
201

Interactive Control of Interpolations
for Animation and Modeling

Gabriel Hanotaux, Bemard Peroche

Ecole Nationale Superieure des Mines de Saint-Etienne
158, cours Fauriel, 42023 Saint-Etienne Cedex 2, France

(33) 774201 69
e-mail: hanotaux@emse.fr

ABSTRACT

Most animation systems based on key-framing require the
animator to define a multitude of curves to describe the evo­
lution of parameters such as position, orientation, curvilin­
ear abscissa, color as functions of time. On top of having
to input a large number of data, the animator cannot eas­
ily estimate the relationships between all these curves. The
aim of this paper, is to spare him the separate description of
all these curves. In another paper, we presented a scheme
making the interactive control of orientation interpolations
possible. This scheme is now extended in order to allow the
interactive control of both orientation and position curves.
Furthermore, we present a new scheme allowing the auto­
matic parametrization of such mixed curves. It provides
a parametrization giving acceptable results, without the in­
tervention of the animator. However, the animator has the
possibility to modify this parametrization by specifying ad­
ditional constraint. The parametrization is based on an opti­
mization process. Such an interactive animation system has
been used for the interactive design of sweep objects, i.e.
objects constructed by moving a contour along a curve.

KEYWORDS: animation, interactive control, interpolation,
orientation, quaternion, parametrization, sweep object.

1 INTRODUCTION

For each object of a scene, a key-framed animation system
deals with a large set of parameters. For each of them, the
animator must supply a curve describing its evolution over
time. In this paper, our objective is to show that the ori­
entation and position parameters can be treated on the same
display. First, it prevents controlling an excessi ve number of
windows. Besides, the relationships between positions and
orientations are clearly controlled. Furthermore, position
and orientation tangents provide full interactive control over
the trajectories.

Section 2 explains the advantage of using Hermite interpo­
lation in an interactive application. The techniques allowing
full interactive control over orientation interpolation thanks
to the notion of quaternion logarithms and spherical tangents
are presented in section 3. Section 4 applies the develop­
ments of section 3 to the interactive control of both position
and orientation trajectories. The first four sections only deal
with the motion trajectories. In section 5 the motion dynam­
ics are taken into consideration. We present a parametriza­
tion scheme based on the minimization of acceleration over

the trajectory. These animation techniques are applied in
section 6 for the interactive modeling of sweep objects.

2 HERMITE INTERPOLATION
One of the oldest techniques used in computer animation
is the automatic generation of inbetweens (intermediate
frames) on a set of key-frames supplied by the animator.
Each key-frame specifies the position, the orientation and
possibly the color, scale, etc . . . of each animated body. For
the moment, let us concentrate on the interpolation of po­
sitions. Each key-frame i is defined by a position Pi and
the whole animation is constituted by a sequence of key­
positions: PI, . . . , PN.

Many techniques (Bezier curves, B-splines, etc ...) have
been developed for smooth interpolating between positions,
some of which focus on the possibility to control the shape
of the spline. The user manipulates abstract parameters like
bias, tension and continuity in [11] or /31, /32 in [2].

In another approach presented in [6], the possibility of di­
rectly interacting on vectors tangent to the curve at each
control points gives the user a more intuitive control. The
curves are cardinale-splines. Additional control points are
provided to help modify tangents vectors. These control
points are invisible to the user and express such modifica­
tions by their locations.

On second thought, we settled among all cubic splines, for
that based on Hermite interpolation. The reason for this
is that, although it is a very simple method, Hermite in­
terpolation has many advantages, especially for interaction
purposes:

• it directly takes the notion of tangents into account (see
below),

• since it is a cubic spline, control over the curve is local.
Moving a control point only affects two pieces of curve,

• the curve goes through the control points,

• the computation of the curve is very fast.
The interpolation between Pi and Pi +l , requires a right tan­
gent vector Ri and a left tangent vector Li+1 (see Fig. 1). In
matrix form, the curve can be expressed as:

(1)

Graphics Interface '93 ~~

where

MHe,.mile = (-~ -~ -~ -i) and (1.1) = (~)
1 000 1

Left and right default tangent values are computed in the
following manner:

1
R; = -Li = 2"(Pi+1 - Pi- 1) (2)

These tangents generate what are commonly called Catmull­
Rom splines (a subclass of cardinale-splines). The global

~+1

PI .-:-- __ '>~ P
P~1 _________ ::~ ~: ______ -:_-_- - - - - - - - - - - 1+ 1

.------

Figure 1: Hermite interpolation in 3-D space.

curve (interpolating between P1 and PN) is the concatenation
of N - 1 elementary curves Pi(1.I) (1 ~ i ~ N - 1) which
interpolate between Pi and PH1. Arbitrary choices for the
right (left) tangent in the first (last) frame must be made.

The next two sections show how Hermite interpolation may
be used for interactive control of position and orientation
interpolations.

3 ORIENTATION INTERPOLATION
3.1 Previous Work
The introduction of quaternions in computer animation by
Shoemake [15] provided a new and efficient way to de­
scribe orientations. Quaternions lie on the hypersphere of
'Il4. They allow a concise, uniform and rotation-independent
representation of orientations and have been widely used to
interpolate orientations. We distinguish three different ap­
proaches:

• Geometrical construction in quaternion space.
Spherical linear interpolation (slerp for short) between
two quaternions q1 and q2 is well defined [15]. This
spherical linear interpolation is the central part of tech­
niques recently suggested by various authors to gener­
ate smooth curves on the hypersphere [15, 13, 7]. They
use a geometric decomposition or subdivision scheme
solely based on linear interpolation in the Cartesian
space for different families of parametric cubic splines.
Then, they construct curves confined to the surface of
the hypersphere, substituting the spherical linear inter­
polation to the 3-D linear interpolation.

• Parametrization of quaternion space. This approach
uses a parametrization of quaternion space by 3-D vec­
tors. In [18], the parametrization is based on the ex­
ponentials of anti symmetric matrices and allows an in­
teractive edition of orientation splines, thanks to 3-D
spline manipulation. However, it seems hard to con­
nect 'Il3 and quaternion space.

202

Our solution, built on a parametrization using quater­
nion logarithms, is presented below but belongs to this
category.

• Optimization process. A recent approach presented
in [1] applies the mathematical foundations of Cartesian
space spline curves in quaternion space. It minimizes
the tangential acceleration along the quaternion path.
Unfortunately, the time required for numerical resolu­
tion of the optimization problem forbids any interactive
application.

We now give an overview of the work presented in [9].

3.2 Log and Exp of auaternions
As any complex number in 'Il2, a quaternion is composed
of a real part and a complex part. We shall denote it as
Q = [w, vJ, where w - the real part - is a scalar and v -
the imaginary part - is a 3-D vector. The quaternion which
represents a rotation about a unit axis v over angle 0 is:

[
O. 0] Q = cos 2"' sin 2"v (3)

Quaternion exponentiation is defined in the standard way as:

Q Q2 Qn
exp(Q) = 1 + i! + 2! + ... + ~ + .. .

An interesting case occurs when the real part ofQ is zero [5]:

exp(Q) = exp([O,v]) = [coSllvlL 11:11 sinllv ll] (4)

and v is just the logarithm of exp(Q). By comparing Eq. 3
and Eq. 4, we see that it is possible to represent a rotation
about a unit axis v over an angle 0 by the unit quaternion Q =
exp(~v) which makes a parametrization of this orientation
by the 3-D vector log Q = ~v possible.

3.3 Interpolation in Orientation Space
This parametrization is now applied to interpolation in
quaternion space. We just have to interpolate quaternion
logarithms and exponentiate, so as to obtain the interpolated
quaternion.

As an illustration, spherical linear interpolation (denoted as
slerpl) may be expressed in terms of quaternion logarithms
as:

s/erp(Ql, Q2, 1.1) = exp(lerp(log QI, log Q2, 1.1)) (5)

It is important to notice that this slerp generally differs
from the correct one. They are only equal when both
axes of rotation are the same. It is a direct consequence
of the non-commutativity of the quaternion product, i.e.
exp(Iog Q1 + log Q2) i QI Q2. However, we showed in [9]
that the approximation is not far from the optimal.

Using this parametrization, it is possible to smoothly inter­
polate in orientation space. It suffices to replace lerp from
Eq. 5 by another interpolation scheme such as Hermite in­
terpolation. The spherical piece of curve which interpolates

llhis notation was introduced by Shoemake in [15] in reference to lerp .•
the linear interpolation in Cartesian space

~ Graphics Interface '93

203

Figure 2: The curve represents the path followed by one vertex of the body (a single planar polygon). It interpolates four
orientation-keys. (a) inital path using Catmull-Rom default tangents. (b) one tangent direction has been rotated, creating a loop,
and one tangent amplitude has been increased. (c) some discontinuity effects generated by treating left and right tangents apart.

between two orientations Qi and Qi+1 is then given by:

Qi(U) = exp ((U)T MHermite (:~:~~~1))
10gQIi+1

(6)

By analogy with the 3-D case, Qri and Q1i+1 represent what
we shall call half spherical tangents . Qri represents half
the rotation from Qi-I to Qi+l, and Qli+1 half the rotation
from Qi+2 to Qi. Again (see Eq. 2), their default values are
computed in terms of Catmull-Rom splines tangents, From
group properties, we have:

1 1

Q1i+1 = (Q;~2Qi) I, Qri = (Q;lIQi+l)l

These spherical tangents can be interactively controlled in
ordttr to generate any desired effect (Fig. 2). An interesting
analogy can be made with the figures from [1], obtained
with another method. The difference is that our curves can
be edited in real time.

4 MIXING POSITION AND ORIENTATION CONTROL
4.1 Generalized Key-Frames
Considering Eq. 1 and Eq. 6, it is possible to integrate posi­
tion and orientation in the same interpolation process. It is
enough to define key-frame i as the six-dimensional vector2

containing both position Pi and logarithm of quaternion Qi:

Ki = (Pi log Qi)

The interpolated frames Ki (u) are then calculated as follow:

(

Pi 10gQi)
T ~ 10gQri

Ki(U) = (u) MHermite p. I Q i+1 og i+1
Li+1 log Qli+1

(7)

4.2 Mixing Position and Orientation Curves
In most current computer animation systems, position and
orientation interpolations are performed separately. The an­
imator interactively edits two curves in separate windows,

2It is obvious that other quantities such as the one-dimensional vector
Si (the scale of the object) or the three-dimensional vector Ci (color of the
object) could be added in K i .

but has no way to see the relationships between positions
and orientations. In the reality, positions and orientation are
intrinsically linked. Exploiting this will undoubtedly make
the trial-and-error process of finding the desired interpola­
tion much less painful. Our aim is to enable the animator to
interpolate orientations and positions in a parallel way - in
other terms, on the same display.

In what preceded, a solution allowing the interactive con­
trol of orientation interpolations was presented. The curves
represent the path followed by one selected point of the ani­
mated body subjected to interpolated orientations. While we
restricted the study to orientation (Le. we assumed that all
key-positions were located at the origin), the curve lay on a
sphere.

To extend this approach for position inbetweening, we just
have to allow the interactive manipulation of position of suc­
cessive local coordinate systems. For this, a new curve - the
position curve - is added, which interpolates the Pi'S. As
for orientations, Hermite interpolation is used. More details
are given later on, regarding the interactive control of this
curve.

In addition, the orientation curve must now depend upon the
position curve. The former, attached to one point of the ob­
ject, now represents the path followed by this point subjected
to both position and orientation interpolations.

An example is shown on Fig. 3. Position and orientation
curves are displayed. Each of them has its own set of tan­
gents. The resulting animation is shown on the right side
of the figure. The key-frames are shaded in dark gray, the
inbetweens in light gray.

4.3 Interactive Control
All these curve lie in 3-D space and the input device is
restricted to move in two dimensions. In order to perform
interaction, we use an extension of the notion of 3-D cursor
presented in [12] . The principle is to restrain the movement
in two dimensions. For position, only translation along one
axis (1-0 translation) or in a plane perpendicular to one
axis (2-0 translation) are possible. For orientations, only

Graphics Interface '93 4

204

(a) (b)

Figure 3: Position and orientation interpolation.

rotations about one axis are allowed (1-0 rotation). Rotation
about two axes (with two degrees of freedom) would be
possible, but it doesn't seem intuitive to users.

In the two following subsections, we detail the interactive
control of key-frames - which consists in modifying the Pi'S

or the Qi'S - and the interactive control of tangents to the
curves. The former allows to modify the basic shape of
the path while the latter allows fine tuning of the curves'
appearance.

4.3.1 Key-Frames. We use the local coordinate system of
each key-frame as reference axis. Positions are modified
with 10- or 20-translations. Orientation-keys are modified
with ID-rotations. The user grasps one object and then
translates or rotates it according to the cursor constraints. At
each mouse displacement, the two curve pieces involving
the key-frame are computed over again and refreshed.

4.3.2 Tangents. The interactive control of both flat3 and
spherical tangents is divided into two distinct operations. At
any time, the user may either modify the amplitude or the
direction of the tangents. This is not without interest since
modifying direction and amplitude have different effects.

There is a similarity between the effects generated by modi­
fying flat tangents and spherical tangents:

• direction. Changing the tangent direction results in the
trajectory anticipating or overshooting a position-key or
an orientation-key. The effect is equivalent to the ten­
sion effect described in [11]. Rat tangents are modified
by rotating the tangent vector about the selected refer­
ence axis . Spherical tangents are modified by rotating
an arc as described in [9] .

• amplitude. Increasing the amplitude yields a more
exaggerated curve. On the other hand, decreasing the
amplitude generates a much sharper trajectory. Modify­
ing the amplitude induces something similar to the bias
effect. As for the position curve, the amplitude is mod­
ified by moving the tangent vector along a line, while
in the case of orientations the amplitude is modified by
moving the tangent arc along a circle.

3We call flat tangents, the tangents to the posilion curve by opposilion
to spherical tangents.

• continuity. Another possibility is to manipulate both
left and right tangents at the same time or to manip­
ulate only one half tangent at a time. The first case
ensures Cl continuity while the second allows to create
discontinuities.

On the following example, the animation consists in four
key-frames. We concentrate on showing the effect of spher­
ical tangents, the case for position being well known. Fig. 4
shows three different animations based on the same key­
frames, resulting from merely modifying spherical tangents.
On Fig. 4.a, the motion uses default tangents. On Fig. 4.b,
the direction of the spherical tangents has been interactively
modified in the second and third key-frames. In the second
key-frame (from left to right) a twist effect is created around
the vertical bar of the T. On the third key-frame a twist effect
is created around the horizontal bar of the T. On Fig. 4.c, the
amplitudes of the spherical tangents have been increased to
exaggerate the effects.

5 AUTOMATIC REPARAMETRIZATION

5.1 Introduction

In the previous sections, all the tools required for the fine
description of position and orientation paths were presented.
We did not worry about the motion dynamics, i.e. the ve­
locity of bodies along trajectories. Indeed, tangents were
designed for finely tuning the curve's appearance, not for
specifying velocity at key-frames. First, the use of piece­
wise parametric polynomials may generate unpleasant ef­
fects. If key-frames are equally spaced in time, the number
of samples is the same between two control points, be they
very close or very distant from one another (see for example
Fig. 5.a). Secondly, allowing the manipulation of tangents
may result in the loss of velocity continuity .

A standard solution to solve these problems is based on a
reparametrization of the trajectory. Principally, it is based
on a reparametrization of parameter u in function of a more
realistic and intuitive parameter, say t, the time. This
reparametrization is made thanks to another curve express­
ing the relationships between the time and the parameter u
(see [16]). In fact, this parametrization is more likely to be
expressed as a function giving the velocity [3] or the curvi­
linear abscissa of the path in function of time.

Graphics Interface '93

205

Figure 4: Influence of spherical tangents

However, such a reparametrization presents, from our point
of view, the drawback to require the specification of still an­
other curve, hence more and more interaction. Our aim is to
develop a technique allowing the automatic reparametriza­
tion of interpolation curves. However, we also wish to let
the user have the possibility to modify the proposed solution
with the help of additional constraints. Let us first consider
the method for position interpolation before turning to ori­
entation interpolation.

The initial trajectory, as described previously, is made up of
a sequence of cubic splines. Each of them is parametrized
by 'U ranging from 0 to 1. We may consider that the global
trajectory depends upon a more general parameter, say u,
ranging from 1 to N (recall that N represents the number
of key-frames). The position on the curve is easily evalu­
ated from a fixed value of u. It suffices to determine the
relevant piece of curve i and parameter 'U inside this curve.
An animation sequence requires the computation of a fixed
number of frames between time tl and time tN . It moti­
vates the discretization of the continuous u parameter in a
set of equally spaced samples 'Ui. Our objective is to find
another set of samples, denoted ti, such that the sampling of
the P(td's (Le. the motion dynamics) over the path appears
more realistic than the initial sampling of the P('Ui)'S. The
initial ti values are initialized with the 'Ui values and itera­
tively improved according to a criterion described below. In
the following, Pi denotes P(ti) .

As we want to generate realistic motion, we choose to min­
imize the sum of the forces required to realize this motion.
This principle is suggested by the fact that realistic motions
tend to minimize the energy expanded to perform them [17] .
According to Newton's law, it comes down in fact to min­
imizing the sum of the accelerations occurring during the
motion. The scheme we have chosen is based on an opti­
mization technique.

As usual, the discretization step is performed with the help
of the finite differences method, frequently used in most
animation techniques:

Pi+l - Pi
Vi = h ' (8)

In fact, we want to minimize the amplitude of the forces. So,
we choose to minimize the sum of the squared accelerations.
The criterion to be minimized is expressed as the finite sum:

C= L a;
19~N

Using Eq. 8 and discarding constant term h, we have:

a; = (Pi+l - 2Pi + Pi _ I)2

= 4pl + pl+ l + Pl- l + 2Pi+IPi-1
- 4Pi(Pi+1 + Pi-!) (9)

5.2 The Optimization Process
The previous problem boils down to finding a vector t such
that C(t) is minimized. We use an iterative process which
consists in finding improved estimates t* = t + p such that
C(t*) < C(t) . In order to improve convergence rates, we
use a second order Taylor expansion of C:

I
C(t + p) = C(p) + gT (t)p + 2,pT H(t)p

where 9 denotes the gradient of C and H the Hessian matrix
of C . It can be shown (see [8]) that decreasing C implies
solving:

g+Hp=O (10)

We now give further details about the evaluation of the gra­
dient and Hessian matrix of C and present a fast resolution
algorithm for solving the linear system (10).

5.3 Computing First and Second Order Derivatives
The term in C where ti occurs (denoted as C;) is computed
from ar (see Eq. 9), aLl and ar+l :

C(ti) = Ci = 6pl-8Pi(Pi-1 +Pi+!)+2Pi(Pi-2+Pi+2)

The first derivative of C with respect to ti, treating all other
parameters as constants, is given by4:

BCi "() '() gi = ~ = 12PiPi-8Pi Pi-I+Pi+1 +2Pi Pi-2+Pi+2
uti

The Hessian of C containing the second derivatives of C is
a matrix defined by:

2P/PI-2
-8P/PI-1
12P/

2 + PiP/, - 8P/(Pi- 1

j=i-2
j = i-I

+Pi+d + 2P/(Pi-2 + Pi+2) j = i
-8P/P/+ 1 j = i + 1
2P/ P/+2 j = i + 2
o elsewhere

(11)

4 P: (resp. Pt'> denotes the first (resp. second) derivative of P(t;) with
respect to parameter ti. P: (resp. Pt') is computed from Eq. 1. replac-

ing (u3 u2 u I) by its first derivative (3u2 2u 1 0) (resp. second

derivative (6u 2 0 0) .

Graphics Interface '93 ~~

Given the special structure of Eq. 11, the Hessian matrix is
a non symmetrical penta-diagonal band matrix.

5.4 Solving the Linear System
In order to improve resolution time as well as storage re­
quirements, we take advantage of the special structure of the
Hessian matrix. This is particularl y useful in our case where
the number of time samples - and then the sparsity of this
matrix - is high.

As for the organization of the Hessian matrix, only non-zero
elements are of interest. They are stored in a N x 5 array,
each line containing significant elements of one line of the
Hessian matrix.

The algorithm we use is based on a LU decomposition of
the initial matrix. The system Hp = -g is transformed into
LU p = 9 and then solved in two steps. A forward substitu­
tion first solves Ly = g, a backward substitution then solves
Up = y, leading to the final solution. The LU decomposi­
tion and the forward substitution may be performed in the
same step with an O(N) algorithm, avoiding the storage of
the lower triangular matrix. However, the upper matrix must
to be stored in a N x 3 array for later use in the backward
substitution, which also takes O(N) time.

The algorithm we implemented is very efficient and only
requires minimum storage. Combined with the optimiza­
tion algorithm whose convergence rate - thanks to second
derivatives approximation - is very good, this solver algo­
rithm allows to use the automatic parametrization scheme in
an interactive environment. Also note that, due to the special
structure of the Hessian matrix, no pivoting is required.

5.5 Results
On the following examples, the big squares represent the
key-frames while the small ones represents the samples.

5.5.1 Equirepattition of Time Steps. Fig. 5.a shows an ini­
tial curve composed of the concatenation of three Hermite
curve pieces. The curve is mainly designed for its small cur­
vature. Compared with the other two, the central curve has
a small curvilinear length. So, the global curve behaves as
if the animated body's velocity suddenly slows down while
crossing the second control point and then increases while
crOSSing the third control point. Using our reparametrization,
the samples are almost equally spaced, assuming constant
speed along the specified path (Fig. 5.b).

(a)

Figure 5: Trajectory with low curvature. (a) initial samples.
(b) after reparametrization.

206

5.5.2 Curvature Influence on the Solution. Of course, the
aim of reparametrization is not only to space interpolated
points equally. This was indeed the case in 5.5.1 because the
curve was very close to being a straight line. Just the same
as a car slows down while reaching a bend and speeds up
while leaving it, the velocity of our animated body decreases
near a bended piece of curve and increases at the end of the
curved stretch. Fig. 6.a shows the initial point samples. The
same curve after the reparametrization producing a smooth
motion is shown on Fig. 6.b. The higher the curvature, the
higher the number of samples.

5.5.3 Additional Constraints. It is possible to impose a
value for the velocity at various time samples. It is enough to
substitute in Eq. 8 the specified values. Another choice is to
prescribe the animated object to stand in a fixed position on
the curve at a fixed instant of time. In this case, the optimiza­
tion problem is divided into as many sub-problems as there
are constraints. In both cases, the optimization problem re­
mains unconstrained. On Fig 6.c, velocity constraints have
been added to the end points of the path . The first constraint
imposes a high initial speed while the second imposes a low
final velocity (the motion goes from right to left) . The re­
sulting motion involves less sample points at the beginning
and more at the end of the path.

5.6 Reparametrization of Orientation Curves
Of course, we also want to reparametrize orientation curves.
The objectives are equivalent to those regarding positions,
except we now have to minimize the sum of the torques
applied to the animated body.

We use Newton's law applied to orientations

T= I w

where

• T denotes the sum of torques applied to the body, no
matter what these torques are due to.

• I represents the inertial matrix of the body. This matrix
is computed in the local coordinate system of the body.
Unfortunately, this coordinate axis does not necessarily
coincide with the center of mass of the body, leading to
a non diagonal inertial matrix.

• w represents the angular acceleration.
As previously, we want to minimize a finite sum of all the
applied torques, Le.:

c= L (I wi)2

l~i~N

where Wi denotes the angular acceleration at time ti . This
quantity is easily computed using finite differences and
quaternion logarithms. First, the angular velocity may be
represented by the angle (}i traveled from orientation qi to
orientation qi+l around a unit axis Vi in time h, i.e. by
Wj = ¥ . ~ is the logarithm of the quaternion for rota­
tion from qi to qi+l; we then have:

10gqi+l -IOgqi
Wi = 2h

4 Graphics Interface '93

207

(a) (b) (c)

Figure 6: High curvature trajectory. (a) initial samples. (b) reparametrization. (c) other extremal constraints.

and the angular acceleration at time i is given by:

Wj=
Wj - Wi-l 10gqi+1 - 210gqi + 10gqj_1

h 2h2
The gradient and Hessian matrix are computed as previously,
even if the final expressions are more complicated, especially
due to the fact that the inertial matrix is rarely diagonal.
Positions P(tJ) are replaced with the quaternion logarithms
of interpolated orientation (logQ(tj)). The important fact
is that the Hessian matrix remains a penta-diagonal matrix,
ensuring good performance during the numerical resolution.

5.7 Reparametrization of Mixed Curves
In fact, we do not parametrize positions independently from
orientations. Indeed, it would lead in most cases to two dif­
ferents time parameter sets. In consequence, we choose to
minimize both translational and angular accelerations. The
new criterion is the sum of the previous criterions for po­
sition and orientation. Using both preceding subsections,
computation of the gradient vector and of the Hessian ma­
trix is straightforward. The Hessian matrix always remains
a penta-diagonal matrix.

Also note that it is possible to favor the minimization of
forces versus torques, by merely modifying the mass or in­
ertial matrix of the animated body.

6 INTERACTIVE DESIGN OF SWEEP OBJECTS
This part covers the application to modeling of mixed posi­
tion and orientation interpolations, which have initially been
imagined for key-framed animation. Few authors [13] apply
such animation techniques for the creation of sweep objects,
also called generalized cones (GC for short) [10] .

An extruded object is defined by a contour, a trajectory, and
an orientation curve. The extruded object is obtained by
moving the contour along the trajectory. The orientation
curve specifies how the contour is rotated about a vector
tangent to the trajectory (only one degree of freedom). If
need be, other curves, giving the scale, the shape, etc .. of
the contour in function of time may be added.

It is easy to apply the work presented above for the inter­
active design of GC's. We merely replace the animated

three-dimensional object by a two-dimensional contour. Be­
sides, a menu option enables to initialize the orientation-keys
using the Frenet frame (see [10] for details). Then, the user
may take advantage of all our interactive techniques to finely
adjust the shape of the sweep object. In our application, we
give the possibility to rotate the object about any axis (Fig. 7).

Our aim was not to extend theoretical work about GC, but
rather to exhibit a method for providing fine interactive con­
trol on such objects. It may happen, when the diameter of the
contour exceeds the curvature of the trajectory or when the
trajectory describes loops, that parts of the GC self-intersect.
In order to avoid this problem, the initial GC is split into
smaller ones. Each of them corresponds to the object result­
ing from moving the contour along the trajectory from one
time sample to the next. Then, we construct a CSG object
made up of the union of all the small cones. The boundary
evaluation [4] of the CSG object leads to a coherent object,
the final GC (Fig. 8).

Figure 8: Self-intersecting object.

7 CONCLUSION
We have shown a new technique, based on an approximated
parametrization of quaternion space, allowing the creation
and visualization of spherical splines. The parametrization
used seems easier to understand and to implement than those
previously presented.

Hermite interpolation provides an efficient way to implement
spherical tangents. Moreover, we provide full interactive
control over this spherical splines. The use of spherical tan-

Graphics Interface ' 93

208

(a) (b) (c)

Figure 7: (a) Initial object using a Frenet frame. (b) Rotation about a vector tangent to the trajectory (the position of the eye has
been changed). (c) Rotation about an arbitrary axis.

gents gives an intuitive means to control orientations. The
effects of any manipulation may be visualized in real time.

The possibility to conjointly edit both position and orienta­
tion interpolations makes the job of the animator easier. One
does not have to worry about two (or more) different curves,
the relationships between positions and orientations being
self-explanatory.

Furthermore, we gave a solution allowing automatic
reparametrization of the curve, sparing the animator the trou­
ble to worry about with still another curve. The parametriza­
tion is performed at request. The results are obtained im­
mediately. Interactive specification of constraints is not still
enabled. Work is in progress for this to be performed. Tan­
gents are used to manipulate the curve and can not be used
for specifying the motion dynamics. Our aim is to allow the
user to directly manipulate the repartition of samples along
the curves.

All these techniques have been conceived from the point of
view of animation, but they have also been applied to the
interactive design of generalized cones.

REFERENCES
I . BARR, A., CURRIN, B., GABRIEL, S., AND HUGHES,

J. Smooth interpolation of orientations with an­
gular velocity constraints using quaternions. Com­
puter Graphics 26, 2 (1992), 313-320. Proc. SIG­
GRAPH'92.

2. BARTELS, R., BEAlTY, J ., AND BARSKY, B. Splines
for Use in Computer Graphics & Geometric Model­
ing. Morgan Kaufmann Publishers, Inc., Los Altos,
California, 1987.

3. BARTELS, R., AND HARDTKE, I. Speed adjustment for
key-frame interpolation. In Proceedings of Graphics

'Interface '89 (June 1989), pp. 14-19.

4. BENOUAMER, M ., MICHELUCCI, D., AND PEROCHE, B.
Boundary evaluation using lazy rationnal arithmetic :
A detailed implementation. 2nd ACM, IEEE sym­
posium on Solid Modeling & Applications '93 (May
1993).

5. BORGNE, M. L. Quaternion et controle sur l'espace
des rotations. Tech. Rep. 751, INRIA, Nov. 1987.

6. CROS, F., AND BROCK, P. A method for providing
full interactive control of the shape of 3d curves &
surfaces. In Eurographics'88 (1988), pp. 443-455.

7. DUfF, T. Splines in animation and modelling. In State
of the Art in Image Synthesis (1986). SIGGRAPH'86
Courses Notes, number 5.

8. GILL, P., MURRAY, w., AND WRIGHT, M. Practical
Optimization. Academic Press, Inc., London, 1982.

9. HANOTAUX, G. Interactive control of orientation in­
terpolations. In Third Eurographics Workshop on An­
imation and Simulation (Cambridge, 1992).

10. KLOK, F. Two moving coordinate frames for sweep­
ing along 3d trajectories. Computer Geometric Aided
DeSign 3 (1986),217-229.

11 . KOCHANEK, D., AND BARTELS, R. H. Interpolating
splines with local tension, continuity and bias control.
Computer Graphics 18,3 (July 1984), 33-41. Proc.
SIGGRAPH'84.

12. OVERVELD, C. V. Application of a perspective cursor
as a 3d locator device. Computer Aided Design 21, 10
(Dec. 1989).

13. PLETINCKS, D. Quaternion calculus as a basic tool in
computer graphics. The Visual Computer 5 (1989),
2-13 .

14. RAo, K., AND MEDIONI, G. Useful geometric proper­
ties of the generalized cone. Proc. Computer Vision,
Graphics and Image Processing 27 (1988), 129-156.

15. SHOEMAKE, K. Animating rotation with quaternion
curves. Computer Graphics 19, 3 (1985), 245-254.
Proc. SIGGRAPH'85.

16. STEKETEE, S., AND BADLER, N . Parametric key frame
interpolation incorporating kinetic adjustement and
phrasing control. Computer Graphics 19, 3 (1985),
255-262. Proc. SIGGRAPH'85.

17. WITKIN, A., AND KAss, M. Spacetime constraints.
Computer Graphics 22, 4 (Aug. 1988), 159-168.
Proc. SIGGRAPH' 88.

18. YAHIA, H., AND GAGALOWIcz, A. Interactive ani­
mation of object orientations. In PTXIM'89 (1989),
pp. 265-275 .

-~ Graphics Interface '93

