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We present a method for generating low degree C k _ 

continuous piecewise algebraic surfaces for revolved 
objects. The approximating pieces are implicitly de­
fined algebraic surfaces whose profile curves can be 
obtained algebraica.IIy or panunetrica.IIy from digitized 
points. We show that degree d surface patches c,m 
be used for approximations with inter-patch C k con­

tinuity W'; high as k = l (d+2t-
12J for even d, ,md 

k = l ( d+I )(~+3) -1 2 J for odd d. As ,m exrunple, we 
construct (,d cubic surfaces ,md C2 quartic surfaces for 
revolved objects from digitized profile curves. 

Keywords: Algebraic surface, approximation, c:k 

continuity, curves, digitized data, polynomial, revolu­
tion 

1 Introduction 

Algebraic curves ,md surfaces c,m be represented in ,m 
implicit form, ,md sometimes also in a parametriC form. 
The implicit form of a real algebraic surface in IR? is 

1(3.:, y , z ) = 0 (I) 

where I is a polynomial with coefficients in R. The 
parrunetric form, when it exists, for a real algebraic 
surface in IR? is 

I1 (05 , t) 
3.: 

14(8 , t) 

y 
12(8 , t) 
14(05 , t) 
13(8 , t) 

(2) Z 
14(8 , t) 
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where the f; are again polynomials with coefficients in 
R. The algebraic dexree of ,m algebraic curve or sur­
face (in implicit or parrunetric fonn) is the ma3.:imum 
degree of ,my defining polynomial. The geometric de­
gree of ,m algebraic plane curve or surface (in implicit 
or parrunetric fonn) is the maximum possible num­
ber of intersections with ,my line. The intersections 
are counted with respect to a plane for algebraic space 
curves [2]. 

This paper presents two main ideas to be used in fit­
ting low degree, piecewise algebraic surfaces (in the im­
plicit or parrunetric form) to data srunpled from arbitrary 
boundary surfaces of solids of revolution. One is the use 
of degree restricted bases for the piecewise approxima­
tion of the generating curve of revolution surfaces to 
yield approximating surfaces of the srune algebraic de­
gree as the degree of the piecewise curves. The other 
new idea ruises in the development ,md use of C k im­
plicit algebraic splines for degree restricted interpolation 
,md approximation of generating curves. While tradi­
tional fitting schemes are predomintmtly based on piece­
wise parrunetric representations[5, 6], we show here that 
implicit representations are also quite appropriate ,md 
in fact better equipped for restrictions on the bases ,md 
the degrees of the involved polynomials. 

From Bezout's theorem [ 11], we realize that the inter­
section of two implicit surfaces of algebraic degree d 
c,m be a curve of geometric degree O( ([2). Furthennore 
the srune theorem implies that the intersection of two 
panunetric surfaces of algebraic degree d c,m be a curve 
of degree 0(([4). Hence, while the potential singular­
ities of the space curve defined by the intersection of 
two implicit surfaces defined by polynomials of degree 
d can be as Intmy as 0(([4), the potential singularities 
of the space curve defined by the intersection of two 
parrunetric surfaces defined by polynomials of degree 
cl c,m be as many as O(cl8)[2J. Hence keeping the de­
gree of fitting surfaces as low as possible benefits both 
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Figure I: Revolution of ,Ul Algebraic Curve along ,Ul 
Ellipse 

the efficiency ,Uld the robustness of post processing for 
modeling ,Uld display[ I]. 

The rest of thi s paper is as follows. Section 2 char­
acterizes the appropriate degree restricted bases for im­
plicit ,Uld par,unetric algebraic curves which would yield 
revolution surfaces of the srune algebraic degree (L~ the 
degree of the curves. Section 3 characterizes CA: con­
tinuous piecewise surfaces of revolution ,Uld their con­
struction from srunpled data points. Section 4 describes 
the development ,Uld details for constructing cubic im­
plicit algebraic Cl ,Uld C2 spiines for approximating 
generating curves of surfaces of revolution. 

2 Surfaces of Revolution 

2.1 Algebraic Surfaces of Revolution 

Consider an algebraic surface which is obtained by re­
volving ,Ul algebraic curve f( :1: , y) = 0 (on the :q/ pi,Ule) 
around the yaxis. (See Figure I.) Rather th,Ul restrict­
ing ourselves to a circular rotation , we consider a more 
general elliptic revolution where the rotation path is de­

scribed by,Ul ellipse E : :1:
2+ ~: = {r(y)} 2 with et > O. 

Here, l'(Y) is the :I: coordinate of the point (a: , y) on the 
curve C: f(:1:, y) = O. 

Now, the surface that results from revolving C 
along E is specified as ":1:2 + ~ = {l'(Y) f sub­
jectlO f(r(y) ,y) = 0." The equation F(a: , y ,z) = 
o of the surface S, hence, becomes F (a: , y , z ) = 
f( V3:2 + ~~ , y) = 0 where F(3:, y , z) is not neces­

sarily ai}!,ebraic due to introduction of the square root. 
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By allowing only even-powered :/:'s ( :l:0 , :/:2 , :lA, . .. ) in 
f( a: , y), we C,Ul force F(a:, )/ , z) to be algehraic. Ge­
ometrically, this restriction. imposed on the revolved 
curve, that maintains ai}!, ebraicity, me,UlS that the curve 
f(a:, y) = 0 is symmetric to the y axis. 

For quadric curves f( a: , y) = 0, :1:
2 is the only pos­

sible factor of terms in f. Hence, f includes a 4-
dimensional vector space VJ of polynomials over real 

numbers that is sp,Ulned by the basis {:1:2 , y2, y , I}. In 
case of cubic curves f( 3.:, y) = 0, the vector space V/ is 

sp,Ulned by the basis {a:2y , 3:2 , )/3, )/2 , y , I} with dimen­
sion 6. Quartic curves f( a:, y) = 0 C,ul be chosen from 
a more abund,Ult vector space V/ of dimension 9 , gen­

erated by the basis {:I:4 , :1:2)/2, :I:2y, a:2 , )/4 , )/\ )/2, )/, I}. 
The bases of vector spaces V/ for higher degree curves 
are formulated in the srune fashion. 

Each algebraic curve of degree cl in Vi, revolved 
around ,ul ellipse, results in ,ul algebraic surface of the 
srune degree. Then we naturally come to the following 
question: "Is a surface, generated by revol ving around 
,ul ellipse an algebraic curve that is not in V/' algebraic 
at all '?" In fact, the surface is algebraic, though the sur­
face 's degree gets doubled. This doubling of the degree 
arises from the single squaring required to remove the 
square root from odd-powered :/: factors. For exrunple, 
consider a circle f( :1:, y) = (3: - 5)2 + (y - 5? - I = 
a:2 - Ill:!: + y 2 - JOy + 49 = 0 of radius I. centered at 
(5 , 5). This conic curve is not in VJ because of the term 
10:/:. However, by moving 10:1: to the right h,Uld side, 
,Uld then squaring both sides, we C,ul obtain a quartic 
curve in V/ which generates a torus (of degree 4) by 
rotation . Intuitively, the squm'ing operation has ,ul ef­
fect of putting ,Ulother circle of the srune shape to the 
other side of the y axis in order to ,u·tificially make the 
curve symmetric to the )/ axis. Any algebraic curve of 
degree cl which is not in V/ C,ul be made to be in Vr 
by moving all terms with odd-powered :1: factors to one 
side, ,Uld squaring both sides. 

R EMARK 2.1. Let c: : f( a: , y) = 0 be an ai}!,ebraic 

curve of degree d, and E : :1:2 + ~ = {r (y) f be an 
ellipse of a rotation path. Th en, the ai}!,ebraic sWface 
." : F(a:, )/ , z) = 0, resuilin}!, ji"om revoivin}!, C around 
E, has degree d if C is symmetric around the y axis, or 
2d otherwise. 

A geometric interpretation to Relmrrk 2. 1 is as fol­
lows: Consider a line on the :1:y plane p,mtllel to the 
:1: axis. This line intersects with (,' at most cl times. 
Now, imagine the intersection between the line ,Uld S'. 
When C is symmetric, the number of intersection re-
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(a) (b) 

Figure 2: Two Qu<rrtic Algebraic Curves 

mains the smne. However. if (' is not symmetric. the 
number of intersection is doubled up hecause ( :, rotated 
by I XO degrees, creates the s,une number of line-curve 
intersect ions. 

It is impowUlt to underst,Uld that, the degrees of free­
dom, in choosing a curve f(a :, y) = 0 of degree d from 
Vf, is dime V/) - I where dime *) is the dimension of a 
vector space. Since all the polynomials on a line in Vf 
that passt.s through .f ,Ul d 0 describe the smne curve, we 
have one less th ,Ul dim(V/) degrees of freedom. It is 
not hm'd to come up with the expression for dim e Vi) : 

{ 

(d +2 f 

di m(V/) = ~d+3) 
if d is even 
if d is odd 

[n m,UlY si tuations as will be shown later, the curve 
f( :1: , y) = 0 is to be designed such that it sati sfies gi ven 
geometric requirement s. We ~rre interested in design­
ing piecewise curves from given digi tized data, ,Uld re­
volving them in a complicated mmll1er to model some 
cla.<;s of objects with low degree algebraic surfaces. It 
will he explained helow how the degrees of freedom in 
piecewise algebraic curves of a given degree limit the 
geometric cont.inuity hetween them. 

EXAMPLE 2.1. Figure 2 (a) ~Uld (b) di splays two qum'­
ti c algebraic curves (a:2 + J/)2 + 3:1:2y - y3 = 0 ~Uld 
aA + a:2y 2 - 2a:2y - :1:y2 + y2 = 0, respectively [121. 
The curves, after rotation, result in algebraic surfaces of 
degree 4 ,Uld g, respectively, ~Uld shown in Figure 3 (a) 
,Uld Cb). 

2.2 Parametric Surfaces uf Revolutiun 

(a) (b) 

Figure 3: Degree 4 ,u)d 8 Algebraic Surfaces of Revo­
lution 

rational p,rrmnetric curve of degree d 

where the degrees of the polynomials a:(l), ye t ), ~Uld 
w(l) m'e at most d. The surface obtained by revolving 
C(I.) m'ound y-axis along ~Ul ellipse E : :1:

2 + :~ 
? a 

{l'(Y)} - with (\' > 0 GUl be represented (1'<; F(s , t) 
(X(s , t ), Yes, t) , Z(s , t)), where 

X (s , t) 

yes , l) 

Z(s, t) 

28 J:(t) 
----
I + 82 w(l) 

y( t) 
wet ) 
(\'( 1 - ,52) a:(t) 

1 +82 w(t)' 

First, this representation ~Ul swers that the revolved 
surface is always rational panunetric. Then, the second 
question on the degr~e of F(s , I.) must be answered. We 
~rre interested in lowering both the algebraic degree in 
the polynomials in F(s , t) ,Uld the geometric degree of 
F(s , l) (the maximum possible intersection of F(s , t) 
with a line). In construction of rational p,U"(unetric re­
volved surfaces, we fo llow the smne path we did in the 
previous subsection. From Remm'k 2. 1, we know that 
,Ul algebraic curve of degree cl generates ,Ul algebraic 
surface of the smne degree only when it is symmetric 
~rro und ~Ul axis. Since every rational p,rr~unetric curve of 
degree d is an algebraic curve of degree d, we ,u'e led to 
the fact that F(s , t) is of degree d if c:(t) is symmetric 
~rround the y-axis. 

A rational pm'mnetric curve is symmetric if there is 
a p,rrmneuization C(t) = ( .. .-Y(t) , y(t) ) = (,~~tt~' ,~Yt )) ) 

Now, we get to a question : "Is it also possible to find a such that X(t) = -XC -t) ~Uld y(t) = Y( -t). That 

restricted bases of rational parametric curves that result is, 
in ratiollal parametric surfaces of the same geometric 
degree after revolution ~rround m) ax is'!" Consider a 
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y(i) 
w( i) 

y( -i ) 
w( -i ) 

(4) that X(t) = -X(-t) ,Uld Y(t) = Y(_t) l . It still 
remains open how to specify all the bw';es of symmetric 
rational parmnetric curves of a given degree. 

The above conditions are met if either l:(t) is Wl 

odd function (all the terms with nonzero coefficients are 
odd-powered) , ,md y(i), w(i) are even functions (all 
the terms with nonzero coefficients are even-powered), 
or :l:(t) is an even function, ,md yet), we t) are odd 
functions. It is not difficult to see that the polynomials 
in the second case C,Ul be converted into the first case 
polynomials by multiplying t to both numerator ,Uld 
denominator, ,md vice versa. In fact, ,Uly polynomials 
that satisfies the conditions (3) ,md (4) fall in the above 
two categories. 

LEMMA 2.1. Let :l:(t) , y(t), and wet) be polynomials 
in t such that ;r(t) and wet) are relatively prime, and 
yet) and wet) are relatively prime. Then, :l:(t) is an odd 
function, and y( t), w( t) are even functions if and only 
if' El!2. - _ x ( - t ) d 1!i!l - .lIi:..!l 
1 wet) - w( -t ) an wet) - w( -t )· 

PROOF: See [3]. 0 

From now on, we assume that :l:(t) is ,m odd function , 
,md y( i) ,md w( t) are even functions without loss of gen­
erality. Since a degree d curve C(t) = (X(t) , Yet)) = 
( El!2. 1!i!l ) . . . 

w(t) ' we t ) IS symmetnc around y-axIS, the surface 
made by revolving it around y-axis is a surnlce of ge­
ometric degree cl. The surface equation F(s , i) given 
above is represented by degree cl + 2 polynomials. In 
[3] we show it is possible to reduce the algebraic degree 
of the parametric surface equations to cl by applying a 
tr<Ulsfonnation to F(s, t). 

REMARK 2.2. Let C : C(t) = (:g) , MB) be a ra­
tional parametric curve of degree d where :l:(t) is an 
odd function, and y(i), w( i) are even fun ctions, and 

E : :1:2 + ~ = {7·(y)}2 be an ellipse of a rota­
tion path. Then , the algebraic surface S : F(s, t) = 
(X(s , i) , Yes , i) , Z(s , i)) in the rational parametric 
form, resulting from revolving C around E, has geo­
metric degree cl , and can be parameterized in the way 
that X(s , i), Yes , i), and Z(s , t) are degree cl rational 
polynomials. 

The class of the above rational parametric curves con­
tains symmetric panunetric curves that intersect with 
y-axis. The set of all such curves is only a proper 
subset of all symmetric parmnetric curves. Another in­
teresting class of symmetric rational parwnetric curves 

is defined as C(i) = (X(i) , yet)) = (:~:~, ~~~»)) such 

EXAMPLE 2.2. Recall the "three-leaf clover" in Exmn­
pIe 2.1. Its panunetric form is C( t) = C'~:U?~ I' 

t' 3t' 
t' +2t'+1 ). After circular revolution ,Uld the above 
mentioned repanunetrization, the quartic surface is 
F(u v) _ ("("'+v'-3 ) ("'+v'/-3 (,,' +v') 

, - (,,2+v2)2+2 (,, 2+v2)+I' (,,2+ v2)2+2 (,,2+v')+I' 
v("'+v'-3)) .. 

(,,2+v2)2 +2(,,2+v')+1 ,Uld shown In FIgure 3 (a). 

3 Construction of Piecewise C k 

Continuous Revolved Objects 

So far we have discussed about revolution of a single 
algebraic curve, represented in either the implicit or the 
panunetric form. A revolved object with a complicated 
shape, however, C,Ulnot be modeled by rotating only 
one low degree curve. Instead, it is more appropriate 
to approximate a revolved object using surface patches 
meeting together with some order of geometric continu­
ity. Hence, the revolved object design problem leads to 
the following basic problem: design piecewise C k con­
tinuous algebraic curve segments, with restricted bases. 

In this paper we focus on the design of piecewise 
C k continuous implicitly represented alxebraic curve 
segments.2 Designing with panunetric splines is ex­
plained in [5] in detail. Also, we shall exhibit that de­
signing with symmetric (restricted bases) implicit alge­
braic curves is no more difficult th,m with the complete 
basis. The corresponding case of designing with sym­
metric parmnetric curves does not directly follow from 
the general parmnetric C(L';;e ,md is a ,m open problem 
for further research. 

3.1 Algebraic Curves and Geometric Con­
tinuity 

In this subsection, we describe how to compute two 
algebraic curves that meet with C k continuity at a point. 
First of all , we assume the geometric information about 
a point p is expressed in terms of a (truncated) power 
series C(i) of degree k, where C(i) = (:l:(t) , y(i)) = 
P+Clt+C2i2+ . ,+cktk,andC(O) = p. This truncated 
power series approximates the local geometric property 
(up to order k) of a curve about the point within a radius 

1 For example, a hyperbola is in this class. 
2From now on, by "algebraic", we mean "implicit algebraic". 
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of convergence. (We will discuss later how this power 
series is computed.) 

Now. given a (truncated) formal power series C(t) 
about a point ]J, we find ,m algebraic curve f( a: , y) = 0 
whose power series exp,msion at ]J is the smne w, 
C( t) at p. If all terms upto degree k agree for 
f( :1:, y) = 0 ,md C.'(t) at p then f(a:, y) = 0 is con­
sidered to meet C(l) with C k continuity at p. Let 
f(a:, y) = Li+j <d (t ij a:iyi = 0 be ,m algebraic curve 
of degree d, ,md -
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(a) (b) 

,.IJ 

.) •.. 

.,. 

) (:1.(t)) (px + Clxl + c2x l2 + ... + ckx lk \ 
C(t = yet) Py + clyt + c2 yt2 + ... + cky tk Fjgure 4: Digitized Engine ,md Goblet with Truncated 

be a given pm',unetric polynomial such that C(O) = 
(Px , ]ly) '=]J. The relations on the coefficients of 
f( a: , y) c,m be extracted by repeatedly differentiating 
f( C( t )) up to order k, making all the derivatives v,mish 
at t = 0 [7] . The first few partial derivatives are: 

f( C(t)) It=o 
elf(C(l)) 
---'--'---'-'- 1 t =0 

ell 

([2 ! (C(I.)) 1 

ell2 t=O 

f(p) = 0 

fx(p):1:' (0) + f y(p)y' (0) 

clxfx(p) + cly f y(]J) = 0 
, 2 

fx x (p ):1: (0) 

+2!xy:1:' (O)y' (0) 
, 2 

+ ! yy (p)y (0) 

+ ! x(p)l:" (0) + fy(]J)Y" (0) 

cTx f xx(p) + 2ClxCly ! xy(p) 

+dyfyy(p) + c2x f x (p) 

+C2y!y(P) = 0 

For each derivative of f (C(t)), a linear equation in 
terms of the unknown coefficients (t ij of! is generated, 
hence, ,my solution of the homogeneous linear system 
of k + I equations becomes coefficients of algebraic 
curves of degree el meeting C(l) with Ck continuity. 
Since ,m algebraic curve segment needs to satisfy the 
Ch: conditions at both end points , 2k + 2 linem con­
straints must be satisfied. Hence, in order for ,m alge­
braic curve of degree d to exist, cl must be chosen such 
that (di2) - I 2: 2k + 2, that is, the number of the de­
grees of freedom in coefficients of the curve is greater 
th,m or equal to the constraints for C k continuity. Ex­
actly the smne process is applied for symmetric implicit 
algebraic curves of degree cl with restricted bases, with 
the difference being that the number of degrees of free­
dom is given by dim e Vf) - I (L'; shown in section 2. 1. 

Power Series 

3.2 Computation of a Truncated Power 
Series 

There are various forms of divided-difference methods 
that extract geometric information around a poiilt, from 
a given list of points [5]. In our case, we choose a 
parabola to locally approximate the points about a junc­
tion point, and take out tangential information from the 
parabola. The junction points themselves are for now, 
computed using the dynmnic prognunming scheme in 
[8] which minimizes the error for a piecewise linear 
approximation (with fixed number of segments) to a 
set of digitized points. Consider a sequence of points 
... , Pi-2 , Pi- I , Pi , Pi+1 , Pi+2 , . . . around the junction 
point Pi ,md ,m imaginary power series C( l) from which , 
we assume, the digitized points near Pi arise, ,md whose 
panuneter value is t = 0 for Pi. Then, the t<mgent 
vector of C (t) at t 0 c,m be approximated by the 
approximation: 

C' (0) ~ 

+ 

where cri =. dist (TJi_'. ,p,) ,md dist (* , *) is 
dlst (l'. ,1'.+' )+dlst(I'. _, ,1'. ) 

the dist<mce between two points. 
Repeatedly applying this approximation formula, we 

introduce a divided-difference: 

if j = 0 

if j > 0 

Using this di vide-difference operator, a truncated power 
series is represented as Ci( t) = /}.° p i +/}.I Pit +/}.2Pit2 + 
... + /}. k Pi t k . Note that the geometric information, 
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stored in the coefficients of the power series is ex tracted 
from a sequence of 2k + 1 neighboring points, centered 
at the junction point. This locality in the construction 
of a power series enables ~Ul interactive local modeling 
operation. 

EXAMPLE 3. 1. In Figure 4, two sets of digi tized points 
are illustrated. (a) shows three lists of points that model 
engine pm"ls3, ,Uld (b) is a sequence of points that mod­
els a goblet. Each point sequence is displayed with 
truncated power series of order two at junction points. 

3.3 Families of Algebraic Curves I(:e, y) 

In order to compute each curve segment h (a:, y) = ° 
that interpolates two truncated power series (:i(l) ,Uld 
(:i + I (t) at two end points Pi ,Uld Pi + I , respecti vel y, we 
construct a linear system M IX = 0 where the unknowns 
are coeffic ients of fi (a: I y) = O. The linear system is 
made of 2(k + I) equations that are generated for both 
truncated power series. Note that the r,Ulk of MI must 
be less th,Ul the number of unknowns for a nontri vial 
solution to exist. Any nontri vial solution represents an 
algebraic curve that meets (:i (t) ,Ul d (,'i+I(t) at Pi ,Uld 
Pi+l, respecti vely, with (:k continuity. One heuristic 
that we have often used is to select a nice curve segment 
is to generate a sequence of additional poin ts between 
the end points that approximate a curve segment , ,Uld 
then, apply lema-squares approx imation to these addi­
tional points. In the case of cubic algebraic curves, in 
Section 4 we derive a condition on the Bernstein-Bezier 
coefficients of cubic curves, in either the general or the 
restricted basis, that gu(U",Ultees a smooth single curve 
segment inside a given controltri'Ul gle. 

In case a.ll possible terms of degree cl m'e used as a 
b,L<; is of f i( J:, y) = 0, then there are (<i~2) unknowns, 

,Uld hence (<it2) - 1 degrees of freed~m . However, 
if we choose a curve from V/, we have fewer degrees 
of freedom due to restriction in the bm;is. There are 
only dim ( V/) - 1 degrees of freedom for degree cl, ,Uld 
this number must not be less th,Ul 2(k + 2), the max­
imum possible r,Ulk for a homogeneous linear system 
that needs to be sati sfi ed for order k continuity. For 
inst,Ulce, for (,'1 continuity, symmetric cubic curves are 
necessary, whi le order 2 continuity requires symmetric 
quartic curves. 

3.4 Piecewise Ck Continuous Revolved 
Objects 

.lThis data originated from ~ [) scanned engine data fwm NASA. 

38 

j 

(a) 

, 
-' 

(b) 

Figure 5: Symmetric Cl Cubic ,Uld ( ·2 Qwu·tic Alge­
braic Splines 

(h) 

Figure 6: Symmetric (,'1 ,Uld Arbitr,u'y (:2 Cubic Alge­
braic Splines 

(a) (b) 

Figure 7: (:1 Cubic ,Uld (,'2 Quartic Revolved Surface 
Models 

(a) (b) 

Figure 8: (,' 1 Cubic and ( :2 Sextic Revolved Surface 
Models 
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Figure 5 (a) displays piecewise (,'1 approximation with 
cuhic algehraic curves in the restricted basis V]. Note 

that a symmetric cubic curve in V] c<m have a t,m­
gent line p,mulel to a:-axis only at points on the y-axis. 
Hence, the order of geometric continuity is only 0 at the 
extreme junction points on the cowls m'ound which the 
curve segments make vertic,u turnabouts. With sym­
metric qum·tic ,ugehraic curves in Vf, it is possible to 

approximate the point data with (,'2 continuity every­
where. (See Figure 5 (b).) For the goblet data, cubic 
curves in V], again, successfully model the data with 

(,'1 continuity in Figure 6 (a). Figure 6 (b) shows a (,'2 

approximation of the smne data with cubic curves in 
the gener,u basis, which, hence, may not be symmetric 
about the y-axis. 

Once ,ugebraic splines m'e constructed to fit the digi­
tized data, their revolution surface models are easily ob­
tained, with the appropriate surface degree bounds. (,'1 

approximation with cubic ,ugebraic surfaces is shown in 
Figure 7 (a) ,md are a revolution of the cubic splines in 
Figure 5 (a). Quartic ,ugebraic surfaces approximate the 
smne object well with (,'2 continuity in Figure 7 (b) ,md 
are a revolution of the quartic splines in Figure 5 (b). 
A Cl cubic ,ugebraic surface goblet is illustrated in 
Figure 8(a) ,md is obtained by revolving the symmetric 
cuhic spline in Figure 6 (a). The C 2 goblet in Figure 8(b) 
is obtained by revolving the arbitnu'y cubic splines in 
Figure 6 (b), ,Uld is made of degree 6 algebraic surfaces. 

4 Cubic Algebraic Splines 

In this section, we focus on implicitly defined cuhic 
,ugebraic curves, ,md gi ve conditions on the coefficients 
of cubic algebraic curves that gmmmtee nice properties 
inside regions bounded by tri,mgles. These conditions 
c,m be eqmuly applied to cubic curves in the restricted 
or the genenu b'L<;is. 

P,uuszny ,md Patterson [9] considered a special fmn­
ily of implicit cubic curves which yields tangent contin­
uous cubic splines. Our method here differs in that both 
t<mgents ,md curvatures are specified and the splines are 
not limited to be convex inside the bounding tri,mgles. 
Bajaj ,md Xu [4] show how to construct (,'3 continu­
ous cubic algebriac splines, however their method is not 
directly applicable for symmetric restricted bases. 
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4.1 Interpolation with Cubic Algebraic 
Curves 

A Renerul 4 cubic ,ugebraic curve in the Bernstein bw;;is 
is defined as B 3(tt ,v ) = L i + j<3 W ij B!j (1I , V ) = O. 
(For introduction to barycentric coordinates, see [6].) 
Sederberg [10] proposed to view ,m ,ugebraic curve as 
the intersection of the explicit surface W = Bd (tt , v) 
with the pl,me W = 0, hoping to associate geometric 
me,mings to the coefficients of the polynomi,u. Espe­
ci,uly, the coefficients in the polynomi,u are considered 
,L-; the W cooluinates of the control net of a tri,mgular 
Bernstein-Bezier surface patch, where the coefficient 
W ij corresponds to the control point bij = (~ , ~ ) in the 
Bernstein basis. The coefficients W ij is relative to se­
lection of a control tri,Ulgle T = (Pall, P30 ) P03 ) in the 
power b'L'iis. There ,rre ten coefficients, ,md since di­
viding the equation out by a nonzero number would not 
ch,mge the ,ugebraic curve, we see that there ,rre nine 
degrees of freedom. For symmetric restricted cubic ,u­
gebraic curves in the Bernstein bw-;is there ,u'e only five 
degrees of freedom. Hence, three degrees of freedom 
m'e left after (,'2 interpolation with genenu cubic ,uge­
braic curves, ,Uld one for (,' I interpolation with restricted 
cuhics. 

4.2 Computation of Effective Cubic Alge­
braic Spline Curves 

We describe in some detail the C(L<;e of C2 continu­
ous genenu ,ugebraic cubic splines. Computation of 
(,'1 continuous restricted ,ugebraic cubic splines c,m be 
achieved ,uong simil<rr lines. Let CBo (t) ,md CB, (t) be 
two truncated power series of degree two that describe 
geometric properties at two points 7r0 ,md 7r1, respec­
tively. One of go,us we try to accomplish is to find a 
tri,mgle within which a single connected smooth seg­
ment of a cubic ,ugebraic curve is confined such that the 
curve segment achieves C 2 continuity at 7r0 ,Uld 7r1 ,md 
subdivides the triangle into a positive ,md a negative 
space. (See Figure 4.2.) 

DEFINITION 4.l. Let T be a tri,mgle made of three ver­
tices Poo , PdO, Pad. Consider a smooth curve segment of 
degree n on Bd (u ) v) = 0 whose two end points ,rre on 
the two sides Poo PdO and Poo Pad. The curve segment is 
c,uled an effective algebraic spline associated with the 
boundinR triangle T if the curve segment intersects ex­
actly once a line segment connecting Poo ,md ,my point 

4We use the adjectives general and restricted to distinguish cubic 
algebraic curves in the general and the restricted bases. respectively. 
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Figure 9: An Effective Spline Curve 

on the side P dO POd. 
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The restriction imposed in the definition of an effec­
tive spline reomves disconnected curve segments, loops, 
unw,mted extra pieces ,md singuicrrities from within the 
bounded tri,mgle. It also forces the spline curve seg­
ment to subdivide a bounding tri,mgle into a positive 
,md a negative space. The ability of finding ,m effective 
spline with a proper bounding tri,mgle is essential in that 
it allows easy implementations of m,my geometric mod­
eling operations [IJ. A point c,m be easily clCl';sified as 
in , out, or on the boundary of ,m object that is made of 
several algebraic splines. This point-classification op­
eration is a primitive operation to high level geometric 
modeling operations. 

For a spline curve segment that is C2 continuous 
at the end points 11"0 and 11"1 within the tri ,mgle T, in­
terpolation of the respective truncated power series at 
these points with a cubic polynomial generates six con­
straints, leaving three degrees of freedom. After sol ving 
the homogeneous linear system with ten unknowns, ,md 
six linearly independent constraints, the ten coefficients 
c,m be expressed in terms of linear functions in four 
free parcuneters AO, AI, A2, ,md A3. We next set up 
constraints on these free parcuneters such that for fea­
sible values of Ai, i = 0 , 1, 2 , 3, the curve segment is 
a single piece within T. Note that the feasible values 
of Ai, i = 0 , 1, 2 , 3, are those for which the tri,mgular 
Bernstein-Bezier surface patch corresponding to T in­
tersects the pl,me w = 0 within T exactly once ,md ,L>; 
shown in Figure 10. 

L EMMA 4.1. Let ten coefficients Wij of B3(u, v) be ex­
pressed linearly in terms of Aj , j = 0 , 1, 2 , 3 after C2 

interpolation ofCRo (t) and CR , (t) at 11"0 and 11"1 , respec­
tively. with respect to a colllrol Iriangle T. Then. there 

exists an effective cubic algebraic spline associmed with 
T if and only if there exists some Aj . j = 0 , 1, 2 , 3 such 

thal the univariate cubic polynomial G( a:) (~ B3 (( I -
C1!)a:, na:) = [J3(cv)a:3 + [J2(C1!)a:2 + [J1(n)J: + !In(n) has 
one and only one root in 0 ::; a: ::; I for all C~ E [0 , I] . 
The [l i ( C1!). (i = 0 , 1,2, 3) are polynomials of degree i 
in et with coefficients which are linear relations on tuij 

alld hence of the free parameters Aj . (j = 0 , I , 2 , 3). 

PROOF: See [3]. 0 

Due to the limited space, we now present only the 
final results Details c,m be found in [3]. Consider the 
three cases where hi(n), (i = 0, 1,2,3 ) is a degree 3 - i 
polynomial in et and a linear combination of the above 
[Ji (Ct) polynomials. The coefficients of hi (Ct) are linear 
combinations of the free parcuneters Aj, (j = 1, 2 , 3): 

• [CASE 1] h3(n) = I > 0, h2(n? -
3h3(n)hl (Ct ) ::; 0, h() (c~) < 0 

• [ CASE 2] h3 (C~) = I > 0, (either h2(n ) 2: 0 
or hl(n) ::; 0), ho(n) < 0 

• [ CASE 3 ] h3 (C~) = I > 0, h2(n) < 0, 
hI (n) > 0, ho(cv) < 0, h2 ( C~)2 - 3hJ(n)hl (ct) > 
0, (-27ho ( c~ )h3 ((~j2 + 9h l (n )h2(cv)h3(C1!) -
2h2 ((~?) > 0, 
(27ho(cvj2 h3(C1! )2 - 18ho(ct)hl (n ) h2(n) hJ( (~) + 
4hl ((r) 3 h 3 ( Ctl+4ho (cv)h2(C~? -hl (n)2h2(cv)2) > 
o 

THEOREM 4.1. Let ten coefficients tuij of B3 (u , v ) be 
expressed linearly in terms of Aj. j = 1, 2 , 3 with Woo = 
I after C2 interpolation of CRa (I.) and CH, (t ) at 11"0 and 
11"1 . respectively. with respect 10 a cO/ltrol Iriangle T. 
Then. Ihere exists an effective cubic algebraic spline 
associated with T if and only if there exists some Aj. 
j = 1, 2 , 3 such Ihat,for all n E [0 , I] . eilher [ CASE 

1] . [ CASE 2]. or [ CASE 3 ] is satisfied. 

Theorem 4.1 generates inequality constraints whose 
expressions are line,rr, quadratic, cubic, ,md qU<ulic in 
AI, A2, AJ. Hence, all the feasible solutions (AI, A2, 
A3) of those constraints comprise a union of subspaces 
in the three dimensional AI A2AJ solution space bounded 
by line,rr, quadratic , cubic, or qmrrtic aJgebraic surfaces. 
Choosing ,m effective cubic algebraic spline m;sociated 
with a bounding tri ,mgle becomes equivalent to finding 
feasible points in these subspaces. In our implemen­
tation we currently use st,md,rrd nonline,rr numerical 
optimization techniques to compute fe,L<;ibl e solutions. 
Given the low dimensionality of the solution space ,md 
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(a) (b) 

Figure 10: C2 Continuous Cubic Algebraic Spline 
Curves 

the bounded degree of the constraints, we are currently 
experimenting with symbolic methods which yield a cell 
decomposition of the feasible region for easy solution 
point generation ,md navigation. 

EXAMPLE 4.1. Figure lO(a), shows three inst<mces 
of cubic a.lgebraic curves that C2 interpolate the 
two endpoint truncated power series Co (t) = ( I + 
t , t2 ) and Cl (t) = (t , I - 2t2) with respect to 
T = ((0 .0 , - 1.0) , ( 1.5 , 0.5) , (0.0 , 1.5)). The three 
curves chosen from the four dimensional space are 
fO(3: , y) = 0 .757333:1:3 - 1.1 99333:2y - 0.768667:1:2 + 
0.534667:1:yl + 0 .2:1:y - 0 .7346673: + O.004y) -
0.246y2 - 0.504y + 0.746, f1 (:I:, y) = 4 .08:1:3 -

7 .37 :1:2y - 5.993:2+O.06:1:y2 +0.2:1:y-0.263: -1 .42y3-

1.67y2 + O.92y + 2.17, ,md 12(3: , y) = 0.4213333:3 -

0.575333 :t 2y - 0.2406673:2 + 0.582667:1:y2 + O.23:y-
0.7826673: + 0.148y3 - 0 .102y2 - 0.648y+ 0.602. As 
C2 continuity implies, fi(Cj(t)) = O(t 3

) , i = 0 , 1,2, 
j = 0 , I. Figure I O(b) illustrates how a cubic Bernstein 
surface patch intersects once with the bounding tri ,mgle 
to produce ,m effective cubic algebraic spline. 

5 Conclusion 

We have presented a comprehensive characterization 
,md computation of the appropriate degree restricted 
bases for implicit ,md parmnetric generating spline 
curves which would yield revolution surfaces of the 
smne algebraic degree as the degree of the curves. A 
number of open problems remain , as mentioned in this 
paper, and we are currently pursuing these. 
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