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ABSTRACT 

A new method using approximate contour integration to 
accurately compute direct illumination from diffuse area 
sources in presence of curved obstacles is presented. All 
visibility tests are done using ray tracing so the method can 
be applied to a large class of objects. 

Computation of illumination on a pixel by pixel basis is 
necessary to accurately capture sharp shadows. However 
in soft penumbra zones many shadow rays are needed to 
quantize the penumbra finely enough and avoid banding 
artifacts. Furthermore, these zones usually cover lots of 
pixels. We make use of the fact that silhouettes of objects 
in a scene are smooth for the most part to replace them 
by polygonal lines in source space. The method allows 
the estimation of intensity gradients. Penumbras with no 
aliasing are obtained with fewer rays than with usual adaptive 
sampling techniques. 

KEYWORDS: Rendering, area sources, contour integration, 
illumination gradients. 

1 INTRODUCTION 

Most global illumination algorithms build a representation 
of the radiosity function in object space. In the process 
of producing shaded images of a scene, this description 
serves first as the current state of light distribution during 
the solution of the rendering equation and is then used to 
reconstruct the shading on surfaces for particular images. 

Because of shadows, the radiosity function exhibits many 
discontinuities. The ones of lower degrees can not be ignored 
if accurate images of a scene are to be produced [7]. The first 
attempts at a solution to this problem are adaptive subdivision 
techniques [4, 1]. Hierarchical structures such as quadtrees 
allow the representation of light to be refIned when high 
gradients are detected. Images produced with this method 
look better but sharp shadows can never be perfectly resolved 
resulting in well known artifacts such as shadow or light leaks 
and jagged shadow borders. 

Recent algorithms have focused on giving better balanced 
solutions to the global light equilibrium [6, 14]. They use 

the same hierarchical structure as adaptive subdivision to 
distribute computations so that the time spent in a light 
transport operation is, if possible, proportional to the amount 
of energy involved. As a result, computations are optimized 
for a given precision. Images obtained with these algorithms 
suggest that the level of precision that would be needed 
to produce alias free images exceeds what is reasonable 
because the eye is much more sensitive to contrast than to the 
absolute value of the solution. SpecifIc methods not related 
to the optimization of global physical accuracy have been 
developed to address this point. 

One is to resolve the discontinuities in radiosity by intro­
ducing them explicitly in the mesh. Currently this method 
has only been applied to polyhedral scenes where the most 
important boundaries are line segments and can be computed 
[2,7,3, 10]. However the complexity of shadows cast by free 
form objects on free form objects is much greater. Even once 
the mesh obtained, reconstructing radiosity and prescribing 
continuity along arbitrary curves would still be a difficult 
problem. 

Another solution is to recompute direct illumination on a 
pixel by pixel basis during image rendering. If the light 
sources for which this process is applied are carefully chosen, 
this technique guarantees that all important shadows and 
penumbras will be properly accounted for [9]. The drawback 
of this technique is that lots of shadow rays need to be cast 
to properly quantize the radiosity in the penumbra of area 
sources. Techniques to reduce this number using adaptive 
sampling of the source or Monte Carlo integration have been 
proposed [13, 8]. 

This paper introduces approximate contour integration as a 
new method to solve this problem. In the next section,contour 
integration is compared to surface sampling techniques and 
the use of approximate contours in source space is motivated. 
Section 3 presents the illumination algorithm in detail while 
section 4 shows how gradients can be computed with little 
additional cost. Finally results are presented in section S. 
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2 SURFACE SAMPLING vs CONTOUR SAMPLING 

The fonn factor between a differential surface element dAl 
and a surface A2 is defined by the following integral 

where 7 is the vector joining dA1 and dA2 and 01 (resp. O2) 

is the angle between 7 and the surface nonnal at dA1 (resp. 
dA2). vis (dAl, dA2 ) is the visibility function of the two 
differential surface elements. vis( dA1, dA2 ) = 1 if the two 
elements see each other and 0 otherwise. Except for simple 
configurations, equation (1) can not be solved analytically 
as is and numerical integration methods are used in practice 
[16]. These methods approximate the integral by summing 
the contributions of a finite number of small surface elements 
on the source. The visibility is tested for each element by 
tracing rays and the value of each elementary fonn factor is 
approximated by the fonn factor between a differential area 
and a disc. 

With n: the nonnal vector at dA;, integral (1) can be rewritten 
as the flux of a vector field through surface A2 

FdA l,A , = dA1 [ (V iS(dA1 , dA2 ) nt . -: 7) . n; dA2 . lA, ~r 
(2) 

Using Stokes' theorem, integral (2) can be transfonned into 
the following contour integral 

(3) 

~ 

where Qv; 3 A 2 is the contour of the visible part of A 2 and d 12 
is a differential vector element along QV;3 A2. 

Figure 1: Geometry for contour integration 

If the curve describing the contour of the visible part of the 
source is a polygonal line defined by points Co , . . . , Cn as 
in Figure 1, integral (3) can be put into the following closed 
fonn 
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(4) 

- ) where P; is the angle between MC; and MC;+l, and 6; is 
the angle between the plane defmed by M, C; and Ci+lo 

and the normal Tt at M. Even then, using this formula to 
compute fonn factors is costly because for each point where 
illumination is evaluated, visibility must be solved exactly 
in object space to get Co, .. . , Cn. It has however been 
applied to compute direct illumination [12] and is simpler for 
discontinuity meshed polyhedral scenes where the visibility 
problem is partly solved by preprocessing [3, 10]. In the 
presence of curved objects, the contour is harder to compute 
and integral (3) cannot be put into closed fonn in general. 

Curved objects have to be tesselated in order to have a 
polygonal silhouette for contour integration. If the obstacle 
is near the receiver, it should be tesselated fmely so that its 
sharp shadow does not look polygonal. When it is closer 
to the source and casts a softer shadow, the tesselation can 
be coarser. This suggests that the projected silhouette of the 
obstacle on the source should be polygonized instead of the 
3D obstacle itself. 

The approach presented here perfonns the equivalent of 
tesselation for the part of the 3D silhouette that projects 
inside the area light source. This part depends on the relative 
position of the obstacle between the source and the receiver 
and is, for instance, smaller when the obstacle is near the 
receiver. Because the algorithm approximates its projection 
on the source with a given number of line segments, the 
resolution is tuned automatically. 

Ill" 

~ I)( 

lJIJI 

Figure 2: Adaptive surface sampling Oeft) and contour 
sampling (right). Using dichotomy with fewer rays, a tighter 
approximation of the contour is possible. 

Figure 2 shows the advantage of contour sampling when the 
silhouette of objects partially hiding a light source is smooth. 
When adaptive surface sampling refines the source one level 
deeper, the fonn factor is approximated with elements four 
times smaller. This is optimal for an arbitrary contour but 
for mostly smooth contours, locating more precisely a few 
points on the contour and approximating it in between with 
line segments will give a more accurate fonn factor for a 
given number of rays. The difference is similar to the one 
between the rectangle and the trapezoid rules for numerical 
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integration. 

3 APPROXIMATE CONTOUR INTEGRATION 

In this section, a description of the algorithm used to compute 
the fonn factor between a differential area dA around point 
M on the receiving surface and a rectangular light source S 
is presented. The nonnal at M is Tt. ViSM is the visibility 
function from point M, that is visM(P) is 1 if P is visible 
from M and 0 otherwise. 

3.1 General Procedure 

To build an approximate polygonal contour of the visible 
part of area light source S, we use a two-dimensional analog 
of the marching cubes algorithm [11]. 

The light source is diced into a regular grid of rectangles 
with sample points Si,i' i = 0, ... , p, j = 0, ... , q, in the 
corners. vis M (Si ,i) is computed by casting a ray (first level 
ray) from the receiver to each sample point. The squares 
(Si,i' Si+1,j, Si+1,j +1, Si,j+1) are then traversed to identify 
the pieces of the contour interior to the light source. The 
visible sections of the border of the light source are also part 
of the integration domain but their contribution is computed 
afterwards for the sake of simplicity. Because each of the 
four corners is either visible or not, there are a priori sixteen 
possible configurations. Various symmetries reduce this 
number to the following four distinct cases (shown in Figure 
3): 

1. All four samples are visible or not at the same time and 
no contour is detected. 

2. One sample differs from the three others. The contour 
crosses two adjacent sides of the square. 

3. Two adjacent samples are visible and the two others 
are not. The contour crosses two opposite sides of the 
square. 

4 . Two opposite samples are visible and the two others are 
not. The contour crosses the square twice. To decide 
between case a and b an additional ray is cast to the 
center of the square. 

We first describe the procedure applied to each square to build 
the approximate contour. The next subsection will present 
the test used to check the validity of the approximation and 
the refinement algorithm. 

In cases 2, 3, and 4, one or two pieces of contour cross 
the sides of the square. Following the assumptions made at 
the end of section 2, the algorithm then locates with more 
precision the points where the contour crosses the sides of 
the square instead of refining the square itself. Suppose 
for instance that visM(Si ,j) = 1 and ViSM(Si+1 ,j) = O. 
The segment crossed by the silhouette of the obstacle is 
narrowed by dichotomy starting with [Si ,i Si+ 1 ,i ]. A new ray 
(second level ray) is cast to the middle point of the segment. 
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Figure 3: Contour crossing cases 

3 

Depending on the value of vis M at this point, the procedure 
is repeated recursively on the first or the second half of the 
segment. The middle point of the final segment becomes 
an approximate contour vertex. If the true silhouette of the 
object is simple, this procedure will find one point nearly on 
it. However if it is more complicated or if there are several 
small objects, the dichotomy will still return one point, giving 
no indication of the complexity. These cases will be detected 
by the procedure described in the next section. 

For each successive pair of such vertices, fonnula 4 gives 
a contribution to the total fonn factor. Care must be taken 
to order the vertices of each pair in a consistent manner for 
all squares of the source. This can be achieved by always 
keeping the hidden part of the source to the left. 

3.2 Corners 

The algorithm described above yields good results when the 
silhouettes of objects in a scene are smooth curves. However 
objects have corners and the contour of two different objects 
can also cross at an angle. If the apex of a corner, for 
instance, is projected inside one of the squares, it is not 
detected and part of it is cut from the contour. When crossing 
the penumbra, severe a1iasing occurs because the amount of 
cut contour beats as the apex slides from square to square on 
the source (see Figure 6). The algorithm must detect these 
conditions and apply a special procedure to adjust the fonn 
factor. 
To check the validity of the approximation in a square, one 
point is added to the contour. The point chosen depends on 
the configuration of the square because a new point can only 
be obtained by dichotomy between a visible sample and a 
non visible one (see Figure 4): 

Case 2 One point is computed on the diagonal of the square. 
A dichotomy is started with the pair of points (Cl', 8). 
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Figure 4: Vertices added to the contour to check for validity. 

Case 3 One point is computed on one of the two diagonals 
of the square. A dichotomy is started with either the pair 
(a, 6) or ({3, ,) chosen at random. 

Case 4 One point on each piece of contour is computed by 
dichotomy on the two semi-diagonals. The center sample 
p. is already known. Dichotomies are started with the 
pairs (a, p.) and (p., 6) or ({3, p.) and (p. , ,) depending on 
the subcase. 

The difference of integration between the two contours is 
the form factor 6 F for the small part of the source that 
is missed or added when using the simple version of the 
contour. Let t be the length of the smallest intervals in the 
dichotomy process. Because the endpoints of the segment 
are only known with precision t, the uncertainty on the result 
of contour integration is the form factor of a strip of width ( 
aroun~ the segment. This is also the expected error if the true 
contour is a line segment and it can be used to test whether 
6 F is an acceptable error or not. Thus the threshold is not 
directly set by the user but depends naturally on the level 
of approximation. Its value can be approximated using the 
formula for the elementary form factor ih [16]. 

If the threshold is exceeded, the square is subdivided like 
a quadtree and each subsquare is then treated in turn. The 
number of dichotomy steps is decreased by one so t stays the 
same and the threshold is divided by two because the length 
of contour inside the subsquare is smaller. This process 
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can be applied recursively if necessary. When dividing the 
square, samples are added at the middle point of each side. If 
the endpoints of the side have the same visibility. the added 
sample is new and it can happen that its visibility is different. 
This leads to an inconsistency for the neighboring square 
and forces its subdivision. If the neighbor had already been 
treated, its contribution must be subtracted and reevaluated. 
Furthermore, inconsistencies can propagate from square to 
square depending on the underlying complexity of the true 
contour. Because these cases are expected to be rare, we have 
decided that each time an inconsistency that would require 
backtracking is detected, the whole source is divided one 
level deeper and the computation of the form factor begins 
anew. 

3.3 Implementation Note 

Given the initial number of samples on the source and 
the number of dichotomy steps used, an array holding all 
possible samples is created. All rays traced for dichotomy 
purposes are traced to points in this array (this is also the case 
for dichotomies along the diagonals). This way, visibility 
values computed on the sides of a square are reused for the 
neighboring squares. When an inconsistency is detected and 
the process is restarted, the result of previously traced rays is 
reused. 

4 GRADIENTS 

Light intensity gradients have been shown to be use­
ful to obtain a better reconstruction of shading across 
penumbras [17, 15]. They can also be used to reduce the 
number of shadow rays when computing direct illumination 
as will be suggested in section 6. In this section, a simple 
method to compute the gradients from the results of the form 
factor computation algorithm is presented. 

Following [17], we could break down the gradient into a 
--+ --+ --+ --+ 

rotational term V r and a translational term V t. V r (resp. V t) 
describes the change in form factor when the normal at M is 
tilted (resp. when M is moved in the tangent plane). Here 
we have decided to eliminate the influence of the normal on 
the receiver from the gradient computations. First, formula 
(4) is expressed as 

where nt is the normal to the plane defined by M, Ci, and 
CHI. 

-+ 
Then G is used instead of F to compute partial derivatives 
when M is moved. To extrapolate the value of F at a 

point P from the value at M, G is extrapolated and F is 

computed as the dot product of G and the true normal at 
P. This approach has the advantage of uncoupling geometry 
and shading. Assuming no self shadowing. no more samples 
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are required to represent lighting on a rippled or bumped 
surface than on a plane. This technique also simplifies 
the subdivision criteria for an adaptive radiosity algorithm 
because the change in normal is not important as long as the 
source remains above the horizon of the receiver. 

The algorithm described in section 3 computes the form 
factor by accumulating the contributions of a collection of 
line segments to the contour integral. Because the partial 
derivation operators are linear, they can be exchanged with 
this finite summation and applied to each segment of the 
contour. This elementary derivatives are estimated and 
accumulated in the total gradient. Formulas giving the partial 

derivative of 7J are given in the appendix. 

Figure 5: The 3D contour 10, ... , In must be used instead of 
Co, ... , Cn in order to get true derivatives. 

For contour integration, the point of the contour on the source 
or on the obstacle can be used. It should be noticed that for 
derivation, the results will be different and that points on the 
obstacles should be used as Figure 5 suggests. 

5 RESULTS 

The algorithm used to compute images starts by casting all 
viewing rays for a scanline. Then the line is cut into spans of 
adjacent pixels covering the same object. A maximum length 
for each span is also set. A bounding box is then computed 
for each span and a candidate list of obstacles is built using 
the shaft culling technique [5]. If this list is empty, the span is 
shaded by simple integration of the contour of the source. To 
shade a span with non empty candidate list, the illumination 
for the first pixel is computed using approximate contour 
integration and the pattern of first level rays is recorded. For 
subsequent pixels, only the first level rays are sent until the 
pattern changes. At this point, illumination is computed and 
the values for the pixels in between are interpolated. This 
process is repeated until the end of the span. 

The number of first level rays is adapted to the complexity 
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Picture Shadow rays Shadow rays Av. Dif. 
per Viewing Ray 

7 603,456,646 1024.0 -
8 5,973,391 11.4 0.23 
9 6,084,145 11.6 1.31 
10 18,647,345 35.6 0.64 

Table 1: Statistics for the pictures. Viewing rays are those 
for which shadow rays were actually cast. 

of the obstacles. When doing contour integration, some cells 
can be recursively split because of insufficient precision (see 
Section 3.2). If the depth of recursive subdivision is two or 
greater or if an inconsistency is detected, the density of first 
level rays is increased and a fmer starting grid is used. On 
the other hand, if no subdivision is needed and the density 
had been increased previously, it is decreased. If the depth 
of subdivision is one, the density is kept the same. 

Experience has shown that derivatives are not precise enough 
at the span level to ensure a good interpolation everywhere for 
in between samples. They are best suited for reconstruction 
techniques described in [15]. Here a quadratic interpolation 
scheme using a third sample in the middle was applied 

--+ 
instead. For curved surfaces, the vector G is interpolated 
and then projected on the true normal at each pixel. 

A Monte Carlo adaptive sampling algorithm ([8] without 
shadow pattern coherence) was implemented for comparison. 
Because form factor computations are done after shaft culling, 
shadow rays are sent for the same pixels for both algorithms. 

Images of a simple scene with a few test objects illuminated 
by an area light source were computed to compare the two 
algorithms. All images were computed with 1 viewing ray 
per pixel (no antialiasing) at a resolution of 800 x 800. To 
emphasize the characteristics of each image, only a detail is 
shown in the pictures. The reference picture was computed 
using traditional ray traced form factors with 1024 shadow 
rays per viewing ray (Figure 7). It shows very little visible 
aliasing in the penumbras. A picture was made using the 
new method with 9 initial samples and 5 dichotomy steps for 
each segment (Figure 8). It presents no more visible artifacts 
than the picture of Figure 7. Two images were made using 
Monte Carlo adaptive sampling. The variance threshold was 
adjusted so that the first image (Figure 9) has roughly the 
same number of rays than adaptive contour integration while 
the second image (Figure to) has the same visual appearance. 
The average difference between each image and the reference 
image was also computed using the formula in [8]. Statistics 
are summarized in table 1. 

The new algorithm is better if objects between the receiver 
and the source are simple. This is a property that can 
hold true locally even for complex scenes. However when 
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the complexity of the contour of the visible part of the 
source grows, the Monte Carlo method becomes better than 
approximate contour integration. In these situations, the 
increase of fIrst level rays mentioned earlier is triggered. An 
hybrid algorithm could use this information to choose locally 
the best of the two methods. 

6 CONCLUSION AND FUTURE DIRECTIONS 

An algorithm for computing direct illumination from area 
sources using approximate contour integration has been pre­
sented. It exploits the fact that the silhouette of objects is 
smooth for the most part to greatly reduce the number of 
shadow rays needed to realize a given quality of shading. 

The method can be applied to a large class of objects because 
all visibility tests are done by tracing rays. It was designed 
to precisely compute direct illumination in the second pass 
of a radiosity algorithm but can also be used to include area 
sources in classical ray traced scene, thus increasing realism 
at a lower cost than was previously possible. 

While, in the current implementation, only rectangular 
sources are allowed, the use of any plane source is not 
precluded. More complicated shape can be approximated by 
polygonal lines and the interior of the source diced as is the 
case for rectangles. An extension of the method to handle 
triangles instead of squares is likely to be needed to make the 
whole process simpler. 

We believe that further reductions in the number of shadow 
rays can be obtained by tracing the main discontinuities in 
the image plane. Interpolation along spans could then be 
replaced by 2D-interpolation. Techniques to effIciently fInd 
the discontinuities involving an edge of the source and curved 
obstacles are being developed. 
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APPENDIX 

We defIne 

and formpla (4) is then 

---+ -Gi = J3i n i , 

FdA"A, = dA12~ (?; C;) Tt 

---

(6) 

(7) 

If M has coordinates (x , y , z) in the system ( I , J , K ), the 
---+ • 

partial derivative of Gi with respect to x IS 

(8) 
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with 

and 

-I , 

(9) 

_ 8.,Wi - (ut . 8.,Wi) ut 
8 n ' - (10) ., • - 11 Will ' 

---+ ---t ---+ ---+ --+ --+ ---+--+ 
where C; = MC;, Wi = Ci X Ci+l and 8., Ci = CiCi+l X I. 
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Figure 6: Closeup on the checkerboard like aliasing when the 
contour is not refined. 
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Figure 7: The reference picture computed with 1024 shadow 
rays per viewing ray. 

Figure 8: The picture computed with approximate contour 
integration at 11.4 shadow rays per viewing ray. 

Figure 9: The picture computed with Monte Carlo adaptive 
sampling at 11.6 shadow rays per viewing ray. 

Figure 10: The picture computed with Monte Carlo adaptive 
sampling at 37.5 shadow rays per viewing ray. 
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