bounded size in O(w 19 w) time using a data structure such
as a segment tree [12]. More details of working with these
surfaces are found elsewhere [9, 11]. The line segments
and curve segments that result partition the plane into the
conservative VSP. The event graph is used to represent
the conservative VSP; it is a graph with edges for the line
or curve segments and vertices for the intersections of
these segments. At each vertex, the coordinates of the in
tersection point are stored, and at each edge are stored add
and delete lists consisting of lists of pointers to objects and
the constants representing the quadratic curve on which the
segment lies, if it is a curve segment. Then, for a small
change in viewpoint it is possible to determine the objects
that become invisible or possibly weakly visible by
checking whether the viewpath leaves the current cell, and
if it does, updating the display list according to the add and
delete lists for the cell boundary crossed. It is then neces
sary to check whether the viewpath leaves the next cell,
and so on. If s segments are generated in computing con
servative events, then for a 2-D viewpoint space the con-

170

servative VSP has size 0(s2) and can be constructed in
0(s2) time in the worst case, using the algorithm of Mul
muley [7]. However, for typical scenes with significant
occlusion, the size and construction time are likely to be
closer to linear.

The worst-case runtime for finding the segments constitut
ing the VSP is 0«w4 + w3 k) log w), where w is the num
ber of wall vertices and k is the number of objects, since a
computation taking time O(w log w) is done for each po
tential event surface, of which there are 0(w3 + w2 k) in
the worst case. The preprocessing stage is thus combinato
rially complex in the worst case. However, the time re
quired depends only on the number of walls and objects se
lected and not on the size of the original model. This ap
proach can therefore be used for models of any size. How
ever, for a fixed number of walls and objects, the effi
ciency of the on-line part of the algorithm is likely to de
crease as the model gets larger. Theoretically, the number
of segments that result is 0(w3 + w2k) in the worst case.
However, the worst case only occurs for pathological
scenes such as a grid behind a grid; for typical scenes the
amount of data is much smaller. But note that even parti
tioning a scene into just a few cells is likely to result in
major improvements in on-line efficiency.

Practically speaking, the amount of space required and ef
ficiency of this approach vary dramatically with the
choices made for objects and walls and with the "visual
complexity" of the scene (which is related to the number
of objects and walls visible from a typical viewpoint). The
more objects and walls, the more space required and the
more efficient the result is likely to be in the on-line phase.
The best that can be hoped for is that an efficiency close to
one is achievable with a limited amount of storage, say
approximately equal to the size of the original model.

RESULTS
In order to determine the kinds of efficiency possible with
limited storage for visual events, estimates of efficiency
were made for a rough model of one floor of the Depart
ment of Computer Science at the University of Pittsburgh
(see Figure 3). This model was created with Virtus Walk
through, a commercial CAD program from Virtus Corp.
Two typical views from within this model are shown in
Figure 4.

Note that this model has many doors and windows, all
open, but that there is still considerable opportunity for ef
ficiency improvements by visibility pre-computation for an
interactive walkthrough. The model has about 34 rooms
and hallways and 131 pieces of furniture. There are 8895
faces in all. In all cases, the largest unbroken rectangular
floor-to-ceiling sections of interior walls will be used as
"walls" for occlusion tests. There are 128 such sections, or
64 if two-sided faces are used. Four partitions of scene
faces into objects are considered: first, each face is an ob
ject; second, pieces of furniture and walls are objects;
third, all the furniture in any room and the walls surround-

~ Graphics Interface '93

171

ing the room are objects, and fourth , all the faces in the
scene constitute one object. Furniture always consists of
one-sided faces, and walls are considered to be two-sided
except in the case where rooms are objects.

In order to estimate the efficiency of the conservative visi
bility computation resulting from each partition of the
scene into objects, 20 random viewpoints and viewing di
rections were generated. Then, for each viewpoint, the
number of faces on the display list and the number that

El

0

Cl Cl

[)

~
is

must be rendered after clipping and culling were computed
for each viewpoint by visual inspection. The results are
summarized in Table 1. In computing these numbers, two
assumptions were made: that the number of faces removed
by backface culling is half of those on the current display
list and that the portion of faces of an object removed by
clipping when the object intersects the clipping boundary
is one half. Also, the field of view is 90° and the front
clipping plane is at the viewpoint.

[] o 0 ° ° ILUJI
Cl om ° m ° IIllJI ~

Cl DD
D

~ 0 ~ o 0 DlD!JlD
DllDJl ~ Cl

0

° it ° (]]JJ

Figure 3. An example model. This is a floor of the Department of Computer Science at the University of Pittsburgh.

Figure 4. Two typical views from viewpoints in the model shown in Figure 3.

Object partition

each face furniture rooms whole scene
Average number of faces to
be transformed, clipped, and 471 546 1312 8895

culled
Average number of faces to

68.5 68.5 196 1059 be rendered

Transform/clip/cull efficiency 1 0.99 0.90 0

Render efficiency 1 1 0.87 0

Table 1. Efficiency results for the sample model under for object selections.

Graphics Interface '93 ~

The numbers in the top two rows are highly variable: the
standard deviation of these averages is roughly the size of
the number in most cases. Therefore the confidence inter
vals for these averages are fairly large: plus or minus ap
proximately half of the average in most cases. Further
more, they represent averages for only a single model.
Still, they are suggestive of the kind of efficiencies that
may be obtained by these techniques with similar models.

Note that the use of even a few objects (34 in the case of
rooms as objects) results in relatively high efficiency for
this model. Only 15% of the faces in the scene must be
transformed, clipped, and culled, on average, and only
19% of the faces must be rendered compared to the case
where no visibility pre-computations are used. Using
pieces of furniture as objects yielded nearly optimal re
sults, and only 195 objects and 64 walls are used. It ap
pears that for applications in which preprocessing time is
available and rendering speed is important, this technique
can yield excellent efficiency.

Lacking a complete implementation of the algorithm, I am
unable to report on the amount of visibility data that
would have to be represented in each case. However,
since that information is important, I will attempt a rough
estimate. I estimate that while the worst case number of
segments in the VSP is O(w3 + ~k) the average case for
a model like abuilding is less than n2, where n is max(w,
k). I believe this to be the case because there are typically
very few EEE-events in a building; most events are of the
EV type, and the worst-case number of EV -events is O(w2

+ w k). By that estimate, the number of regions in the
VSP for the fourth case would be one. For the third case,
where objects are rooms, the number would be less than
1,000. For the second case, where pieces of furniture and
walls are objects, the number would be less than 40,000.
For the first case, the number would be huge. Since VSP
edges generally require less space to represent than scene
faces together with their attributes, all but the first parti
tion may result in a reasonable amount of visibility data.

DIRECTIONS FOR FURTHER RESEARCH

In models with a large number of objects, some of which
are far from other objects, many or most of the objects in a
scene may be far from the viewer. It is possible that from
some viewpoints (say, near a window) many distant ob
jects will be visible. If distances are such that these ob
jects will be small in the image, significant savings are
available by rendering simpler approximations to these
distant objects. Thus, I am investigating the use of dis
tance-based events and a hierarchy of progressively sim
pler and easier-to-render approximations 10 objects.

It is also possible to extend this approach to a 3-D view
point space. In that case, the viewer's movements are not
constrained in any way, but the storage requirements for
visibility information may be higher: a partition of a 3-D
viewpoint space rather than 2-D must be" stored. How-

172

ever, for many 3-D models such as buildings, it may be
that the 3-D VSP is not much larger than the 2-D VSP be
cause the geometry of the model in question is almost 2-
D. The event-based approach to the walkthrough problem
will also be practical for a 3-D VSP and any model as long
as the number of objects and walls is limited. However,
for given space and time limits, the efficiencies achieved
will likely be lower.

RELATED WORK
Other researchers have also addressed the walkthrough
problem. Brooks [3] uses the BSP-tree for walkthroughs.
The BSP-tree makes it practical to work with much larger
models when a Z-buffer is unavailable, but traditionally it
has been used to find a back-to-front order of the polygons
and not to reduce the number of polygons rendered at each
frame. In fact, the number of polygons to be rendered at
each frame can increase significantly. However, Gordon
and Chen [4] have recently described a method for dis
playing the faces in a BSP tree in front-to-back order that
is faster than the traditional back-to-front traversal when
the number of polygons in the tree is large. Teller and
Sequin [13] discuss visibility preprocessing for a model
subdivided into rectangular cells and portals; their ap
proach computes cell-to-cell visibility by finding sight
lines between cells. Airey et al. [1] address the walk
through problem by precomputing the potentially visible
sets of the model for sets of associated viewpoints or cells.
They describe two approximation approaches to comput
ing visibility from cells: point sampling and partial com
putation of shadows. They express the hope that a better
algorithm can be developed in the future. Plantinga [11]
gives an algorithm for computing the set of weakly visible
faces of a scene from a polygon, but the time required to
do so is O(n4 log n) in the worst case for a scene with n
vertices.

Bern et al. [2] describe methods for computing visibility
along a straight-line walk path over three different types
of terrain. They describe a method for finding all topol
ogy chan~s along a line segment that requires worst-case
time O((n + p) log n), where n is the number of edges in
the scene and p is the number of "transparent topology
changes." (Here p is O(n3).) Mulmuley [8] gives a dif
ferent algorithm for the same problem. These methods
cannot be used when the walk path is not known in ad
vance or is not a straight line. In that paper Mulmuley
also defines an interesting data structure-a cylindrical
partition H(A) for a scene A such that the view from any
viewpoint can be computed in time proportional to the
size of the complex View(v) n H(A) to within a log fac
tor. View(v) is the star-shaped polyhedron consisting of
the visible points from v. The size of H(A) is 8(n2), the
amount of preprocessing time required 8(n2 log n), and
the view constructed 8(n2) in size in the worst case. Al
though Mulmuley says that the typical sizes and runtimes
are much closer to linear, this approach may still not prove
practical for large scenes. However, some of the tech-

Graphics Interface ' 93

niques for handling large scenes introduced here may also
be applicable to Mulmuley's approach.

CONCLUSIONS

In this paper I present an approach to the walkthrough
problem: group the primitives of the model into objects,
select a subset of faces as walls, and find a partition of
viewpoint space into cells for which the visibility status of
each object is known (conservatively). At cell boundaries
store lists of objects that become visible and invisible
upon crossing that boundary; these objects are posted or
unposted from the display structure when the viewpoint
crosses a boundary. This approach admits a tradeoff be
tween preprocessing time and space and on-line time:
smaller, more numerous objects and more walls generate
more cells and require more precomputation and more
storage, but since the display list is potentially a smaller
superset of the visible objects for any viewpoint, the on
line phase of the algorithm is faster.

In this approach it is possible to handle large scenes and
curved surfaces. The partition of viewpoint space into
cells is automatically generated for a choice of objects and
walls. The amount of storage required is "tunable" for the
specific characteristics of the application; more prepro
cessing time and more storage allow a more effiCient on
line walkthrough. I believe that this approach or other
approaches to conservative visibility computations will be
widely applicable for situations in which precomputation
time is available and interactive walkthroughs of large
scenes are desired.

Finally, because processor speeds and memory capacities
are increasing faster than bandwidth into frame buffers, I
believe that object-space techniques for reducing the
number of bits that must be sent to a frame buffer or Z
buffer will increase in importance. As the processor speed
to frame-buffer bandwidth ratio increases, techniques such
as the one presented here will yield a greater increase in
efficiency per unit time invested.

REFERENCES
I. . Airey, J. M., J. H. Rholf, and F. P. Brooks Jr.,

"Towards image realism with interactive update
rates in complex virtual building environments,"
Computer Graphics 24 (2), March 1990, pp. 41-50.

2. Bern, Dobkin, Eppstein, and Grossman, "Visibility
with a moving point of view," SODA 1990.

173

3.

4.

5.

6.

7.

(

8.

9.

Brooks, F., "Walkthrough-A dynamic graphics
system for simulating virtual buildings," Proc. Work
shop in Interactive 3D Graphics, 1986, pp. 9-21.

Gordon, D. and S. Chen, "Front-to-back display of
BSP trees," Computer Graphics and Applications
11(5), 1991, pp. 79-85.

Miller, J. R. and R. N. Goldman, "Using tangent
balls to find plane sections of natural quadrics,"
Computer Graphics and Applications, 12(2), March
1992, pp. 68-82.

Mulmuley, K., "An efficient algorithm for hidden
surface removal," Computer Graphics 23 (3), 1989a,
pp. 379-388.

Mulmuley, K., "A fast planar partition algorithm ,
11," Proc. Fifth Ann. Symp . on Computational Ge
ometry , 1989b, pp. 33-43.

Mulmuley, K., "Hidden surface removal with respect
to a moving view point (Extended abstract)," Pro
ceedings of the 23rd. Annual Symp. on Theory of
Computing. 1991, pp. 512-522.

Plantinga, H., and C. R. Dyer, "Visibility, occlusion,
and the aspect graph," International Journal of
Computer Vision 5(2), November 1990, pp. 137-160.

10. Plantinga, H. , W. B . Seales, and C. R. Dyer,
"Interactive viewing of polyhedral scenes using
viewpath coherence and the asp representation,"
Graphics Interface '90, pp. 9-16.

11. Plantinga, H., "An algorithm for finding the weakly
visible faces from a polygon in 3-D," Canadian
Conference on Computational Geometry, 1992, pp.
45-51.

12. Preparata, F. P., and M. I. Shamos, Computational
Geometry, Springer-Verlag, 1985.

13. Teller, S. J ., and Carlo H. Sequin, "Visibility prepro
cessing for interactive walkthroughs," Computer
Graphics 25 (4), July 1991, pp. 61-70.

Graphics Interface '93

