
237

Computing Illumination from Area Light Sources
by Approximate Contour Integration

Christophe Vedel
LIENS, CNRS URA 1327, Ecole Nonnale Superieure,

45, rue d'Ulm, 75230 Paris Cedex 05, France
e-mail address:vedel@dmLens.fr

ABSTRACT

A new method using approximate contour integration to
accurately compute direct illumination from diffuse area
sources in presence of curved obstacles is presented. All
visibility tests are done using ray tracing so the method can
be applied to a large class of objects.

Computation of illumination on a pixel by pixel basis is
necessary to accurately capture sharp shadows. However
in soft penumbra zones many shadow rays are needed to
quantize the penumbra finely enough and avoid banding
artifacts. Furthermore, these zones usually cover lots of
pixels. We make use of the fact that silhouettes of objects
in a scene are smooth for the most part to replace them
by polygonal lines in source space. The method allows
the estimation of intensity gradients. Penumbras with no
aliasing are obtained with fewer rays than with usual adaptive
sampling techniques.

KEYWORDS: Rendering, area sources, contour integration,
illumination gradients.

1 INTRODUCTION

Most global illumination algorithms build a representation
of the radiosity function in object space. In the process
of producing shaded images of a scene, this description
serves first as the current state of light distribution during
the solution of the rendering equation and is then used to
reconstruct the shading on surfaces for particular images.

Because of shadows, the radiosity function exhibits many
discontinuities. The ones of lower degrees can not be ignored
if accurate images of a scene are to be produced [7]. The first
attempts at a solution to this problem are adaptive subdivision
techniques [4, 1]. Hierarchical structures such as quadtrees
allow the representation of light to be refIned when high
gradients are detected. Images produced with this method
look better but sharp shadows can never be perfectly resolved
resulting in well known artifacts such as shadow or light leaks
and jagged shadow borders.

Recent algorithms have focused on giving better balanced
solutions to the global light equilibrium [6, 14]. They use

the same hierarchical structure as adaptive subdivision to
distribute computations so that the time spent in a light
transport operation is, if possible, proportional to the amount
of energy involved. As a result, computations are optimized
for a given precision. Images obtained with these algorithms
suggest that the level of precision that would be needed
to produce alias free images exceeds what is reasonable
because the eye is much more sensitive to contrast than to the
absolute value of the solution. SpecifIc methods not related
to the optimization of global physical accuracy have been
developed to address this point.

One is to resolve the discontinuities in radiosity by intro
ducing them explicitly in the mesh. Currently this method
has only been applied to polyhedral scenes where the most
important boundaries are line segments and can be computed
[2,7,3, 10]. However the complexity of shadows cast by free
form objects on free form objects is much greater. Even once
the mesh obtained, reconstructing radiosity and prescribing
continuity along arbitrary curves would still be a difficult
problem.

Another solution is to recompute direct illumination on a
pixel by pixel basis during image rendering. If the light
sources for which this process is applied are carefully chosen,
this technique guarantees that all important shadows and
penumbras will be properly accounted for [9]. The drawback
of this technique is that lots of shadow rays need to be cast
to properly quantize the radiosity in the penumbra of area
sources. Techniques to reduce this number using adaptive
sampling of the source or Monte Carlo integration have been
proposed [13, 8].

This paper introduces approximate contour integration as a
new method to solve this problem. In the next section,contour
integration is compared to surface sampling techniques and
the use of approximate contours in source space is motivated.
Section 3 presents the illumination algorithm in detail while
section 4 shows how gradients can be computed with little
additional cost. Finally results are presented in section S.

Graphics Interface '93 ~

2 SURFACE SAMPLING vs CONTOUR SAMPLING

The fonn factor between a differential surface element dAl
and a surface A2 is defined by the following integral

where 7 is the vector joining dA1 and dA2 and 01 (resp. O2)

is the angle between 7 and the surface nonnal at dA1 (resp.
dA2). vis (dAl, dA2) is the visibility function of the two
differential surface elements. vis(dA1, dA2) = 1 if the two
elements see each other and 0 otherwise. Except for simple
configurations, equation (1) can not be solved analytically
as is and numerical integration methods are used in practice
[16]. These methods approximate the integral by summing
the contributions of a finite number of small surface elements
on the source. The visibility is tested for each element by
tracing rays and the value of each elementary fonn factor is
approximated by the fonn factor between a differential area
and a disc.

With n: the nonnal vector at dA;, integral (1) can be rewritten
as the flux of a vector field through surface A2

FdA l,A , = dA1 [(V iS(dA1 , dA2) nt . -: 7) . n; dA2 . lA, ~r
(2)

Using Stokes' theorem, integral (2) can be transfonned into
the following contour integral

(3)

~

where Qv; 3 A 2 is the contour of the visible part of A 2 and d 12
is a differential vector element along QV;3 A2.

Figure 1: Geometry for contour integration

If the curve describing the contour of the visible part of the
source is a polygonal line defined by points Co , . . . , Cn as
in Figure 1, integral (3) can be put into the following closed
fonn

238

(4)

-) where P; is the angle between MC; and MC;+l, and 6; is
the angle between the plane defmed by M, C; and Ci+lo

and the normal Tt at M. Even then, using this formula to
compute fonn factors is costly because for each point where
illumination is evaluated, visibility must be solved exactly
in object space to get Co, .. . , Cn. It has however been
applied to compute direct illumination [12] and is simpler for
discontinuity meshed polyhedral scenes where the visibility
problem is partly solved by preprocessing [3, 10]. In the
presence of curved objects, the contour is harder to compute
and integral (3) cannot be put into closed fonn in general.

Curved objects have to be tesselated in order to have a
polygonal silhouette for contour integration. If the obstacle
is near the receiver, it should be tesselated fmely so that its
sharp shadow does not look polygonal. When it is closer
to the source and casts a softer shadow, the tesselation can
be coarser. This suggests that the projected silhouette of the
obstacle on the source should be polygonized instead of the
3D obstacle itself.

The approach presented here perfonns the equivalent of
tesselation for the part of the 3D silhouette that projects
inside the area light source. This part depends on the relative
position of the obstacle between the source and the receiver
and is, for instance, smaller when the obstacle is near the
receiver. Because the algorithm approximates its projection
on the source with a given number of line segments, the
resolution is tuned automatically.

Ill"

~ I)(

lJIJI

Figure 2: Adaptive surface sampling Oeft) and contour
sampling (right). Using dichotomy with fewer rays, a tighter
approximation of the contour is possible.

Figure 2 shows the advantage of contour sampling when the
silhouette of objects partially hiding a light source is smooth.
When adaptive surface sampling refines the source one level
deeper, the fonn factor is approximated with elements four
times smaller. This is optimal for an arbitrary contour but
for mostly smooth contours, locating more precisely a few
points on the contour and approximating it in between with
line segments will give a more accurate fonn factor for a
given number of rays. The difference is similar to the one
between the rectangle and the trapezoid rules for numerical

~ ~ Graphic s Interface '93

integration.

3 APPROXIMATE CONTOUR INTEGRATION

In this section, a description of the algorithm used to compute
the fonn factor between a differential area dA around point
M on the receiving surface and a rectangular light source S
is presented. The nonnal at M is Tt. ViSM is the visibility
function from point M, that is visM(P) is 1 if P is visible
from M and 0 otherwise.

3.1 General Procedure

To build an approximate polygonal contour of the visible
part of area light source S, we use a two-dimensional analog
of the marching cubes algorithm [11].

The light source is diced into a regular grid of rectangles
with sample points Si,i' i = 0, ... , p, j = 0, ... , q, in the
corners. vis M (Si ,i) is computed by casting a ray (first level
ray) from the receiver to each sample point. The squares
(Si,i' Si+1,j, Si+1,j +1, Si,j+1) are then traversed to identify
the pieces of the contour interior to the light source. The
visible sections of the border of the light source are also part
of the integration domain but their contribution is computed
afterwards for the sake of simplicity. Because each of the
four corners is either visible or not, there are a priori sixteen
possible configurations. Various symmetries reduce this
number to the following four distinct cases (shown in Figure
3):

1. All four samples are visible or not at the same time and
no contour is detected.

2. One sample differs from the three others. The contour
crosses two adjacent sides of the square.

3. Two adjacent samples are visible and the two others
are not. The contour crosses two opposite sides of the
square.

4 . Two opposite samples are visible and the two others are
not. The contour crosses the square twice. To decide
between case a and b an additional ray is cast to the
center of the square.

We first describe the procedure applied to each square to build
the approximate contour. The next subsection will present
the test used to check the validity of the approximation and
the refinement algorithm.

In cases 2, 3, and 4, one or two pieces of contour cross
the sides of the square. Following the assumptions made at
the end of section 2, the algorithm then locates with more
precision the points where the contour crosses the sides of
the square instead of refining the square itself. Suppose
for instance that visM(Si ,j) = 1 and ViSM(Si+1 ,j) = O.
The segment crossed by the silhouette of the obstacle is
narrowed by dichotomy starting with [Si ,i Si+ 1 ,i]. A new ray
(second level ray) is cast to the middle point of the segment.

239

1

...

... ,
o

4a

o vis = 1

... ...

2

...

I
I

I
I

I •
4b

• vis=O

Figure 3: Contour crossing cases

3

Depending on the value of vis M at this point, the procedure
is repeated recursively on the first or the second half of the
segment. The middle point of the final segment becomes
an approximate contour vertex. If the true silhouette of the
object is simple, this procedure will find one point nearly on
it. However if it is more complicated or if there are several
small objects, the dichotomy will still return one point, giving
no indication of the complexity. These cases will be detected
by the procedure described in the next section.

For each successive pair of such vertices, fonnula 4 gives
a contribution to the total fonn factor. Care must be taken
to order the vertices of each pair in a consistent manner for
all squares of the source. This can be achieved by always
keeping the hidden part of the source to the left.

3.2 Corners

The algorithm described above yields good results when the
silhouettes of objects in a scene are smooth curves. However
objects have corners and the contour of two different objects
can also cross at an angle. If the apex of a corner, for
instance, is projected inside one of the squares, it is not
detected and part of it is cut from the contour. When crossing
the penumbra, severe a1iasing occurs because the amount of
cut contour beats as the apex slides from square to square on
the source (see Figure 6). The algorithm must detect these
conditions and apply a special procedure to adjust the fonn
factor.
To check the validity of the approximation in a square, one
point is added to the contour. The point chosen depends on
the configuration of the square because a new point can only
be obtained by dichotomy between a visible sample and a
non visible one (see Figure 4):

Case 2 One point is computed on the diagonal of the square.
A dichotomy is started with the pair of points (Cl', 8).

Graphics Interface '93 ~~

4a

• vis=O

o vis = 1

o new vertex

4b

true contour

old approximate contour

new approximate contour

Figure 4: Vertices added to the contour to check for validity.

Case 3 One point is computed on one of the two diagonals
of the square. A dichotomy is started with either the pair
(a, 6) or ({3, ,) chosen at random.

Case 4 One point on each piece of contour is computed by
dichotomy on the two semi-diagonals. The center sample
p. is already known. Dichotomies are started with the
pairs (a, p.) and (p., 6) or ({3, p.) and (p. , ,) depending on
the subcase.

The difference of integration between the two contours is
the form factor 6 F for the small part of the source that
is missed or added when using the simple version of the
contour. Let t be the length of the smallest intervals in the
dichotomy process. Because the endpoints of the segment
are only known with precision t, the uncertainty on the result
of contour integration is the form factor of a strip of width (
aroun~ the segment. This is also the expected error if the true
contour is a line segment and it can be used to test whether
6 F is an acceptable error or not. Thus the threshold is not
directly set by the user but depends naturally on the level
of approximation. Its value can be approximated using the
formula for the elementary form factor ih [16].

If the threshold is exceeded, the square is subdivided like
a quadtree and each subsquare is then treated in turn. The
number of dichotomy steps is decreased by one so t stays the
same and the threshold is divided by two because the length
of contour inside the subsquare is smaller. This process

240

can be applied recursively if necessary. When dividing the
square, samples are added at the middle point of each side. If
the endpoints of the side have the same visibility. the added
sample is new and it can happen that its visibility is different.
This leads to an inconsistency for the neighboring square
and forces its subdivision. If the neighbor had already been
treated, its contribution must be subtracted and reevaluated.
Furthermore, inconsistencies can propagate from square to
square depending on the underlying complexity of the true
contour. Because these cases are expected to be rare, we have
decided that each time an inconsistency that would require
backtracking is detected, the whole source is divided one
level deeper and the computation of the form factor begins
anew.

3.3 Implementation Note

Given the initial number of samples on the source and
the number of dichotomy steps used, an array holding all
possible samples is created. All rays traced for dichotomy
purposes are traced to points in this array (this is also the case
for dichotomies along the diagonals). This way, visibility
values computed on the sides of a square are reused for the
neighboring squares. When an inconsistency is detected and
the process is restarted, the result of previously traced rays is
reused.

4 GRADIENTS

Light intensity gradients have been shown to be use
ful to obtain a better reconstruction of shading across
penumbras [17, 15]. They can also be used to reduce the
number of shadow rays when computing direct illumination
as will be suggested in section 6. In this section, a simple
method to compute the gradients from the results of the form
factor computation algorithm is presented.

Following [17], we could break down the gradient into a
--+ --+ --+ --+

rotational term V r and a translational term V t. V r (resp. V t)
describes the change in form factor when the normal at M is
tilted (resp. when M is moved in the tangent plane). Here
we have decided to eliminate the influence of the normal on
the receiver from the gradient computations. First, formula
(4) is expressed as

where nt is the normal to the plane defined by M, Ci, and
CHI.

-+
Then G is used instead of F to compute partial derivatives
when M is moved. To extrapolate the value of F at a

point P from the value at M, G is extrapolated and F is

computed as the dot product of G and the true normal at
P. This approach has the advantage of uncoupling geometry
and shading. Assuming no self shadowing. no more samples

4 Graphic s Interface ' 93

are required to represent lighting on a rippled or bumped
surface than on a plane. This technique also simplifies
the subdivision criteria for an adaptive radiosity algorithm
because the change in normal is not important as long as the
source remains above the horizon of the receiver.

The algorithm described in section 3 computes the form
factor by accumulating the contributions of a collection of
line segments to the contour integral. Because the partial
derivation operators are linear, they can be exchanged with
this finite summation and applied to each segment of the
contour. This elementary derivatives are estimated and
accumulated in the total gradient. Formulas giving the partial

derivative of 7J are given in the appendix.

Figure 5: The 3D contour 10, ... , In must be used instead of
Co, ... , Cn in order to get true derivatives.

For contour integration, the point of the contour on the source
or on the obstacle can be used. It should be noticed that for
derivation, the results will be different and that points on the
obstacles should be used as Figure 5 suggests.

5 RESULTS

The algorithm used to compute images starts by casting all
viewing rays for a scanline. Then the line is cut into spans of
adjacent pixels covering the same object. A maximum length
for each span is also set. A bounding box is then computed
for each span and a candidate list of obstacles is built using
the shaft culling technique [5]. If this list is empty, the span is
shaded by simple integration of the contour of the source. To
shade a span with non empty candidate list, the illumination
for the first pixel is computed using approximate contour
integration and the pattern of first level rays is recorded. For
subsequent pixels, only the first level rays are sent until the
pattern changes. At this point, illumination is computed and
the values for the pixels in between are interpolated. This
process is repeated until the end of the span.

The number of first level rays is adapted to the complexity

241

Picture Shadow rays Shadow rays Av. Dif.
per Viewing Ray

7 603,456,646 1024.0 -
8 5,973,391 11.4 0.23
9 6,084,145 11.6 1.31
10 18,647,345 35.6 0.64

Table 1: Statistics for the pictures. Viewing rays are those
for which shadow rays were actually cast.

of the obstacles. When doing contour integration, some cells
can be recursively split because of insufficient precision (see
Section 3.2). If the depth of recursive subdivision is two or
greater or if an inconsistency is detected, the density of first
level rays is increased and a fmer starting grid is used. On
the other hand, if no subdivision is needed and the density
had been increased previously, it is decreased. If the depth
of subdivision is one, the density is kept the same.

Experience has shown that derivatives are not precise enough
at the span level to ensure a good interpolation everywhere for
in between samples. They are best suited for reconstruction
techniques described in [15]. Here a quadratic interpolation
scheme using a third sample in the middle was applied

--+
instead. For curved surfaces, the vector G is interpolated
and then projected on the true normal at each pixel.

A Monte Carlo adaptive sampling algorithm ([8] without
shadow pattern coherence) was implemented for comparison.
Because form factor computations are done after shaft culling,
shadow rays are sent for the same pixels for both algorithms.

Images of a simple scene with a few test objects illuminated
by an area light source were computed to compare the two
algorithms. All images were computed with 1 viewing ray
per pixel (no antialiasing) at a resolution of 800 x 800. To
emphasize the characteristics of each image, only a detail is
shown in the pictures. The reference picture was computed
using traditional ray traced form factors with 1024 shadow
rays per viewing ray (Figure 7). It shows very little visible
aliasing in the penumbras. A picture was made using the
new method with 9 initial samples and 5 dichotomy steps for
each segment (Figure 8). It presents no more visible artifacts
than the picture of Figure 7. Two images were made using
Monte Carlo adaptive sampling. The variance threshold was
adjusted so that the first image (Figure 9) has roughly the
same number of rays than adaptive contour integration while
the second image (Figure to) has the same visual appearance.
The average difference between each image and the reference
image was also computed using the formula in [8]. Statistics
are summarized in table 1.

The new algorithm is better if objects between the receiver
and the source are simple. This is a property that can
hold true locally even for complex scenes. However when

Graphic s Interface '93 · ~

the complexity of the contour of the visible part of the
source grows, the Monte Carlo method becomes better than
approximate contour integration. In these situations, the
increase of fIrst level rays mentioned earlier is triggered. An
hybrid algorithm could use this information to choose locally
the best of the two methods.

6 CONCLUSION AND FUTURE DIRECTIONS

An algorithm for computing direct illumination from area
sources using approximate contour integration has been pre
sented. It exploits the fact that the silhouette of objects is
smooth for the most part to greatly reduce the number of
shadow rays needed to realize a given quality of shading.

The method can be applied to a large class of objects because
all visibility tests are done by tracing rays. It was designed
to precisely compute direct illumination in the second pass
of a radiosity algorithm but can also be used to include area
sources in classical ray traced scene, thus increasing realism
at a lower cost than was previously possible.

While, in the current implementation, only rectangular
sources are allowed, the use of any plane source is not
precluded. More complicated shape can be approximated by
polygonal lines and the interior of the source diced as is the
case for rectangles. An extension of the method to handle
triangles instead of squares is likely to be needed to make the
whole process simpler.

We believe that further reductions in the number of shadow
rays can be obtained by tracing the main discontinuities in
the image plane. Interpolation along spans could then be
replaced by 2D-interpolation. Techniques to effIciently fInd
the discontinuities involving an edge of the source and curved
obstacles are being developed.

ACKNOWLEDGMENTS

Thanks to the reviewers for their comments, to Frederic
Asensio for proofreading the paper, and special thanks to
Claude Puech, my thesis advisor.

APPENDIX

We defIne

and formpla (4) is then

---+ -Gi = J3i n i ,

FdA"A, = dA12~ (?; C;) Tt

(6)

(7)

If M has coordinates (x , y , z) in the system (I , J , K), the
---+ •

partial derivative of Gi with respect to x IS

(8)

242

with

and

-I ,

(9)

_ 8.,Wi - (ut . 8.,Wi) ut
8 n ' - (10) ., • - 11 Will '

---+ ---t ---+ ---+ --+ --+ ---+--+
where C; = MC;, Wi = Ci X Ci+l and 8., Ci = CiCi+l X I.

REFERENCES

[1] Baum, D. R., Mann, S., Smith, K. P., and Winget,
J. M. Making radiosity usable: Automatic preprocessing
and meshing techniques for the generation of accurate
radiosity solutions. Computer Graphics (SIGGRAPH
'91 Proceedings) 25, 4 (July 1991),51--60.

[2] Campbell, Ill, A. T. Modeling Global Diffuse Illumina
tion/or Image Synthesis. PhD thesis, Dept. of Computer
Sciences, Univ. of Texas at Austin, December 1991.

[3] Chin, N., and Feiner, S. Fast object-precision shadow
generation for area light sources using bsp trees. In
Computer Graphics (1992 Symposium on Interactive
3D Graphics) (March 1992), pp. 21--30.

[4] Cohen, M., Greenberg, D. P., Immel, D. S., and Brock,
P. J. An effIcient radiosity approach for realistic image
synthesis. IEEE Computer Graphics and Applications
6,3 (March 1986), 26--35.

[5] Haines, E. A., and Wallace, J. R. Shaft culling for
effIcient ray-traced radiosity. Second Eurographics
Workshop on Rendering (May 1991).

[6] Hanrahan, P., Salzman, D., and Aupperle, L. A rapid
hierarchical radiosity algorithm. Computer Graphics
(SIGGRAPH ' 91 Proceedings) 25,4 (July 1991), 197--
206.

[7] Heckbert, P. Simulating Global Illumination Using
Adaptive Meshing. PhD thesis, CS Division (EECS),
Univ. ofCalifomia, Berkeley, June 1991.

[8] Kok, A., and Jansen, F. Adaptive sampling of area
light sources in ray tracing including diffuse inter
reflection. Computer Graphics Forum (Eurographics
'92 Proceedings) 2, 3 (Sept. 1992),289--298.

[9] Kok, A. J., and Jansen, F. Source selection for the direct
lighting computation in global illumination. In Sec
ond Euro graphics Workshop on Rendering (Barcelona,
Spain, May 1991).

~~ Graphic s Interface ' 93

[10] Lichinslcy, D., Tampieri, F., and Greenberg, D. P.
Discontinuity meshing for accurate radiosity. IEEE
Computer Graphics and Applications 12,6 (November
1992),25--39.

[11] Lorensen, W., and Cline, H. Marching cubes: a high
resolution 3d surface reconstruction algorithm. Com
puter Graphics (SIGGRAPH '87 Proceedings) 21, 4
(Jul. 1987),163--169.

[12] Nishita, T., and Nakamae, E. Continuous tone repre
sentation of three-dimensional objects taking account of
shadows and interreflection. Computer Graphics (SIG
GRAPH' 85 Proceedings) 19,3 (July 1985),23--30.

[13] Shirley, P., and Wang, C. Direct lighting calculation
by monte carlo integration. In Second Eurographics
Workshop on Rendering (Barcelona, Spain, May 1991).

243

[14] Smits, B. E., Arvo, J. R., and Salesin, D. H.
An importance-driven radiosity algorithm. Computer
Graphics (SIGGRAPH '92 Proceedings) 26, 4 (July
1992),273--282.

[15] Vedel, C. Improved storage and reconstruction of
light intensities on surfaces. In Third Eurographics
Workshop on Rendering (Bristol, England, May 1992).

[16] Wallace, J. R., Elmquist, K. A., and Haines, E. A. A ray
tracing algorithm for progressive radiosity. Computer
Graphics (SIGGRAPH '89 Proceedings) 23, 3 (July
1989),315--24.

[17] Ward, G., and Heckbert, P. Irradiance gradients. In
Third Eurographics Workshop on Rendering (Bristol,
England, May 1992).

~ Graph ics I nterface '93

Figure 6: Closeup on the checkerboard like aliasing when the
contour is not refined.

244

Figure 7: The reference picture computed with 1024 shadow
rays per viewing ray.

Figure 8: The picture computed with approximate contour
integration at 11.4 shadow rays per viewing ray.

Figure 9: The picture computed with Monte Carlo adaptive
sampling at 11.6 shadow rays per viewing ray.

Figure 10: The picture computed with Monte Carlo adaptive
sampling at 37.5 shadow rays per viewing ray.

~~ Gra phi cs Inte rface '93

