
192 

Multi-resolution Surface Approximation for Animation 

David Forsey and Lifeng Wang 
Dept. of Computer Science 

University of British Columbia, Vancouver, B.C. Canada V6T 1Z2 
604-822-8158 

e-mail address:{drforseylwang}@cs.ubc.ca 

ABSTRACT 

This paper considers the problem of approximating 
a digitized surface in R3 with a hierarchical bicubic 
B-spline to produce a manipulatable surface for fur­
ther modelling or animation. The 3D data's original 
mapping from R2 (multiple rows of cylindrical scans) 
is mapped into the parametric domain of the B-spline 
(also in R2) using a modified chord-length parameter­
ization. This mapping is used to produce a gridded 
sampling of the surface, and a modified full multi­
grid (FMG) technique is employed to obtain a high­
resolution B-spline approximation. The intermediate 
results of the FMG calculations generate the compo­
nent overlays of a hierarchical spline surface represen­
tation. 

Storage requirements of the hierarchical representa­
tion are reduced by eliminating offsets where-ever their 
removal will not increase the error in the approximation 
by more than a given amount. The resulting hierarchi­
cal spline surface is interactively modifiable (modulo 
the size of the data set and computing power) using the 
editing capabilities of the hierarchical surface represen­
tation allowing either local or global changes to surface 
shape while retaining details of the scanned data. 

RESUME 

Cet article addresse le probleme d'approximer une 
surface digitalisee en R3 par une B-spline hierarchique 
bi-cubique pour produire une surface manipulable pour 
la creation ou la modeIisation. Un mapping initial des 
donnees de R2 dans le domaine parametrique de la 
B-spline (aussi en R2) est modifie pour produire une 
parametrisation euclidienne. Ce mapping concentre la 
surface spline dans les regions de haute pente et est 
utilise pour produire un echantillonhage regulier des 
donnees. La methode numerique de multi grid complete 
(FMG) approxime la surface; elle ajuste une surface B­
spline de haute resolution aux donnees. Les resultats 
immediaires des calculs sont utilises directement pour 
generer les surfaces de composantes overlay de la spline 

hierarchique. Les requierements en memoire pour la 
definition de la surface sont diminues en reduisant a. 
zero les vecteurs de decalage qui sont it. l'interieur 
d'epsilon dans chaque niveau overlay. La surface spline 
hierarchique result ante est modifiable interactivement 
localement et globalement tout en retenant les details 
de la surface des donnees importees. 

KEYWORDS: Geometric modelling, surface approxi­
mation, multigrid methods, hierarchical B-splines, pa­
rameterization, animation. 

INTRODUCTION 

Problem Definition 

Hierarchical splines are a multi-resolution approach 
to splines for use in interactive creation of free-form 
surfaces [8] [22] . The additional need often arises both 
in CAD and computer animation for a deformable sur­
fa.ce that resembles some existing physical object . This 
paper addresses the issue of creating a hierarchical 
bicubic B-spline approximation to data obtained from 
systematic measuring devices such as laser rangers, 
CAT imagery systems, or optical scanners. This data 
is typically arranged in a rectangula.r array indexed by 
row and column number q, r, and describes either a 
height field or a cylindrical surface where each row in 
the array encodes a single cross-section of the cylinder 
(Figure 1). 

Surface Approximation 

We a.re interested in fitting a tensor-product B-spline 
surface 

m n 

S(u,V) = LLVi,jBi,k(Ui)Bj,I(Vj) (1) 
;=0 j=O 

to a. given set of data points. The variables k and I refer 
to the order of the basis function in the u and v para­
metric directions respectively. The basis functions Bi 
and Cj will be left open throughout this discussion hut 
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must partition unity, be variation diminishing, non­
negative, have compact support and be refinable [1] [6]. 
These properties are common to B-spline, Beta-splines 
and rational splines derived from either of these kinds 
of bases. Throughout this paper, the basis will be of 
order 4, but the techniques discussed generalize to any 
order. 

To generate the equations for surface approximation, 
each data point (x, y, z) = D>. E R3 is associated with 
a domain point (u, v) = 6>. E R2 of the spline. This 
forms the equation: 

m n 

L L Vi,jB;,k(U;)Bj,I(Vj) = D>.. (2) 
;=0 j=O 

Data is gridded if 

u E {uo, ... , UM} 
v E {VO, ... , v N } 

(3) 

and if the 6s consist of all points in {uo,···, UM} X 

{ Vo, ... , v N} the surface approximation equations be-
come 

m n 

L L V;,jB;,k(U.)Bj,I(Vt) = Dq,r. (4) 
;=0 j=O 

for s = 0,···, M and t = 0,···, N. Thus the number 
of equations is equal to the number of data points. 

The system of equations is overdetermined if the 
number of equations (i.e. the number of data points) 
exceeds the number of unknowns (i.e. the number of 
control vertices). In this case Equation 4 is replaced 
by the normal equations for a least squares solution. 
If the number of equations is equal to the number of 
unknowns, the system is simply determined and all of 
the data points will be interpolated. If the number 
of equations is less than the number of unknowns, the 
system is underdetermined, and multiple solutions ex­
ist. In this case, equations can be added to the system 
to uniquely determine the solution, or some numerical 
methods [3] can be employed to select one of the many 
possible solutions. 

Surface Approximation for Animation 

The problem of applying these equations to approx­
imate a digitized surface with a hierarchical spline is 
complicated by two factors: an unusual parameteriza­
tion, and the multi-resolution nature of the hierarchical 
formulation itself. 

For gridded data arranged as in Figure 1, the most 
straightforward parameterization would map the data 
onto a cylindrical spline surface. However, for our par­
ticular application, a cylinder is inappropriate because 
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the data is destined to be used to determine the shape 
of a rectangular sub-region of a pre-existing spline fig­
ure where the edges of the sub-region match the open­
ing of the neck and the remainder of the surface extends 
over the top of the head. Furthermore, because a hier­
archical spline is composed of multiple spline surfaces 
(called overlays), any surface approximation must also 
have some mechanism to to create these overlays. 

This paper addresses these issues. A review of re­
lated work is followed by a brief overview in Section 
2 of the hierarchical surface formulation, parameteri­
zation methods, and the multigrid method for solving 
a linear system of equations. Section 3 describes the 
process of applying these techniques to the problem of 
approximating a non-trivial example of a digitized sur­
face (Victor Hugo) with a hierarchical spline surface. 

y 

x 

z 

Figure 1: Digitized Data Topology 

Related Work 

The curve and surface fitting literature is extensive. 
This paper will not attempt a survey of the field but 
will briefly examine some related work relevant to our 
particular application. 

Nahas et. al. [16] examine the problem of creat­
ing a B-spline facial model from digitized data. The 
raw mesh of digitized data points is used, unmodified, 
as the control vertices of a bicubic B-spline surface. 
Broad-scale changes in the shape of the surface are 
made by embedding the control vertices of the raw 
mesh in a coarser spline mesh created by selecting a 
relatively few characteristic points from the initial data 
points. Changes in the position of the characteristic 
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points displace the vertices of the fine-mesh model. 

In [18], an adaptive process was presented to fit sur­
face data with a geometrically continuous collection 
of rectangular bicubic Bezier patches. The adaptiv­
ity is derived from fitting a portion of the data with a 
patch, testing the fit for satisfaction within a given tol­
erance, and subdividing the patch if the tolerance was 
not met. Geometric continuity was controlled by us­
ing a constrained least squares approximation method 
where the constraints imposed the continuity condi­
tions. A considerable number of constraints are re­
quired to piece the Bezier patches together to form a . 
continuous composite surface. The broader class of ten­
sor product spline surfaces (e.g. B-spline, Beta-splines 
or their rational counterparts) provide continuity with­
out the imposition of constraints but individual patches 
but typically cannot be refined to provide the localized 
approximation achieved in [IS] with Bezier patches. 

Hierarchical splines [S] [12] allow local refinement 
of uniform B-splines or Beta-splines and their rational 
counterparts. This property was exploited to provide 
an adaptive algorithm (similar to [IS]), for approximat­
ing regular (gridded) data in three dimensions with 
a bicubic B-spline surface [11], and subsequently to 
multivariate B-splines in any dimension [10]. This ap­
proach iteratively applies least-squares to fit a series of 
successively finer spline surfaces (i .e. more patches) to 
the data. Eventually, regions of inadequate fit become 
separated and surrounded by regions within tolerance. 
These regions are individually accommodated using lo­
cal refinement and constrained least squares surface ap­
proximation applied to each separable region. 

The hierarchical approach makes a further contribu­
tion by providing an economical representation for the 
final composite surface. The algorithm produces rea­
sonable results, but the resulting surface suffers from 
oscillations when presented with data with high fre­
quency components. These oscillations were consider­
ably reduced through the use of non-uniform hierar­
chical B-splines and improved parameterization [19] . 
However, hierarchical surfaces produced using least­
squares are not amenable to further manipulation via 
the hierarchy because each level in the hierarchical sur­
face is the result of a separate least squares approxi­
mation. Since the shape of each overlay level is unre­
lated to its parent, the results of broad-scale interactive 
changes in shape are unpredictable. 

In contrast to this top-down approach, Lyche and 
Morken [15] work bottom up by first approximating 
the surface with a fine mesh of spline patches and then 
removing knots in those regions where knot removal 
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will not cause the surface to move out of tolerance. 
This paper presents a bottom-up approach to surface 
approximation using hierarchical splines. 

BACKGROUND 

Hierarchical B-spUne Surfaces 

Tensor product B-splines, ,B-splines and their ratio­
nal counterparts are widely used for free-form surface 
creation in computer aided design and animation. One 
characteristic of this family of surfaces is that subdivi­
sion (also referred to as refinement), the mechanism 
used to add more patches to the surface, is a non­
local operation adding either an entire row or column 
of patches to the surface and thus splitting patches 
across the surface in places where that split is neither 
desired nor useful. Furthermore, once refinement has 
occurred, the local support property of the basis func­
tions restricts the influence of any single control vertex 
making broad-scale changes to the shape of the surface 
more difficult. 

The hierarchical spline formulation is a multi­
resolution approach to the representation and manip­
ulation of free-form surfaces [12] [S] that allows local 
refinement of a tensor-product surface with the choice 
of either local or global manipulations of surface shape. 

A hierarchical B-spline is constructed from a base 
surface (Level 0) and a series of overlays derived from 
the immediate parent in the hierarchy. The levels are 
procedurally related, with each level defined as: 

(5) 

where the Wi~j are the control nodes l defining the 
shape of the level T overlay, the Rr,j are the positions 
calculated from refinement of parent surface (i.e. the 
Wi~j-l), the Or,j are the offsets, and Fi~j are the func­
tions that specify how to combine the offset and refer­
ence information to form the final position of a control 
node. 

Modification of level T-1 changes the RT>s, and thus 
dynamically the WT's. Modifications to the level T sur­
face are encoded entirely as changes to the OT s at that 
level. Modification to lower level overlays (larger T) will 
cause fine-scale or local changes to the surface. Modi­
fication of high-level overlays (smaller T) will result in 
broad-scale or global changes in surface shape. 

The function Fi~j determines precisely how the sur­
face reacts to modifications to the levels of the hierar-

1 a control node is distinguished from a control vertex by the 
addition of the overlay level superscript 
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chy. This approach has been used to force fine scale 
details to follow the normal of the parent surface or, 
in animation, to follow the changes in the pose of an 
underlying articulated figure [9]. Furthermore, because 
only the non-zero offsets must be stored, the final sur­
face can have a very compact hierarchical representa­
tion. Surfaces composed of 3,000-4,000 bicubic patches 
have been represented with 500-800 data points [9]. 

Parameterization 

To generate the equations for the surface approxi­
mation problem, each data point Dq,,. = (x, y, z) E R3 
must be associated with a corresponding parametric 
domain point (u;, Vj ). This process is generally re­
ferred to as parameterization of the surface. This is 
a non-parametric problem in cases (such as attempt­
ing to fit data from a function) where the association 
is known. It is a parametric problem in cases (such as 
in an approximation of digitized data) where the do­
main information is unknown and therefore must be 
estimated. 

Parameterization is difficult to automate; different 
parameterizations of the same data set may result in 
surfaces that differ significantly in terms of their shape 
and continuity. However, a number of algorithms exist 
that have proven effective for univariate and bivari­
ate problems [7][17]. The methods include uniform 
parameterization, Euclidean (chord-length) parameter­
ization [6], centripetal parameterization [14], affine­
invariant chord parameterization and affine-invariant 
angle parameterization [7] . 

For data scanned in a regular fashion, such as we are 
using here, a simple uniform parameterization does ex­
ist (namely the row and column indexes), but because 
of our particular application we cannot use this infor­
mation directly and must re-parameterize. We have 
chosen to use a variation of chord length parameteriza­
tion to concentrate the surface into those regions with 
a high gradient. 

Multigrid Methods for Systems of Linear Equations 

Multigrid methods [13] were originally applied to 
simple boundary value problems posed on spatial do­
mains. Such problems are discretized by choosing a set 
of grid points in the domain of the problem and forming 
a system of algebraic equations associated with the cho­
sen grid points. These grid points are then filtered to 
form multiple grids with different grid spacing. Multi­
grid methods have evolved as an efficient integrated 
algorithm for solving a system of algebraic equations 
with certain properties [2]. 
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Typically each grid has twice the grid spacing of the 
next finer grid. (there seems to be no advantage in 
using grid spacings with ratios other than 2.) The do­
main of a fine grid with spacing h is denoted by Oh 
and the domain for the next coarser grid with spacing 
2h by OH. 

The operator transferring error from the fine grid to 
the coarse grid is called restriction, denoted as It: , and 
the operator transferring error from the coarse grid to 
fine the grid is called prolongation, denoted as Ijj.. 

Full Multlgrld V-Cycle 

Let the matrix form of our system of linear equations 
be: 

Av=D (6) 

and u be the approximation to the exact solution v. 
Then the error e = v - u satisfies the residual equation 

Ae=r=D-Au (7) 

where r is the residual. 

Instead of starting at the finest level, the full multi­
grid V-cycle starts at the coarsest level and proceeds to 
the finest level as shown in figure 3. The exact solution 
calculated for the coarsest grid is interpolated onto the 
next finer grid as a good initial guess for the solution 
at that finer level. Compared with the regular multi­
grid V-cycle, each iteration costs more, but FMG gives 
a better overall performance because the improved ini­
tial guess (from the coarse grid solution) increases the 
rate of convergence. 

The following is an outline of the FMG algorithm: 

v h +- FMGVh(uh, Dh) 

1. IF Oh = coarsest grid, THEN go to step 3. 
ELSE DH +- It:(Dh - Ahuh) 

u H +-0 
u H +- FMGVH(uH,DH). 

2. Correct u h +- u h + Ijj.uH. 

3. REPEAT uh +- M R(uh, Dh) 110 times. 

4. END. 

Figure 2: The Full Multigrid V-Cycle 

where F MGVh is the full multigrid operator on the 
grid level with spacing h, M R is the coarsest level mul­
tiple relaxation operator, v h is the final solution, u h is 
the approximation to v h at the current iteration, Dh 
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is the right hand side of equation 6 (i .e. the raw data 
points), and 110 is the number of iterations needed to 
achieve the exact solution at the coarsest level. 

h Fine Grid 

2h 

4h 

8h Coarse Grid 

Figure 3: Full Multigrid V-cycle scheme, four level 
case. 

Convergence rate analysis is a difficult area filled 
with dark corners and unsolved problems [13], but 
when 111 = 112 = 1, there is an error deduction rate 
of ~ for each sweep. Due to the preliminary cycling 
through coarser grids, only 0(1) V-cycles are needed by 
the time the algorithm reaches the finest grid. There­
fore, the computational cost of the FMG methods is 
still O(M N). 

MULTIGRID METHODS FOR HIERARCHICAL SUR­
FACE APPROXIMATION 

Parameterization 

Recall that the digitized surfaces we wish to approx­
imate are arranged cylindrically, but that the approach 
of using splines with a conforming cylindrical topology 
is inappropriate because of the need to approximate 
the surface using a portion of a pre-defined surface. 
Specifically, the approximating spline surface is a rect­
angular subregion, and it is the perimeter of this region 
that must approximate the base of the digitized data 
(i .e. the last row of data). It is also important to more 
closely approximate those regions of data with impor­
tant features (eyes, nose, mouth etc.) , and to provide 
more control over those regions for modeling and edit­
ing, and in the most efficient manner available. 

Parameterization proceeds through a two stage 
mapping from parametric space onto the data, 
(u, v) -- (q, r) -- (u, v), followed by a deformation 
of the mapping to concentrate more of the parametric 
domain into regions of high gradient . With this ap­
proach, the data does not map onto the regular grid 
in parametric space required by the multigrid meth­
ods. Instead, the data is resampled by evenly sampling 
parametric space to find the corresponding location in 
the digitized data. Linear interpolation is used to gen-
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erate the sample point value when the mapping fails to 
correspond to a particular data point . 

For the inital parameterization of the bust of Victor 
Hugo, the data is mapped onto an intermediate defor­
mation space ST(s, t) E R2 row by row, spreading out 
from the center to the boundary (Figure 4) . The para­
metric range forms a square which ranges from 0 to 
2 x M where M is the number of data rows. The map­
ping deformation occurs in this intermediate space. 

T 

origin 

last row of data 

(264,264) 

q 
q+l 
q+2 

s 

Figure 4: Initial Parameterization for Raw Data 

The deformation is defined by a bivariate Bernstein 
polynomial and corresponds closely to two dimensional 
image warping [23] . For this particular surface a Bern­
stein basis of order 1 (corresponding to bilinear interpo­
lation) provides sufficient control over the deformation. 

Another appropriate approach to controlling the 
mapping deformation is presented in [21]. However, 
as we are more interested for the moment in construct­
ing an approximating hierarchical spline from a given 
parameterization, we use a simple chord-length param­
eterization. 

Parameterization begins with a single Bezier patch 
mapping the boundary of UV space to the boundary 
of ST space and thus to the last row of the data (Fig­
ure 5). Then the single patch is split into four sub 
patches. The control points lying on a boundary are 
constrained to remain there (V7), as are those along 
the axis of symmetry of the data (Vs) . Thus there is 
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Building the Equations 

The m x n grid of data points will be approximated 
with an (m-I) x (n-l) array of patches. Given the set 
of 'Y = {( Ui, vi)} parametric positions sampled on an 
h = m x n grid, and the corresponding set of sampled 
data points Di,i = {(xi ,i, Yi ,i, zi,i)}, a system of m x n 
equations (of the form of Equation 2) in (m + 1) x 
(n + 1) unknowns is required. To uniquely determine ~ ... de - formed this system of equations, an additional set of 2m + 2n 

reg ion S equations are added to set the second derivative at the 

Vl Vs V2 

.(u,v)~ (s,t) 

/xo S .. -u 

Figure 5: Local Coordinate System UV for deformation 

control point displacement after the first subdivision 
and region S which is quadrilateral VI V2 V4 V3 is split 
into four quadrilaterals to meet the parameterization. 
Control points Vs , V6 and V9 which are free to move, 
are placed such that the gradient sum inside each of 
the four sub-quadrilaterals is equal. The same defor­
mation is applied to the other three sub-quadrilaterals. 
The patches are subdivided and deformed until a dis­
crete approximation of the surface area covered by a 
patch is smaller than a specified value. Plate 1 shows 
the final deformation of the parametric space with four 
levels of refinement. 

Sampling the Data Points 

After the mapping deformation is complete, the data 
must be sampled to derive the equations for surface ap­
proximation . The UV parametric space is evenly sam­
pled on a grid and each (Ui , vi) mapped directly into 
ST space to produce the corresponding (Si, ti)' This 
point is mapped onto the data using the deformation 
spline (which is considered continuous), producing a 
non-integer index pair (q + Oq "r + or) . Because neither 
Oq nor Or is likely to be zero, bilinear interpolation of 
Dq,r, Dq,r+l, Dq+l ,r and Dq+l ,r+l is used to produce a 
data point Di ,j = (x, Y, z) to be used for surface ap­
proximation . 

surface boundary to zero. The corresponding matrix is 
symmetric, positive definite, diagonally dominant and 
sparse. 

SOLVING THE EQUATIONS 

The system of equations defining the approximation 
is solved using the full multigrid method. Besides its 
excellent numerical behaviour, the FMG method pro­
vides a mechanism to directly create the If'vcls in a hier­
archical spline surface. To this end, the full weighting 
method [2] [13] is employed as the restriction opera­
tor, If! . This operator gives a good error transfer of 
residuals from fine grids to coarser grids. The pro­
longation operator Iii employed is standard mid-point 
subdivision [4]. Refinement is suitable because the sur­
face does not change shape after prolongation which 
reduces the high frequency error that is often intro­
duced with bilinear interpolation or other prolongation 
schemes [13]. In our experience, midpoint subdivision 
requires fewer iterations to converge. Refinement is 
a particularly suitable operator because it mimics the 
structure of a hierarchical surface. 

BUILDING A HIERARCHICAL B-SPLlNE SURFACE 

Building the Hierarchy 

In solving the system of linear equations, the FMG 
defines multiple B-spline surfaces at multiple levels of 
resolution. The control vertices which approximate 
each level 's solution are used to generate the hierar­
chical surface representation. 

The coarsest level of the FMG solution becomes the 
definition for level 0 in the hierarchy, i .e. the Wi~j' 
Midpoint subdivision produces the reference points, 
RI,j' for level 1. The corresponding offsets OI,j are 
calculated by the following equation: 

O~ · = v;I· - R~ . (8) 1,1 1,1 I,) 

where control vertices V;~j are from FMG fit result at 
level 1. Repeated application of this process for each 
level in the FMG solution produces a hierarchical B­
spline surface (Plates 2-8) . This hierarchical surface is 
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modifiable at all of the defined overlay levels. When 
the offsets are defined in terms of the tangent plane of 
the parent surface, the fine surface details follow any 
broad-scale changes in the shape of the overall surface. 

Zeroing Offsets 

Taken directly from the FMG solution, almost all 
the offsets (the 0[,;) would be non-zero, actually in­
creasing the amount of storage required to define the 
surface. To reduce this requirement, each offset whose 
length is within a given f is forced to zero before sub­
division and the creation of the next level in the hi­
erarchy. This reduces the storage requirement without 
altering the fit at the finest level of detail by more than 
the given tolerance (Figure 6). If a relatively large f 

is used, a large number of zero offsets are created, but 
the resulting surface is a much poorer approximation 
of the data. 

Rather than just forcing some offsets to zero, all off­
sets within a specified area are smoothed by reducing 
the magnitude of the offset (bounded by zero) by a 
given amount 6 (usually 6 is compatible with f). Typ­
ically this is done at the leaves of the spline hierar­
chy and essentially "prunes" the tree so that it is the 
next lower resolution overlay that defines the shape 
of the surface. The transition between a smoothed re­
gion and the surrounding region of higher detail is itself 
smoothed by modulating the magnitude of the 6 value 
over the given area by a Gaussian function. 

RESULTS 

The method outline above was tested on the data 
taken from a bust of Victor Hugo (courtesy F . Schmidt) 
with 264 rows of 361 data points (95,304 points: Fig­
ure 1, and Plate 9) with values ranging from 0 to 200. 
The value of each data point originally represented the 
radius from a central axis; however, for approximation 
this information was converted to points in R3. 

The scanned data was sampled in parametric space 
with a 257 x 257 grid (66049 data points) and approx­
imated using the FMG method described above. On 
a Silicon Graphics Crimson workstation approximately 
30 seconds are required to solve the equations. 

A .9-level hierarchical surface interpolating all the 
sampled points of the Victor Hugo dataset contains 
90,503 offsets. With a tolerance of 0.1, this number 
is reduced to 19,339 offsets, about 30% of the sample 
data set. Smoothing would further reduce storage, but 
the amount of reduction is highly dependent upon how 
much smoothing is required, which of course will differ 
from situation to situation. 
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Offset Number via Tolerance 

0.0 0.3 0 .' 0.' ,.8 1 .• 

Error Tolerance 

Figure 6: Offset number generated in hierarchical sur­
face with given tolerance value. Raw data ranges from 
-100 to +100 

Plates 10-12 show the results of interactive modifi­
cation of surface hierarchy to make broad-scale shape 
changes while retaining fine surface features of the 
scanned data. 

CONCLUSIONS AND FUTURE WORK 

The full multigrid V-cycle method provides a fast 
and stable multi-resolution data fitting scheme that 
generates surfaces easily convert able into the hierar­
chical B-spline form. Oscillations still occur when the 
data has high-amplitude high-frequency regions. Fu­
ture work will look into better methods of sampling 
the data for each resolution to reduce the effect of high­
frequency components, and at the possibility of glob­
ally optimizing the number of non zero-offsets in the 
surface definition. 

The chosen parameterization scheme, though ade­
quate for this particular application, is not general 
enough. Other methods, such as used in [5], will be 
investigated with the goal of using scanned data as a 
mold that can be applied to an existing surface to de­
fine its shape. 
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Plate 1: Deformed parametric space. Plate 2: Surface fit at level 2. Plate 3: Surface fit at level 3. 

Plate 4: Surface fit at level 5. Plate 5: Surface fit at level 7. Plate 6: Surface fit at level 8. 

Plate 7: Surface fit at level 9. Plate 7: Smile 1. Plate 8: Neanderthal man. 
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