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ABSTRACT 

This paper addresses the long-standing problem of generating 
fractal mountains with rivers, and presents a partial solution 
that incorporates a squig-curve model of a river's course into 
the midpoint-displacement model for mountains. The method 
is based on the observation that both models can be expressed 
by similar context-sensitive rewriting mechanisms. As a 
result, a mountain landscape with a river can be generated 
using a single integrated process. 
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INTRODUCTION 

In 1988, Mandelbrot pointed out "the most basic defect of past 
fractal forgeries of landscape" - the fact that each of them 
fails to include river networks [12, pages 243-260]. Since 
then, Kelley, Malin and Nielson [5] overcame this limitation 
by generating fractal terrain around a predefined drainage 
system. Pursuing an alternative approach, Musgrave, Kolb, 
and Mace [11] created river channels by simulating water 
erosion in fractal mountains. Both methods require separate 
processes to define the mountain and the river system. A dif­
ferent technique was introduced by Bardeen, whose program 
Panorama [1] combines mountain and river generation into 
a single process. The details of his algorithm have not yet 
been published. 

In this paper we introduce a method that - like Bardeen's 
- creates the mountain and the river system simultaneously. 
Specifically, we combine the midpoint-displacement method 
for mountain generation given by Fournier, Fussell, and Car­
penter [3] with the squig-curve model of a non-branching 
river originated by Mandelbrot [7, 8] (see also [9, Chapter 
24]). Our method employs a context-sensitive rewriting sys­
tem operating on geometric objects. Theoretical interest in 
such systems has been spawned by Smith [14], but few exam­
ples have been investigated to date. Consequently, a part of 
our paper is devoted to the discussion of the context-sensitive 
aspects of the constructions under consideration. 

Figure 1: A production for fractal mountain generation us­
ing the midpoint displacement method. The initial altitudes 
XA, XB and Xc of the vertices ofasubdivided triangle,and the 
displacement values YA, YB and Ye, vary between instances 
of production application. 

We begin with a review of the basic midpoint-displacement 
construction. A description of the squig-curve construction 
follows. The two constructions are then related as different 
facets of the same context-sensitive process of triangle subdi­
vision, and combined into a model of mountains with rivers. 
The paper is concluded by a list of topics open for further 
research. 

MIDPOINT-DISPLACEMENT METHOD REVISITED 
In the simplest version of the midpoint -displacement method, 
an initial horizontal triangle is subdivided into four smaller 
triangles, and the newly created vertices are displaced ver­
tically by random values. A similar process is repeated for 
each of the smaller triangles, then for each of their descen­
dants, until a given recursion limit is reached. Smith [14] 
presented midpoint displacement as a rewriting process gov­
erned by the class of productions depicted in Figure 1. This 
characterization related fractal mountain generation to for­
mal language theory, and raised a question regarding the 
nature of the rewriting process in hand: Is it context-free or 
context-sensitive? Smith wrote: "In formal language theory, 
as Loren Carpenter has pointed out to me, the problem with 
his language is that it is context-free. Information internal to 
an original database triangle is never passed to neighboring 
triangles." Although this view has been supported in the liter­
ature [10], [12, page 244], it disregards a form of information 
transfer that does take place between neigh boring triangles. 
As shown in Figure 2, we cannot apply the production of 
Figure 1 independently to triangles P and Q sharing a com­
mon edge I, since the displacement of the midpoint of I must 
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Figure 2: The midpoint-displacement method is context­
senSitIve. After the subdivision of triangles P and Q, the 
midpoints of the coinciding edges Ip and IQ are displaced 
by vectors of equal lengths, yp = YQ. In practical imple­
mentations, lines Ip and IQ collapse to a single edge I shared 
between triangles P and Q. 
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Figure 3: Information transfer in context-sensitive parallel 
grammars (a) and in the midpoint-displacement method (b). 
Continuous arrows represent the flow of information from the 
parent object to its replacement. Dashed arrows represent the 
flow of contextual information. 

be the same for both P and Q [3]. Thus, the production 
instance applied to triangle P depends on that applied to tri­
angle Q, and vice versa. This implies information transfer 
between P and Q, although its nature is different from that 
usually considered in formal language theory (specifically, 
in the theory of L-systems, which deals with parallel rewrit­
ing [6]). Traditionally, the set of applicable productions is 
constrained by the neighbors of the strict predecessor (the 
symbol being replaced). On the other hand, in midpoint dis­
placement each production is constrained by the successors 
of the productions applied concurrently to the neighboring 
triangles (Figure 3). Nonetheless, in both cases the outcome 
of a production depends on its neighbors, and in this sense 
both production types are context-sensitive. 

The information transfer associated with context-sensitive 
productions used in the midpoint -displacement method is fur-
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Figure 4: Information transfer in the midpoint-displacement 
method. Production (a) has six instances (b). The subdivision 
pattern of the bottom left triangle determines the subdivision 
patterns for all remaining triangles, as shown here for the 
third level of recursion (c, d). 

ther illustrated in Figure 4. The productions (a) are assumed 
to raise midpoints of the subdivided edges by 1,2, and 3 units, 
counting counterclockwise. Distinguishing between possible 
orientations of the subdivided edges, we obtain six instances 
of production (a), as shown in (b). During the construction of 
a mountain, the production instance applied, say, to the bot­
tom left triangle determines production instances appropriate 
for subdividing all other triangles (c, d). Thus, information is 
passed between the bottom left triangle and all other triangles 
in the mesh. 

Note that Figures 4 (c) and (d) can also be viewed as tilings 
using tiles with labeled edges. Coinciding edges must have 
the same label. A square-grid counterpart of such tilings was 
proposed and studied by Wang [15, 16] (see also [4, Chapter 
11]), who showed that the operation of any Turing machine'­
can be simulated using a set of appropriately labeled tiles. 
Clearly, a context-sensitive information-passing mechanism -
is needed to achieve this computational power. 
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Figure 5: Detenninistic calculation of a psuedorandom 
midpoint-displacement value. 

The context-sensitive nature of the midpoint-displacement 
method may be hidden by programming techniques used to 
implement it. For example, Fournier et al. wrote [3]: "An 
obvious requirement is that the same random displacements 
must be generated on each boundary, which can be accom­
plished by tying the seeds of the random number generator 
to identifiers of points on the boundary, making certain that 
the same identifiers are assigned to the corresponding points 
in the representation of each polygon's boundary." A deter­
ministic variant of this technique, suggested by Smith [14], is 
illustrated in Figure 5. When an edge is subdivided, the coor­
dinates of its endpoints detennine, via a hashing function, an 
index into a prestored table of random numbers that represent 
possible displacement values. Thus, if the displacement of 
the midpoint of edge I in Figure 2 is calculated separately 
for both triangles P and Q that share I, the returned values 
yp and YQ will be the same. This technique replaces the ex­
plicit context-sensitivity with the dependence of production 
parameters on the position of the subdivided triangle in the 
underlying coordinate system. Consequently, the determin­
istic midpoint-displacement method can be implemented in a 
simple, recursive manner. 

SQUIG CURVES REVISITED 

Mandelbrot introduced squig curves as "a model of a river's 
course, patterned after the well-known pictures in geology 
or geography that show the successive stages of a river that 
burrows into a valley, defining its course with increasing pre­
cision" [9, page 255] . Peyriere [13] (see also [2]) proposed 
to consider squig curve construction as a random rewriting 
process, governed by the set of productions depicted in Fig­
ure 6. The production predecessor is a triangle with the edges 
labeled entry, exit, and neutral. The entry edge represents the 
set of possible sites where the curve may enter this triangle, 
and the exit edge represents the set of possible sites where 
the curve may leave it. The neutral edge is not intersected 
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Edges: - - - entry. --exit, --neutral. 

Figure 6: Productions for generating a squig curve. Before 
production application, the predecessor and the successor 
may be translated, rotated, reflected, and scaled. Arrows 
indicate the direction of the curve (river flow). Vertical bars 
separate alternative production successors. 

by the curve. Each production subdivides the predecessor 
triangle into four smaller triangles, satisfying the following 
constraints: 

• The entry edge of the predecessor is subdivided into an 
entry edge and a neutral edge; 

• The exit edge of the predecessor is subdivided into an 
exit edge and a neutral edge; 

• The neutral edge of the predecessor is subdivided into 
two neutral edges; 

• Each pair of coinciding edges inside the subdivided tri­
angle consists either of an entry and an exit edge, or of 
two neutral edges. 

Figure 6 shows a set of four productions satisfying these cri­
teria. The squig curve construction begins with a triangle 
that has one entry and one exit edge. A production appli­
cation partitions these edges into two equal segments while 
subdividing the triangle. For each original edge crossed by 
the river, one of the new segments is selected as the next 
approximation of the crossing site. Once the entering and 
exit segments have been chosen, the path of the river through 
the new triangles is uniquely defined, assuming that a river 
may go through each triangle at most once. The subdivision 
process is repeated recursively until the desired level of detail 
is reached. 

As shown in Figure 7, the segments crossed by the ri ver must 
be chosen consistently for each pair of adjacent triangles, so 
that the exit segment from one triangle matches the entry 
segment of the neighboring triangle. Thus, triangle subdi­
vision during squig curve construction is a context-sensitive 
process similar in nature to midpoint displacement. In both 
cases, a consistent decision regarding the edge shared by two 
triangles must be reached, whether it detennines the altitude 
to which the midpoint will be raised, or the edge segment 
through which the squig curve will pass. Consequently, a 
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Figure 7: Consistent subdivision of three triangles P, Q, and 
R during a squig curve construction. After the subdivision, 
the exit edge from triangle P matches the entry edge to tri­
angle Q and, in a similar way, the exit edge from triangle Q 
matches the entry edge to triangle R. 

squig curve can be constructed in a manner analogous to the 
deterministic implementation of the midpoint displacement 
method (Figure 5). The location of the vertices of an edge 
crossed by the river is used as a key into a hash table of ran­
dom numbers. The sign of the returned number determines 
which segment will be crossed in the next approximation of 
the riverbed. 

The above algorithm guarantees that the river will run contin­
uously through the mesh of triangles and will never intersect 
itself. A sample squig curve construction is illustrated in 
Figure 8. 

INTEGRATION OF A RIVER AND A MOUNTAIN 
The previous two sections demonstrate that the midpoint­
displacement method and the construction of a squig curve 
can be viewed as variants of the same context-sensitive sub­
division of a triangle. This suggests the combination of both 
constructions into a single algorithm. At each subdivision 
step, the path of the river and the shape of the mountain are 
specified with increased accuracy. When a triangle is subdi­
vided to the n-th level of recursion, the midpoints of the edges 
crossed by the squig curve are assigned the minimum altitude 
alt( n), calculated as the sum of negative displacement limits 
d; in the previous and current subdivision steps: 

n 

alt(n) = L di . 

i=1 

The remaining midpoints are not affected by the river's course 
and are displaced in the usual pseudorandom way. The re­
sulting algorithm for generating a mountain traversed by a 
river is illustrated in Figure 9. Note that if the top view of a 
mountain is regarded as a planar graph, at each level of recur­
sion there is a path from its initial entry edge to the final exit 
edge, formed by the chain of vertices assigned the minimum 
altitude. For example, in Figure 9(c) this path runs through 
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Figure 8: Example of a squig curve construction (recursion 
levels 0--7). 

Figure 9: Vertices affected by a river's course at the first, 
second, and third level of the recursive construction of a 
fractal mountain with a river. 

the vertices marked by a square box. Since these vertices 
have the same altitude, and are guaranteed to be the lowest of 
all points in the landscape, we can interpret the path that con­
nects them as a riverbed. The river will never run upwards 
and will always lie lower than the surrounding terrain, thus 
satisfying two obvious constraints that a real river must meet. 

A mountain landscape with a clearly defined river channel can 
be convincingly approximated using six or seven recursion 
levels. At nine or ten levels the results are more realistic, 
but the number of polygons is much larger (over 1 million 
for ten levels). Two sample landscapes created using the 
proposed method at ten levels of recursion are shown in Plates 
1 and 2. The colors of the verti~es, including the river, 
were determined by their altitudes serving as indices into an 
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Figure 10: The emergence of an asymmetric valley, shown 
in cross-section. Consecutive approximations of the riverbed 
may move it horizontally towards a high-altitude point A, 
creating a succession of increasingly steep walls AB 1, AB2, 

and AB3 • The arrows indicate the vertical displacements of 
the midpoints of the selected edges. 

appropriate color map; the triangles were filled using Gouraud 
shading. 

CONCLUSIONS 
We have presented a technique for generating fractal moun­
tains with rivers that combines the midpoint-displacement 
method for mountain generation with the squig-curve model 
of a river's course. Using this technique, we were able to 
achieve some degree of realism in the synthesized landscapes. 
Nevertheless, three key problems remain open: 

• The river flows at a constant altitude. This assumption, 
although physically incorrect, could be viewed as an 
approximation for a river with a small slope, such as one 
flowing in the plains. However, in mountain landscapes 
the slope should not be neglected - for example, to 
make waterfalls possible. 

• The river flows in an asymmetric valley. The algorithm 
tends to produce asymmetric ri ver valleys in the shape of 
an italicized letter V - with one side almost vertical. This 
phenomenon, clearly visible in Plates 1 and 2, results 
from the river approaching a mountain vertex placed at 
a high altitude (Figure 10). In nature, both sides tend to 
be more symmetric and less steep. 

• The river has no tributaries. The squig-curve construc­
tion can be extended with productions that introduce 
branching points and subdivide triangles that already in­
clude such points (Figure 11). Sample planar curves 
ge!lerated this way are shown in Figure 12. Unfortu­
nately, it is not immediately apparent how these curves 
could be incorporated into fractal mountains. A model 
of a river source would be necessary, since the tributaries 
usually originate within the visualized area. 
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Figure 11: Sample productions for generating branching ex­
tensions of squig curves. Production (a) creates a tributary. 
Production (b) subdivides a triangle that already includes a 
branching point. 

Figure 12: Extended squig curves with branches. 

In addition, the images could be improved using more so­
phisticated rendering techniques. 
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Plate 1: A fractallandscape with a river. This image was generated on a Silicon 
Graphics VGX 3D/310 workstation at 10 levels of recursion in approximately 8 minutes. 

Plate 2: Another fractallandscape with a river. 
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