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ABSTRACT 

Most animation systems based on key-framing require the 
animator to define a multitude of curves to describe the evo­
lution of parameters such as position, orientation, curvilin­
ear abscissa, color as functions of time. On top of having 
to input a large number of data, the animator cannot eas­
ily estimate the relationships between all these curves. The 
aim of this paper, is to spare him the separate description of 
all these curves. In another paper, we presented a scheme 
making the interactive control of orientation interpolations 
possible. This scheme is now extended in order to allow the 
interactive control of both orientation and position curves. 
Furthermore, we present a new scheme allowing the auto­
matic parametrization of such mixed curves. It provides 
a parametrization giving acceptable results, without the in­
tervention of the animator. However, the animator has the 
possibility to modify this parametrization by specifying ad­
ditional constraint. The parametrization is based on an opti­
mization process. Such an interactive animation system has 
been used for the interactive design of sweep objects, i.e. 
objects constructed by moving a contour along a curve. 

KEYWORDS: animation, interactive control, interpolation, 
orientation, quaternion, parametrization, sweep object. 

1 INTRODUCTION 

For each object of a scene, a key-framed animation system 
deals with a large set of parameters. For each of them, the 
animator must supply a curve describing its evolution over 
time. In this paper, our objective is to show that the ori­
entation and position parameters can be treated on the same 
display. First, it prevents controlling an excessi ve number of 
windows. Besides, the relationships between positions and 
orientations are clearly controlled. Furthermore, position 
and orientation tangents provide full interactive control over 
the trajectories. 

Section 2 explains the advantage of using Hermite interpo­
lation in an interactive application. The techniques allowing 
full interactive control over orientation interpolation thanks 
to the notion of quaternion logarithms and spherical tangents 
are presented in section 3. Section 4 applies the develop­
ments of section 3 to the interactive control of both position 
and orientation trajectories. The first four sections only deal 
with the motion trajectories. In section 5 the motion dynam­
ics are taken into consideration. We present a parametriza­
tion scheme based on the minimization of acceleration over 

the trajectory. These animation techniques are applied in 
section 6 for the interactive modeling of sweep objects. 

2 HERMITE INTERPOLATION 
One of the oldest techniques used in computer animation 
is the automatic generation of inbetweens (intermediate 
frames) on a set of key-frames supplied by the animator. 
Each key-frame specifies the position, the orientation and 
possibly the color, scale, etc . . . of each animated body. For 
the moment, let us concentrate on the interpolation of po­
sitions. Each key-frame i is defined by a position Pi and 
the whole animation is constituted by a sequence of key­
positions: PI, . . . , PN. 

Many techniques (Bezier curves, B-splines, etc ... ) have 
been developed for smooth interpolating between positions, 
some of which focus on the possibility to control the shape 
of the spline. The user manipulates abstract parameters like 
bias, tension and continuity in [11] or /31, /32 in [2]. 

In another approach presented in [6], the possibility of di­
rectly interacting on vectors tangent to the curve at each 
control points gives the user a more intuitive control. The 
curves are cardinale-splines. Additional control points are 
provided to help modify tangents vectors. These control 
points are invisible to the user and express such modifica­
tions by their locations. 

On second thought, we settled among all cubic splines, for 
that based on Hermite interpolation. The reason for this 
is that, although it is a very simple method, Hermite in­
terpolation has many advantages, especially for interaction 
purposes: 

• it directly takes the notion of tangents into account (see 
below), 

• since it is a cubic spline, control over the curve is local. 
Moving a control point only affects two pieces of curve, 

• the curve goes through the control points, 

• the computation of the curve is very fast. 
The interpolation between Pi and Pi +l , requires a right tan­
gent vector Ri and a left tangent vector Li+1 (see Fig. 1). In 
matrix form, the curve can be expressed as: 

(1) 
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where 

MHe,.mile = (-~ -~ -~ -i) and (1.1) = (~) 
1 000 1 

Left and right default tangent values are computed in the 
following manner: 

1 
R; = -Li = 2"(Pi+1 - Pi- 1) (2) 

These tangents generate what are commonly called Catmull­
Rom splines (a subclass of cardinale-splines). The global 

~+1 
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Figure 1: Hermite interpolation in 3-D space. 

curve (interpolating between P1 and PN) is the concatenation 
of N - 1 elementary curves Pi(1.I) (1 ~ i ~ N - 1) which 
interpolate between Pi and PH1. Arbitrary choices for the 
right (left) tangent in the first (last) frame must be made. 

The next two sections show how Hermite interpolation may 
be used for interactive control of position and orientation 
interpolations. 

3 ORIENTATION INTERPOLATION 
3.1 Previous Work 
The introduction of quaternions in computer animation by 
Shoemake [15] provided a new and efficient way to de­
scribe orientations. Quaternions lie on the hypersphere of 
'Il4. They allow a concise, uniform and rotation-independent 
representation of orientations and have been widely used to 
interpolate orientations. We distinguish three different ap­
proaches: 

• Geometrical construction in quaternion space. 
Spherical linear interpolation (slerp for short) between 
two quaternions q1 and q2 is well defined [15]. This 
spherical linear interpolation is the central part of tech­
niques recently suggested by various authors to gener­
ate smooth curves on the hypersphere [15, 13, 7]. They 
use a geometric decomposition or subdivision scheme 
solely based on linear interpolation in the Cartesian 
space for different families of parametric cubic splines. 
Then, they construct curves confined to the surface of 
the hypersphere, substituting the spherical linear inter­
polation to the 3-D linear interpolation. 

• Parametrization of quaternion space. This approach 
uses a parametrization of quaternion space by 3-D vec­
tors. In [18], the parametrization is based on the ex­
ponentials of anti symmetric matrices and allows an in­
teractive edition of orientation splines, thanks to 3-D 
spline manipulation. However, it seems hard to con­
nect 'Il3 and quaternion space. 
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Our solution, built on a parametrization using quater­
nion logarithms, is presented below but belongs to this 
category. 

• Optimization process. A recent approach presented 
in [1] applies the mathematical foundations of Cartesian 
space spline curves in quaternion space. It minimizes 
the tangential acceleration along the quaternion path. 
Unfortunately, the time required for numerical resolu­
tion of the optimization problem forbids any interactive 
application. 

We now give an overview of the work presented in [9]. 

3.2 Log and Exp of auaternions 
As any complex number in 'Il2, a quaternion is composed 
of a real part and a complex part. We shall denote it as 
Q = [w, vJ, where w - the real part - is a scalar and v -
the imaginary part - is a 3-D vector. The quaternion which 
represents a rotation about a unit axis v over angle 0 is: 

[ 
O. 0 ] Q = cos 2"' sin 2"v (3) 

Quaternion exponentiation is defined in the standard way as: 

Q Q2 Qn 
exp( Q) = 1 + i! + 2! + ... + ~ + .. . 

An interesting case occurs when the real part ofQ is zero [5]: 

exp(Q) = exp([O,v]) = [coSllvlL 11:11 sinllv ll] (4) 

and v is just the logarithm of exp( Q). By comparing Eq. 3 
and Eq. 4, we see that it is possible to represent a rotation 
about a unit axis v over an angle 0 by the unit quaternion Q = 
exp( ~v) which makes a parametrization of this orientation 
by the 3-D vector log Q = ~v possible. 

3.3 Interpolation in Orientation Space 
This parametrization is now applied to interpolation in 
quaternion space. We just have to interpolate quaternion 
logarithms and exponentiate, so as to obtain the interpolated 
quaternion. 

As an illustration, spherical linear interpolation (denoted as 
slerpl) may be expressed in terms of quaternion logarithms 
as: 

s/erp( Ql, Q2, 1.1) = exp(lerp(log QI, log Q2, 1.1)) (5) 

It is important to notice that this slerp generally differs 
from the correct one. They are only equal when both 
axes of rotation are the same. It is a direct consequence 
of the non-commutativity of the quaternion product, i.e. 
exp(Iog Q1 + log Q2) i QI Q2. However, we showed in [9] 
that the approximation is not far from the optimal. 

Using this parametrization, it is possible to smoothly inter­
polate in orientation space. It suffices to replace lerp from 
Eq. 5 by another interpolation scheme such as Hermite in­
terpolation. The spherical piece of curve which interpolates 

llhis notation was introduced by Shoemake in [15] in reference to lerp .• 
the linear interpolation in Cartesian space 
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Figure 2: The curve represents the path followed by one vertex of the body (a single planar polygon). It interpolates four 
orientation-keys. (a) inital path using Catmull-Rom default tangents. (b) one tangent direction has been rotated, creating a loop, 
and one tangent amplitude has been increased. (c) some discontinuity effects generated by treating left and right tangents apart. 

between two orientations Qi and Qi+1 is then given by: 

Qi(U) = exp ((U)T MHermite (:~:~~~1 )) 
10gQIi+1 

(6) 

By analogy with the 3-D case, Qri and Q1i+1 represent what 
we shall call half spherical tangents . Qri represents half 
the rotation from Qi-I to Qi+l, and Qli+1 half the rotation 
from Qi+2 to Qi. Again (see Eq. 2), their default values are 
computed in terms of Catmull-Rom splines tangents, From 
group properties, we have: 

1 1 

Q1i+1 = (Q;~2Qi) I, Qri = (Q;lIQi+l)l 

These spherical tangents can be interactively controlled in 
ordttr to generate any desired effect (Fig. 2). An interesting 
analogy can be made with the figures from [1], obtained 
with another method. The difference is that our curves can 
be edited in real time. 

4 MIXING POSITION AND ORIENTATION CONTROL 
4.1 Generalized Key-Frames 
Considering Eq. 1 and Eq. 6, it is possible to integrate posi­
tion and orientation in the same interpolation process. It is 
enough to define key-frame i as the six-dimensional vector2 

containing both position Pi and logarithm of quaternion Qi: 

Ki = ( Pi log Qi ) 

The interpolated frames Ki (u) are then calculated as follow: 

(

Pi 10gQi ) 
T ~ 10gQri 

Ki(U) = (u) MHermite p. I Q i+1 og i+1 
Li+1 log Qli+1 

(7) 

4.2 Mixing Position and Orientation Curves 
In most current computer animation systems, position and 
orientation interpolations are performed separately. The an­
imator interactively edits two curves in separate windows, 

2It is obvious that other quantities such as the one-dimensional vector 
Si (the scale of the object) or the three-dimensional vector Ci (color of the 
object) could be added in K i . 

but has no way to see the relationships between positions 
and orientations. In the reality, positions and orientation are 
intrinsically linked. Exploiting this will undoubtedly make 
the trial-and-error process of finding the desired interpola­
tion much less painful. Our aim is to enable the animator to 
interpolate orientations and positions in a parallel way - in 
other terms, on the same display. 

In what preceded, a solution allowing the interactive con­
trol of orientation interpolations was presented. The curves 
represent the path followed by one selected point of the ani­
mated body subjected to interpolated orientations. While we 
restricted the study to orientation (Le. we assumed that all 
key-positions were located at the origin), the curve lay on a 
sphere. 

To extend this approach for position inbetweening, we just 
have to allow the interactive manipulation of position of suc­
cessive local coordinate systems. For this, a new curve - the 
position curve - is added, which interpolates the Pi'S. As 
for orientations, Hermite interpolation is used. More details 
are given later on, regarding the interactive control of this 
curve. 

In addition, the orientation curve must now depend upon the 
position curve. The former, attached to one point of the ob­
ject, now represents the path followed by this point subjected 
to both position and orientation interpolations. 

An example is shown on Fig. 3. Position and orientation 
curves are displayed. Each of them has its own set of tan­
gents. The resulting animation is shown on the right side 
of the figure. The key-frames are shaded in dark gray, the 
inbetweens in light gray. 

4.3 Interactive Control 
All these curve lie in 3-D space and the input device is 
restricted to move in two dimensions. In order to perform 
interaction, we use an extension of the notion of 3-D cursor 
presented in [12] . The principle is to restrain the movement 
in two dimensions. For position, only translation along one 
axis (1-0 translation) or in a plane perpendicular to one 
axis (2-0 translation) are possible. For orientations, only 
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(a) (b) 

Figure 3: Position and orientation interpolation. 

rotations about one axis are allowed (1-0 rotation). Rotation 
about two axes (with two degrees of freedom) would be 
possible, but it doesn't seem intuitive to users. 

In the two following subsections, we detail the interactive 
control of key-frames - which consists in modifying the Pi'S 

or the Qi'S - and the interactive control of tangents to the 
curves. The former allows to modify the basic shape of 
the path while the latter allows fine tuning of the curves' 
appearance. 

4.3.1 Key-Frames. We use the local coordinate system of 
each key-frame as reference axis. Positions are modified 
with 10- or 20-translations. Orientation-keys are modified 
with ID-rotations. The user grasps one object and then 
translates or rotates it according to the cursor constraints. At 
each mouse displacement, the two curve pieces involving 
the key-frame are computed over again and refreshed. 

4.3.2 Tangents. The interactive control of both flat3 and 
spherical tangents is divided into two distinct operations. At 
any time, the user may either modify the amplitude or the 
direction of the tangents. This is not without interest since 
modifying direction and amplitude have different effects. 

There is a similarity between the effects generated by modi­
fying flat tangents and spherical tangents: 

• direction. Changing the tangent direction results in the 
trajectory anticipating or overshooting a position-key or 
an orientation-key. The effect is equivalent to the ten­
sion effect described in [11]. Rat tangents are modified 
by rotating the tangent vector about the selected refer­
ence axis . Spherical tangents are modified by rotating 
an arc as described in [9] . 

• amplitude. Increasing the amplitude yields a more 
exaggerated curve. On the other hand, decreasing the 
amplitude generates a much sharper trajectory. Modify­
ing the amplitude induces something similar to the bias 
effect. As for the position curve, the amplitude is mod­
ified by moving the tangent vector along a line, while 
in the case of orientations the amplitude is modified by 
moving the tangent arc along a circle. 

3We call flat tangents, the tangents to the posilion curve by opposilion 
to spherical tangents. 

• continuity. Another possibility is to manipulate both 
left and right tangents at the same time or to manip­
ulate only one half tangent at a time. The first case 
ensures Cl continuity while the second allows to create 
discontinuities. 

On the following example, the animation consists in four 
key-frames. We concentrate on showing the effect of spher­
ical tangents, the case for position being well known. Fig. 4 
shows three different animations based on the same key­
frames, resulting from merely modifying spherical tangents. 
On Fig. 4.a, the motion uses default tangents. On Fig. 4.b, 
the direction of the spherical tangents has been interactively 
modified in the second and third key-frames. In the second 
key-frame (from left to right) a twist effect is created around 
the vertical bar of the T. On the third key-frame a twist effect 
is created around the horizontal bar of the T. On Fig. 4.c, the 
amplitudes of the spherical tangents have been increased to 
exaggerate the effects. 

5 AUTOMATIC REPARAMETRIZATION 

5.1 Introduction 

In the previous sections, all the tools required for the fine 
description of position and orientation paths were presented. 
We did not worry about the motion dynamics, i.e. the ve­
locity of bodies along trajectories. Indeed, tangents were 
designed for finely tuning the curve's appearance, not for 
specifying velocity at key-frames. First, the use of piece­
wise parametric polynomials may generate unpleasant ef­
fects. If key-frames are equally spaced in time, the number 
of samples is the same between two control points, be they 
very close or very distant from one another (see for example 
Fig. 5.a). Secondly, allowing the manipulation of tangents 
may result in the loss of velocity continuity . 

A standard solution to solve these problems is based on a 
reparametrization of the trajectory. Principally, it is based 
on a reparametrization of parameter u in function of a more 
realistic and intuitive parameter, say t, the time. This 
reparametrization is made thanks to another curve express­
ing the relationships between the time and the parameter u 
(see [16]). In fact, this parametrization is more likely to be 
expressed as a function giving the velocity [3] or the curvi­
linear abscissa of the path in function of time. 
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Figure 4: Influence of spherical tangents 

However, such a reparametrization presents, from our point 
of view, the drawback to require the specification of still an­
other curve, hence more and more interaction. Our aim is to 
develop a technique allowing the automatic reparametriza­
tion of interpolation curves. However, we also wish to let 
the user have the possibility to modify the proposed solution 
with the help of additional constraints. Let us first consider 
the method for position interpolation before turning to ori­
entation interpolation. 

The initial trajectory, as described previously, is made up of 
a sequence of cubic splines. Each of them is parametrized 
by 'U ranging from 0 to 1. We may consider that the global 
trajectory depends upon a more general parameter, say u, 
ranging from 1 to N (recall that N represents the number 
of key-frames). The position on the curve is easily evalu­
ated from a fixed value of u. It suffices to determine the 
relevant piece of curve i and parameter 'U inside this curve. 
An animation sequence requires the computation of a fixed 
number of frames between time tl and time tN . It moti­
vates the discretization of the continuous u parameter in a 
set of equally spaced samples 'Ui. Our objective is to find 
another set of samples, denoted ti, such that the sampling of 
the P(td's (Le. the motion dynamics) over the path appears 
more realistic than the initial sampling of the P( 'Ui)'S. The 
initial ti values are initialized with the 'Ui values and itera­
tively improved according to a criterion described below. In 
the following, Pi denotes P(ti) . 

As we want to generate realistic motion, we choose to min­
imize the sum of the forces required to realize this motion. 
This principle is suggested by the fact that realistic motions 
tend to minimize the energy expanded to perform them [17] . 
According to Newton's law, it comes down in fact to min­
imizing the sum of the accelerations occurring during the 
motion. The scheme we have chosen is based on an opti­
mization technique. 

As usual, the discretization step is performed with the help 
of the finite differences method, frequently used in most 
animation techniques: 

Pi+l - Pi 
Vi = h ' (8) 

In fact, we want to minimize the amplitude of the forces. So, 
we choose to minimize the sum of the squared accelerations. 
The criterion to be minimized is expressed as the finite sum: 

C= L a; 
19~N 

Using Eq. 8 and discarding constant term h, we have: 

a; = (Pi+l - 2Pi + Pi _ I )2 

= 4pl + pl+ l + Pl- l + 2Pi+IPi-1 
- 4Pi(Pi+1 + Pi-!) (9) 

5.2 The Optimization Process 
The previous problem boils down to finding a vector t such 
that C(t) is minimized. We use an iterative process which 
consists in finding improved estimates t* = t + p such that 
C(t*) < C(t) . In order to improve convergence rates, we 
use a second order Taylor expansion of C: 

I 
C(t + p) = C(p) + gT (t)p + 2,pT H(t)p 

where 9 denotes the gradient of C and H the Hessian matrix 
of C . It can be shown (see [8]) that decreasing C implies 
solving: 

g+Hp=O (10) 

We now give further details about the evaluation of the gra­
dient and Hessian matrix of C and present a fast resolution 
algorithm for solving the linear system (10). 

5.3 Computing First and Second Order Derivatives 
The term in C where ti occurs (denoted as C;) is computed 
from ar (see Eq. 9), aLl and ar+l : 

C(ti) = Ci = 6pl-8Pi(Pi-1 +Pi+!)+2Pi(Pi-2+Pi+2) 

The first derivative of C with respect to ti, treating all other 
parameters as constants, is given by4: 

BCi "( ) '( ) gi = ~ = 12PiPi-8Pi Pi-I+Pi+1 +2Pi Pi-2+Pi+2 
uti 

The Hessian of C containing the second derivatives of C is 
a matrix defined by: 

2P/PI-2 
-8P/PI-1 
12P/

2 + PiP/, - 8P/(Pi- 1 

j=i-2 
j = i-I 

+Pi+d + 2P/(Pi-2 + Pi+2) j = i 
-8P/P/+ 1 j = i + 1 
2P/ P/+2 j = i + 2 
o elsewhere 

(11) 

4 P: (resp. Pt'> denotes the first (resp. second) derivative of P( t;) with 
respect to parameter ti. P: (resp. Pt') is computed from Eq. 1. replac-

ing ( u3 u2 u I) by its first derivative (3u2 2u 1 0) (resp. second 

derivative (6u 2 0 0 ) . 
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Given the special structure of Eq. 11, the Hessian matrix is 
a non symmetrical penta-diagonal band matrix. 

5.4 Solving the Linear System 
In order to improve resolution time as well as storage re­
quirements, we take advantage of the special structure of the 
Hessian matrix. This is particularl y useful in our case where 
the number of time samples - and then the sparsity of this 
matrix - is high. 

As for the organization of the Hessian matrix, only non-zero 
elements are of interest. They are stored in a N x 5 array, 
each line containing significant elements of one line of the 
Hessian matrix. 

The algorithm we use is based on a LU decomposition of 
the initial matrix. The system Hp = -g is transformed into 
LU p = 9 and then solved in two steps. A forward substitu­
tion first solves Ly = g, a backward substitution then solves 
Up = y, leading to the final solution. The LU decomposi­
tion and the forward substitution may be performed in the 
same step with an O( N) algorithm, avoiding the storage of 
the lower triangular matrix. However, the upper matrix must 
to be stored in a N x 3 array for later use in the backward 
substitution, which also takes O(N) time. 

The algorithm we implemented is very efficient and only 
requires minimum storage. Combined with the optimiza­
tion algorithm whose convergence rate - thanks to second 
derivatives approximation - is very good, this solver algo­
rithm allows to use the automatic parametrization scheme in 
an interactive environment. Also note that, due to the special 
structure of the Hessian matrix, no pivoting is required. 

5.5 Results 
On the following examples, the big squares represent the 
key-frames while the small ones represents the samples. 

5.5.1 Equirepattition of Time Steps. Fig. 5.a shows an ini­
tial curve composed of the concatenation of three Hermite 
curve pieces. The curve is mainly designed for its small cur­
vature. Compared with the other two, the central curve has 
a small curvilinear length. So, the global curve behaves as 
if the animated body's velocity suddenly slows down while 
crossing the second control point and then increases while 
crOSSing the third control point. Using our reparametrization, 
the samples are almost equally spaced, assuming constant 
speed along the specified path (Fig. 5.b). 

(a) 

Figure 5: Trajectory with low curvature. (a) initial samples. 
(b) after reparametrization. 
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5.5.2 Curvature Influence on the Solution. Of course, the 
aim of reparametrization is not only to space interpolated 
points equally. This was indeed the case in 5.5.1 because the 
curve was very close to being a straight line. Just the same 
as a car slows down while reaching a bend and speeds up 
while leaving it, the velocity of our animated body decreases 
near a bended piece of curve and increases at the end of the 
curved stretch. Fig. 6.a shows the initial point samples. The 
same curve after the reparametrization producing a smooth 
motion is shown on Fig. 6.b. The higher the curvature, the 
higher the number of samples. 

5.5.3 Additional Constraints. It is possible to impose a 
value for the velocity at various time samples. It is enough to 
substitute in Eq. 8 the specified values. Another choice is to 
prescribe the animated object to stand in a fixed position on 
the curve at a fixed instant of time. In this case, the optimiza­
tion problem is divided into as many sub-problems as there 
are constraints. In both cases, the optimization problem re­
mains unconstrained. On Fig 6.c, velocity constraints have 
been added to the end points of the path . The first constraint 
imposes a high initial speed while the second imposes a low 
final velocity (the motion goes from right to left) . The re­
sulting motion involves less sample points at the beginning 
and more at the end of the path. 

5.6 Reparametrization of Orientation Curves 
Of course, we also want to reparametrize orientation curves. 
The objectives are equivalent to those regarding positions, 
except we now have to minimize the sum of the torques 
applied to the animated body. 

We use Newton's law applied to orientations 

T= I w 

where 

• T denotes the sum of torques applied to the body, no 
matter what these torques are due to. 

• I represents the inertial matrix of the body. This matrix 
is computed in the local coordinate system of the body. 
Unfortunately, this coordinate axis does not necessarily 
coincide with the center of mass of the body, leading to 
a non diagonal inertial matrix. 

• w represents the angular acceleration. 
As previously, we want to minimize a finite sum of all the 
applied torques, Le.: 

c= L (I wi)2 

l~i~N 

where Wi denotes the angular acceleration at time ti . This 
quantity is easily computed using finite differences and 
quaternion logarithms. First, the angular velocity may be 
represented by the angle (}i traveled from orientation qi to 
orientation qi+l around a unit axis Vi in time h, i.e. by 
Wj = ¥ . ~ is the logarithm of the quaternion for rota­
tion from qi to qi+l; we then have: 

10gqi+l -IOgqi 
Wi = 2h 
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(a) (b) (c) 

Figure 6: High curvature trajectory. (a) initial samples. (b) reparametrization. (c) other extremal constraints. 

and the angular acceleration at time i is given by: 

Wj= 
Wj - Wi-l 10gqi+1 - 210gqi + 10gqj_1 

h 2h2 
The gradient and Hessian matrix are computed as previously, 
even if the final expressions are more complicated, especially 
due to the fact that the inertial matrix is rarely diagonal. 
Positions P(tJ) are replaced with the quaternion logarithms 
of interpolated orientation (logQ(tj)). The important fact 
is that the Hessian matrix remains a penta-diagonal matrix, 
ensuring good performance during the numerical resolution. 

5.7 Reparametrization of Mixed Curves 
In fact, we do not parametrize positions independently from 
orientations. Indeed, it would lead in most cases to two dif­
ferents time parameter sets. In consequence, we choose to 
minimize both translational and angular accelerations. The 
new criterion is the sum of the previous criterions for po­
sition and orientation. Using both preceding subsections, 
computation of the gradient vector and of the Hessian ma­
trix is straightforward. The Hessian matrix always remains 
a penta-diagonal matrix. 

Also note that it is possible to favor the minimization of 
forces versus torques, by merely modifying the mass or in­
ertial matrix of the animated body. 

6 INTERACTIVE DESIGN OF SWEEP OBJECTS 
This part covers the application to modeling of mixed posi­
tion and orientation interpolations, which have initially been 
imagined for key-framed animation. Few authors [13] apply 
such animation techniques for the creation of sweep objects, 
also called generalized cones (GC for short) [10] . 

An extruded object is defined by a contour, a trajectory, and 
an orientation curve. The extruded object is obtained by 
moving the contour along the trajectory. The orientation 
curve specifies how the contour is rotated about a vector 
tangent to the trajectory (only one degree of freedom). If 
need be, other curves, giving the scale, the shape, etc .. of 
the contour in function of time may be added. 

It is easy to apply the work presented above for the inter­
active design of GC's. We merely replace the animated 

three-dimensional object by a two-dimensional contour. Be­
sides, a menu option enables to initialize the orientation-keys 
using the Frenet frame (see [10] for details). Then, the user 
may take advantage of all our interactive techniques to finely 
adjust the shape of the sweep object. In our application, we 
give the possibility to rotate the object about any axis (Fig. 7). 

Our aim was not to extend theoretical work about GC, but 
rather to exhibit a method for providing fine interactive con­
trol on such objects. It may happen, when the diameter of the 
contour exceeds the curvature of the trajectory or when the 
trajectory describes loops, that parts of the GC self-intersect. 
In order to avoid this problem, the initial GC is split into 
smaller ones. Each of them corresponds to the object result­
ing from moving the contour along the trajectory from one 
time sample to the next. Then, we construct a CSG object 
made up of the union of all the small cones. The boundary 
evaluation [4] of the CSG object leads to a coherent object, 
the final GC (Fig. 8). 

Figure 8: Self-intersecting object. 

7 CONCLUSION 
We have shown a new technique, based on an approximated 
parametrization of quaternion space, allowing the creation 
and visualization of spherical splines. The parametrization 
used seems easier to understand and to implement than those 
previously presented. 

Hermite interpolation provides an efficient way to implement 
spherical tangents. Moreover, we provide full interactive 
control over this spherical splines. The use of spherical tan-
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(a) (b) (c) 

Figure 7: (a) Initial object using a Frenet frame. (b) Rotation about a vector tangent to the trajectory (the position of the eye has 
been changed). (c) Rotation about an arbitrary axis. 

gents gives an intuitive means to control orientations. The 
effects of any manipulation may be visualized in real time. 

The possibility to conjointly edit both position and orienta­
tion interpolations makes the job of the animator easier. One 
does not have to worry about two ( or more) different curves, 
the relationships between positions and orientations being 
self-explanatory. 

Furthermore, we gave a solution allowing automatic 
reparametrization of the curve, sparing the animator the trou­
ble to worry about with still another curve. The parametriza­
tion is performed at request. The results are obtained im­
mediately. Interactive specification of constraints is not still 
enabled. Work is in progress for this to be performed. Tan­
gents are used to manipulate the curve and can not be used 
for specifying the motion dynamics. Our aim is to allow the 
user to directly manipulate the repartition of samples along 
the curves. 

All these techniques have been conceived from the point of 
view of animation, but they have also been applied to the 
interactive design of generalized cones. 
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