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An algorithm is presented that scales the pixel intensities of a com
puter generated greyscale image so that they are all displayable on a 
standard CRT. This scaling is spatially nonuniform over the image 
in that different pixels with the same intensity in the original image 
may have different intensities in the resulting image. The goal of 
this scaling transformation is to produce an image on the CRT that 
perceptually mimics the calculated image. while staying within the 
physical limitations of the CRT. 
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1 Introduction 

In recent years much attention has been paid to the chromatic lim
itations of CRTs and printers. and their resulting shortcomings in 
accurately reproducing highly saturated colors[5, 14. 17.4]. This 
is often referred to as a gamut mapping problem because the gamut 
(set of distinct colors) in the image we wish to display is not a 
subset of the CRT gamut. Spatial limitations of CRTs have also 
been explored. usually in the language of signal processing (e.g. 
[6. 11.3]). 

Perhaps the greatest limitation of the CRT, its small dynamic range. 
has received relatively little attention. This limitation particularly 
manifests itself when we wish to display images with contain both 
high and low radiance values. In this paper we examine the diffi
culties in displaying a particular test image of this type. To simplify 
our task. we have chosen a greyscale image as our test image. We 
view this as a feasibility study into whether such "difficult" images 
can be adequately displayed on a CRT. We conclude that our test 
image can be displayed adequately. and the display method we use 
gives some insight into what type of general algorithms should be 
developed for the display of arbitrary images. 

The work presented in this paper is meant to be exploratory. and 
is not meant to be an alternative to the approach of Tumblin and 
Rushmeier[l8]. This paper presents spatially varying image map
pings without considering adaptation issues. Tumblin and Rush-

meier take an orthogonal approach and concentrate on adaptation 
issues (making dark scenes look dark and bright scenes look bright). 
Both Tumblin and Rushmeier and this paper ignore issues involving 
col or. Ultimately. the issues of overall dark adaptation, spatial dark 
adaptation, and chromatic adaptation must be addressed in a single 
context. 

In Section 2 we describe our test image, a lamp with an exposed bulb 
lighting a room, and why the properties of this image imply that a 
spatially non uniform transform is needed to display the image on 
a CRT. In Section 3 we formally state the problem of transforming 
a computer generated greyscale image to a displayable image, and 
discuss our basic strategy for finding a "good" transformation. In 
Sections 4 and 5, we discuss both spatially uniform and spatially 
nonuniform techniques for scaling a greyscale image to an image 
to be displayed. Our particular ad hoc image scaling algorithm, 
along with a method for introducing glare effects into the image, is 
presented in Section 6. Finally. we discuss our current thinking and 
speculate on future solutions in Section 7. 

2 Test Image 

Our test image is of a room lit by a single incandescent bulb. This 
image was generated using distribution ray tracing[2] for the direct 
lighting. and a physically plausible ambient component to approx
imate the indirect lighting. We compared the luminances in this 
image to the luminances in a real room I, and found the range and 
location of luminance values to be fairly consistent. 

The test image is shown in Figure I, where the radiance varies from 
0.0167 (arbitrary units) in the table leg, to 500 at the light-bulb. 
for a ratio of approximately 1 :30000. This image is displayed by 
mapping radiance 0 to black. and mapping 1.0. 10.0, and 500.0 to 
white (top to bottom). Because of the wide range ofradiances in the 
image. none of mappings is satisfactory. The top image (white = 
1.0) displays the floor in a way that is qualitatively similar to the way 
the floor looks in the real scene (the woodgrain is clearly visible), but 
pixels near the light bulb are washed out. The middle image (white 

I Luminance in the real room was measured using a spot photometer. Us
ing this device helped our qualitative understanding of the relation between 
luminance and brightness. We recommend that anyone working in this area 
attempt to acquire such a device. which are available in good photography 
supply stores for under $500. 
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= 10) shows both the light and the floor, but the detail in the floor is 
lost, and the pixels on the edge of the bulb all are mapped to white, 
so the bulb edge appears jaggy. The bottom image (white = 5(0) 
correctly antialiases the light bulb edges, but the rest of the image 
pixels go to black or near black. None of these three mappings will 
do. 

The test image characteristics make us believe that the same mapping 
cannot be used at each pixel. The first characteristic is that a pixel 
that is completely filled by the light bulb will have radiance 500, 
and pixels that is half filled by the light bulb will have radiance 
250. The pixel with value 500 will be mapped to white (1.0). To 
correctly antialias the bulb, and thus preventjaggies, the pixel with 
value 250 must be mapped to a medium grey (about 0.5). A pixel 
partially filled by the bulb edge with value 5 should be mapped to 
a dark grey (around 0.01). This mapping for the actual pixels near 
the bulb is shown in Figure 2. On the other hand, the wood grain 
in the floor, which is definitely visible in the real scene, varies in 
radiance from approximately 0.02 to 0.08. For this difference to be 
visible as light and dark features, the 0.08 radiance must be mapped 
to some non-black radiance, which means a pixel value greater than 
0.0 I. This means a pixel covering the floor with original value 0.08 
should be mapped to a higher value than a pixel near the bulb edge 
with original value 5.0. This basic observation implies that the way 
a radiance is mapped to a pixel value on the CRT should depend on 
spatial position in the image. This is the basic observation that lead 
us to begin this work. 

3 Mathematical Formulation 

In this section we attempt to formally define what a display algo
rithm does, and outline our basic strategy for finding a good display 
algorithm. We do this by viewing the display process as mapping 
a particular image to some approximate image. A good display 
algorithm is one that finds an image that is approximate in some 
perceptual sense. 

A "real-world" greyscale image r is a member of the set of all such 
real images R. If we parameterize the radiances that define rover 
some image plane, we can represent any real image as a mapping 
from [0, I f to a radiance. If we view radiance as a positive scalar, 
we can write down the set of all real images as: 

R = {rlr: [0, 1)2 -+ [O,oo)} 

For display purposes, an image in R is mapped to a discrete
domained raster image2 defined on a nx by ny pixel grid of pix.eIs 
P = {O,···, nx - I} x {O,· . . ,ny - I} . The set F of all such 
images is defined as : 

F = {fIt : p -+ [O,oo)} 

Our test image is a member of F with (nx, ny) = (400,300). 

2The raster image is normally computed from the real image through 
a process known as filtering. In computer graphics, the raster image is 
typically calculated direcUy because the filtering process is tighUy coupled 
to the sampling process. This is not surprising because of the vasUy reduced 
information content in a raster image relative to a real image. 
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Figure I: (top) black = 0.0, white = 1.0+. (middle) black = 0.0, 
white = 10.0+. (bottom) black = 0.0, white = 500.0. 

Graphics Interface '93 



1.2 1.3 1.4 1.6 1.7 1.8 2.0 

1 . 3 11 83 154 83 1.8 2.0 

1.3 73 439 490 419 83 2 . 0 

1.3 225 490 500 500 235 2 . 0 

1.3 184 470 500 470 195 2.0 

1.3 11 235 337 246 12 2.0 

1.3 1.3 1.5 12 1.7 1.8 2.0 

Figure 2: Pixel luminance values near the bulb (above) and the 
resulting image if 500 is defined to be white 

The finite dynamic-range of the display hardware requires a further 
normalization step. We define the set of all normalized raster images 
as: 

F = {ili : p -+ [0, I)} 

Finally, the digital nature of the display devices requires that an 
image be a discrete-valued function. A discrete raster image is then 
a member of the set: 

Though this last step is reasonably straightforward, to get a "correct
looking" discrete raster image careful attention must still be paid to 
gamma correction, and dithering (even with twenty-four-bit color 
images) is recommended[5]. Of course, the final image on the screen 
is a member of some subset of F (having the same cardinality as 
D), because at each pixel a continuous phosphor kernel will be 
generated, and the overlapping kernels of all pixels form an image 
continuous in space. The spatial limitations of CRTs is examined 
in detail in Glassner's book[3]. 

Of these steps, the transformation from raster image f E F, to 
normalized raster image, i E F is the one we will concentrate 
on. Therefore, we will assume that we are given a raster image f 
and only need to find a normalized raster image 1. If we had a 
perceptual distance metric, i would simply be the image "closest" 
to f . This error minimization strategy has been applied by Glassner 
et at. for gamut-mapping[ 4] and for brightness mapping by Tumblin 
and Rushmeier[ 18]. 
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In determining i, the characteristics of the human visual system 
should be considered. We can extensively change image charac
teristics that the visual system is particularly insensitive to, such as 
overall luminance (e.g. an image that is scaled everywhere by a 
factor of two looks the same as the unscaled image). However, we 
must be very careful to preserve the qualities of the image that the 
visual system is particularly sensitive to, such as local contrast. 

Physical limitations of the eye create a number of artifacts in the 
real-world image. Two examples might be bloom (glare) and dark 
adaptation effects. Other examples can be seen in various optical 
illusions. The causes range from scattering in the lens to chemical 
equilibria. Artifacts induced in the visual system by the real image 
may not be induced by the displayed image, however, so introduction 
of these artifacts directly into the displayed image can increase 
realism. Care must be used, though, because many of these artifacts 
are normally compensated for by brain functions. Such artifacts can 
then look "wrong" if present in the displayed image. For example, 
simultaneous contrast effects will occur in a displayed image as 
long as the contrast value is achievable on the CRT, and hence these 
effects should not be exaggerated in the displayed image. On the 
other hand, the glare we see in real scenes cannot be produced with 
the relatively small maximum luminance displayable on a CRT, so 
we must simulate the glare in the image itself, as is done by Nakamae 
et al.[l2]. 

Understanding what characteristics of the image must be preserved, 
and what can be changed (and more importantly how much change 
is allowed) is difficult, and unfortunately the vision literature does 
not yet provide enough detailed, quantitative data to develop such 
a metric from purely non-empirical means. Furthermore, this sit
uation is not likely to improve in the near future. Tumblin and 
Rushmeier summarize the issue nicely: 

The eye's response to light is still not completely un
derstood. It is difficult to accurately quantify because 
vision blends smoothly with higher brain functions, 
and because the eye's behavior is strongly dependent 
on the content of the viewed image. Brightness re
sponse is usually described by several processes, includ
ing at least adaptation, simultaneous contrast, bright
ness, color-constancy, memory, and cognitive processes. 
Many of these are interdependent, self-adjusting, and 
difficult to measure separately; each tends to obscure the 
other, so that brightness rules inferred from simple tests 
often fail when applied to more complex images. 

4 Spatially Unifonn Mappings 

The simplest mapping from F to F is to uniformly scale at each 
pixel and to then clamp intensities above one: 

{ 

/(i,j) 

i(i , j) = t.Op 
if f( i, j) < [clamp 

otherwise 

For high dynamic range images, the image either looks too dark 
if [clamp is set high, or clamping artifacts occur if [clamp is set low 
(e.g. Figure 1). These artifacts can be reduced in severity if a more 
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continuous transform is used[5]. but either the image will still appear 
too dark. or the antialiasing near luminaires will be compromised, 
as will be discussed in Section 5. 

Tumblin and Rushmeier noted that the adaptation level of the ob
server should be considered in designing the uniform mapping. Us
ing the model for adaptation given by Stevens and Stevens[16, 15], 
they arrived at a uniform transform to reproduce the tone of the im
age being rendered. In other words, an image of a room lit by a one 
watt bulb should be displayed on a CRT in a way that makes it look 
dark. and an image of a room lit with a 1000 watt bulb should appear 
bright. This hands-off method nonlinearly transforms and scales f 
to its corresponding adaptation level on a display and works very 
well with relatively low contrast scenes. To our knowledge, Tum
blin and Rushmeier have produced the first algorithm that displays a 
computer generated image based on a brightness perception model. 
As they point out, the brightness model they base their algorithm on 
is too simple to completely succeed in a spatially complex image. 
However. their basic idea of using a computational brightness model 
to calculate a perceptual distance between two images is likely to 
be part of most future image display algorithms. 

5 Spatially Nonuniform Mappings 

The transformations discussed in the last section are of the form 
j(i,j) = g(f, f(i,j)). where the function 9 is independent of the 
position of the pixel, and is solely based on the properties of f. So a 
particular pixel value will be set the same regardless of its position 
in the image. As argued in Section 2. such transforms can never 
adequately display our test image because either the light bulb will 
be washed out, or the wood grain on the floor will become too dark 
to be seen. 

Two considerations, however, lead us to believe that spatially 
nonuniform mappings can yield better results. First. the visual 
system is itself spatially non-uniform. Second. and more convinc
ingly. artists and photographers have established the usefulness of 
spatially non-uniform mappings through a history of experience and 
observation. An artist working with her eyes and brain may pro
duce a normalized raster image that is perceptually closer to the real 
image than any image that a spatially uniform filtering process can 
produce. Photographers also use spatially non-uniform techniques 
when they selectively expose different areas of the photographic 
paper. 

In Figure 1, an artist would use a combination of all three pictures: 
she would dim the pixels near the light bulb. and increase the inten
sity of the pixels far from the bulb. Effectively. this is a spatially 
non uniform mapping, because the mapping depends not only on 
pixel value, but on i and j as well. 

In general we can describe spatially nonuniform mappings as 
j(i , j) = g(i,j,J,J(i , j)). We have found it more convenient 
to represent the transformation as a product of the original image 
with a scaling function: 

j(i,j) = S(i , j)f(i,j) 

In this scheme. a spatially uniform transform would have S( i, j) = 
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Figure 3: (top) Input image f. black = 0.0, white = 1.0+. (middle) 
Scaling function S. black = 0.0. white = 1.0. (bottom) Image where 
each pixel is the product of the corresponding pixel in S and f . 
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Figure 4: The inverse of f . Using this image as a scaling function 
will yield a white final image. 

g(i, j, f, f( i, j))f f(i ,j). An example of a nonuniform transform 
is shown in Figure 3, where the scaling function S is simply a ramp 
from 0.0 to 1.0, left to right. This darkens the left side of f. This 
scaling function is not actually valid, because Sf is not a member 
of j. There are still some pixels near the bulb with values greater 
than one. From observations like this, we can immediately establish 
some constraints on S. Because 0:5 f(i,j) :5 1, 

0:5 S(i,j) :5 f(il,j) 

This immediately points out two valid scaling functions (i.e func
tions that map all pixels in f to a value between 0 and 1): 
So(i,j) = 0.0 and Smax(i,j) = 1.0ff(i,j). A valid scaling 
function must have So(i,j) :5 S(i,j) :5 Smax(i,j) for all (i,j). 
Smax is just the inverse of f and is shown in Figure 4 where zero 
maps to black, and 50.0 maps to white. 

We should try to discover other simple properties S should have. In 
the same way stochastic sampling relies on the eye's insensitivity to 
noise[2], we should design S with human visual properties in mind. 
Land[S] and Marr[lO] have argued that the eye is not sensitive to 
luminance so much as reflectance. As a result of this, slow spatial 
variation in luminance is to some extent ignored by the eye. Land 
demonstrated this by illuminating a Mondrian print with different 
incident intensity ramps across the image and demonstrating that 
the images look very similar even though luminance values for 
particular locations vary by as much as a factor of ten from image 
to image. This implies that we can display a pictures with wider 
range than the dynamic range of the display, and that, as long as S 
has a low magnitude gradient, we shouldn't see the scaled image as 
"looking" very different than the unscaled image. We can use these 
constraints to investigate scaling strategies. 

249 

6 An Ad Hoc Scaling Function 

Tumblin and Rushmeier state that some vision researchers have 
speculated that the adaptation level in a part of the image is related 
to a low pass filter of the image[IS]. It seems natural to make 
S(i,j) proportional to the reciprocal ofa filtered (blurred) f. This 
will accent dark areas and dim bright areas, much the same way 
darkroom workers preferentially expose dark regions of a prine. 

Two questions must be answered to apply that technique here. First, 
what filter should be used to blur f? Second, what should the con
stant of proportionality be? We attacked this question empirically 
and found that noticeable artifacts were introduced if the filter was 
not extremely wide (the kernel covering the whole image). We 
found that the largest variation that could be used in the kernel be
fore the nonuniform scaling was objectionable was approximately 
a factor of four. For the proportionality constant, we started with 
k = 2 in the equation: 

S(i,j) = kf \ .. ) 
blur t, J 

where fblur is the filtered f. Of course, k is rather arbitrary as 
we've discussed. A k of 2 will bring colors near the average to 
f(i , j) = 0.5. This doesn't leave a lot of room for the brighter 
pixels where the transformed image still has pixels out of range. 
This led us to think we wanted k as large as we could make it 
without losing detail in the dark regions. We found this to be at 
approximately k = S. 

The low pass filter used to create the images in this paper is e-o.olr 

before normalization, where r is the distance (in one pixel width 
equals one) from the center of the kernel. In a more general algo
rithm, some angular distance related to field-of-view would probably 
be more appropriate. We tried several other filters, such as the cone 
filter, the Gaussian filter, and the Perlin[13] filter. However, as long 
as the filter was wide, we saw no obvious differences in the results. 
To avoid darkening near the edge, we normalized the weights of 
the kernel pixels within the image boundaries so that they summed 
to one. In other words, pixels in the blurred image are a weighted 
average of pixels in the original image. 

Unfortunately, a full blown filtering operation with full screen filters 
requires approximately 2N2 operations, where N is the number of 
pixels in the image. This is over one trillion (1012

) operations for 
a full-screen image and over ten billion operations for the 400 by 
300 test image in this paper. Because the blurred image is quite 
smooth, we calculated a selected set of pixels (every tenth row 
and column) in the blurred image and then interpolated between 
them. This makes a more manageable number if operations in the 
blurring calculation. In order to avoid Mach bands, the interpolation 
function must maintain a continuous derivative in the blurred image. 

3In fact, the technique of using a blurred f as a filter has been used 
before in photography and in image processing. In the so called unsharp 
maslcing technique, [9], the image filtered with a Gaussian filter, or some 
other blurring filter, is subtracted from the original image to get an image 
enhanced in Sharpness. This technique may cause negative pixels, so the 
subtracted imilge is often scaled down, or the absolute value of the difference 
is used. This technique is really meant to enhance features in the image rather 
than to make the image perceptually correct. 
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Figure 5: The blurred image. Black = 0.0, white = 1.0. 

For ease of calculation we used Perlin's interpolation function[13], 
which has this property in its derivative. In one dimension, Perlin's 
function interpolates between to values eo and Cl as C = (-2t3 + 
3t2)eo + (2t3 

- 3t2 + 1 )CI' where t varies from zero to one between 
Co and Cl. The blurred image produced using this method is shown 
in Figure 5. 

6.1 Corrected Transformation 

Unfortunately, this transformation based on blurring still leaves 
some transformed pixels above I if the dynamic range is high. This 
can be seen because S(i,j) > I/f(i,j) for some pixels on or 
near the light. A poor but valid transformation can be obtained by 
clamping the intensities above 1/ f(i,j): 

SA( . . ) _ { S(i,j) 
I,J - I 

J(i,i) 

if S(i,j) < ~I 
J \',J} 

otherwise 

However the resulting image will have the same problems near the 
luminaire as described in Section 2, i.e. the antialaising near the 
bulb will not behave as shown in Figure 2. Another way that we can 
see this clamped S is inadequate is to observe that S will have a very 
steep gradient where the clamping occurs (the bulb edge). To avoid 
the artifacts because of this steep gradient, we can smooth them. We 
can be fairly sure that we want the luminaire to map to 1.0. So we 
can attempt to smooth S with the constraint that the pixels where 
S is out of range stay fixed. This smoothing can be accomplished 
with repeated filtering on S using a small width kernel. with the 
constraint that previously clamped pixels in S will not change. The 
actual filter used is a three by three filter shown in Figure 7. The 
weights in this filter sum to one, and their relative sizes are 1,0.5, 
andO.25V2. 

This process is illustrated in Figure 6 where in the top the original S 
is shown, in the middle the clamped S is shown, and in the bottom 
right the clamped and smoothed S is shown. The smoothing was 
accomplished by running the filter in Figure 7 over the middle image 
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Figure 6: (top) S = 1.0/(8 * /blur). (middle) clamped S. (bottom) 
smoothed and clamped S. 
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0.080 0.113 0.080 

0 . 113 0.227 0.113 

0.080 0.113 0 . 080 

Figure 7: Filter used to to smooth S. 

ten thousand times. Figure 8 shows the application of the scaling 
function to out test image. The bottom of this figure shows the 
scaled image to be displayed. The dark ring around the bulb looks 
strange. One reason for this is that the blooming effect (glare) we 
see around realluminaires is not present. 

6.2 Glare from High Intensity Objects 

Better results can be achieved if glare is modeled. This reduces the 
maximum contrast in the image and creates an illusion of brightness. 
Nakamae et al.(12) modeled two types of glare. The first was blur
ring or "blooming", where a hazy fog is visible around the luminaire 
(see Figure 9) . The second was "streaking", where star-like smears 
emanate from the luminaires. This streaking is also implemented 
in Ward's Radiance prograrn[19]. We have only implemented the 
blooming effect. 

In a real scene a glare or blooming effect can be observed near ob
jects of high intensity. This is the result of light scattering within the 
eye. This effect has to be placed in the displayed image because the 
CRT cannot produce a luminance large enough to trigger noticeable 
glare in the eye. The amount of scattering which occurs is different 
for each viewer. Factors which determine the scatter include the age 
of the viewer, the viewer's distance from the viewed object and the 
intensi ty of the object (7) .4 

Since the blooming effect is highly viewer dependent, the develop
ment of our model for introducing glare into the image is empirical. 
Intuitively a pixel in a filtered image j(i , j) should retain some 
constant factor k of the original value of f (i, j ) where k < 1.0. 
The remaining I - k should be based on a weighted average of sur
rounding pixels with adjacent pixels contributing more. A simple 
fi lter with a large peak is appropriate. A filter j: was created with 

F(i , j) = { ~'F(i,j ) 
where 

if i = j = 0 

if J i2 + p ::; w /2 
otherwise 

4The increase in scattering that occurs with age is almost entirely due to 
changes in the lens. 
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Figure 8: (top) Input image f, black = 0.0, white = 1.0+. (middle) 
Scaling function S, black = 0.0, white = 1.0. (bottom) Image where 
each pixel is the product of the corresponding pixel in S and f. 
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Figure 9: (left) A bare light bulb. (right) A light bulb with blooming 
effect. 

w is the width of the filter and 

k' = (1 - k)/ I 

:F( i,j) = IJi2 + P - 1'1" 
w / 2 

I = -:F(i , j) + L 
i=w/2 

ization constant 

w/2 

L :F(i , j ) is the normal

'=w/2 

n is a controllable exponent greater than one. 

Note that the (i,j) in :F(i,j) refers to the coordinates relative to 
the center of the filter. The particular form for F was chosen based 
on three considerations: that it is a simple function whose shape is 
controllable by n, that the sum of the filter coefficients is one, and 
that it has a zero first derivative at its boundary, which is needed to 
avoid the introduction of Mach bands into the image (for example, 
see [I)). 

The result of passing this filter with w = 121 , n = 8 and k = 0.8 
is shown in Figure 10. This is the same basic approach used by 
Nakamae et al. to generate their very impressive driving simula
tion animations, although they only run their filter over luminaires. 
While this saves time, it does not take into account the fact that scat
tering in the eye takes place over the whole image. It is just more 
perceivable near patches of high intensity. This can create errors 
in images containing high intensity non-luminaires (e.g. specular 
reflections of luminaires). 

We do not model any kind of streaking from the luminaire, although 
this was done by Nakamae et al . and in Ward's Radiance program, 
both with good results. We chose not to do this because we do not al
ways see streaks when viewing lights, and we still do not understand 
the mechanism behind these streaks when they do occur. Nakamae 
et al. suggest that the streaks are caused by diffraction through the 
lashes of the viewer. While this does cause some streaking effects, 
some streaks can be seen even when the eye is wide open. One pos
sibility is that the streaks are caused by imperfections or scratches 
on the surface of the lens, but more inforllJation is needed to be 
certain. We are fairly sure that blooming is caused by imperfections 
in the lens, and that diffraction is not an important mechanism in 
blooming. According to the IES Lighting Handbook[7]: 
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Figure 10: Image after glare and scaling transforms 

Diffraction-regardless of whether rays are in focus or 
not, there is always a certain amount of blur due to 
the diffraction of light. This determines the ultimate 
resolving power when the eye is in best focus, but the 
blur is not large enough to be perceived. 

This implies any blooming we do model should probably not have 
any significant color divergence. 

7 Conclusion 

We have presented a method to map a particular high dynamic range 
image to a normalized image that is easy to display on a CRT. Our 
method is not meant to be optimal, but a demonstration that spatially
varying scaling is essential for the display of high dynamic range 
images, and that this type of transform will be of great utility to 
computer graphics practitioners. Our method assumed a medium 
intensity scene (not on the extremes of our ability to dark adapt) 
with a properly adapted person. 

Our solution is based purely on experimental results. Currently we 
are working on finding a theoretical basis for these results. One way 
to interpret the final scaling function we used is that we have filtered 
the image using multiple scales of the form proposed by Witkins in 
his scaled space filtering work[20]. We think that this is a good area 
to investigate and we hope it will yield a more hands-off approach. 

Future work should also account for dark adaptation, chromatic 
adaptation, time varying adaptation for walk-throu¥hs, and optical 
illusions. Other empirical techniques to map f to f should also be 
investigated. It is our feeling that instead of filtering we might be 
better off applying the normalization constraint along with contrast 
preservation constraints to f and follow a relaxation procedure. 
This is a similar strategy to the device-directed rendering technique 
used by Glassner et al. to force images into a device color gamut. 
The brightness and color work could certainly be combined into a 
system that fits an image to a three dimensional gamut. 
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Perhaps the most interesting implication of this work is that the error 
metrics employed by rendering algorithms should pay less attention 
to low frequency errors (indirect lighting), because the eye is not 
sensitive to those frequencies. This may help explain why it is often 
not visually obvious that a radiosity algorithm is simulating color 
bleeding effects, but a good geometric model never goes unnoticed. 
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