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Abstract

We present a method for generating low degree ('*-
continuous piecewise algebraic surfaces for revolved
objects. The approximating pieces are implicitly de-
fined algebraic surfaces whose profile curves can be
obtained algebraically or parametrically from digitized
points. We show that degree d surface patches can
be used for approximations with inter-patch ('* con-
tinuity as high as & = [Ldizgﬂj for even d, and
k= [(d—“K%)‘—mJ for odd d. As an example, we
construct (! cubic surfaces and (? quartic surfaces for
revolved objects from digitized profile curves.

Keywords : Algebraic surface, approximation, ('*
continuity, curves, digitized data, polynomial, revolu-
tion

1 Introduction

Algebraic curves and surfaces can be represented in an
implicit form, and sometimes also in a parametric form.
The implicit form of a real algebraic surface in IR? is

flz,y,2) =0 (1)

where f is a polynomial with coefficients in R. The
parametric form, when it exists, for a real algebraic
surface in IR is

5= fl(svl’)
l f4(S,t)
y _ fz(,‘?,f)
‘ fa(s,t)
B fa(s,t)
ey @
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where the f; are again polynomials with coefficients in
R. The algebraic degree of an algebraic curve or sur-
face (in implicit or parametric form) is the mazimum
degree of any defining polynomial. The geometric de-
gree of an algebraic plane curve or surface (in implicit
or parametric form) is the mazimum possible num-
ber of intersections with any line. The intersections
are counted with respect to a plane for algebraic space
curves [2].

This paper presents two main ideas to be used in fit-
ting low degree, piecewise algebraic surfaces (in the im-
plicit or parametric form) to data sampled from arbitrary
boundary surfaces of solids of revolution. One is the use
of degree restricted bases for the piecewise approxima-
tion of the generating curve of revolution surfaces to
yield approximating surfaces of the same algebraic de-
gree as the degree of the piecewise curves. The other
new idea arises in the development and use of C'* im-
plicitalgebraic splines for degree restricted interpolation
and approximation of generating curves. While tradi-
tional fitting schemes are predominantly based on piece-
wise parametric representations([5, 6], we show here that
implicit representations are also quite appropriate and
in fact better equipped for restrictions on the bases and
the degrees of the involved polynomials.

From Bezout’s theorem[11], we realize that the inter-
section of two implicit surfaces of algebraic degree d
can be a curve of geometric degree O(d?). Furthermore
the same theorem implies that the intersection of two
parametric surfaces of algebraic degree d can be a curve
of degree O(d*). Hence, while the potential singular-
ities of the space curve defined by the intersection of
two implicit surfaces defined by polynomials of degree
d can be as many as O(d*), the potential singularities
of the space curve defined by the intersection of two
parametric surfaces defined by polynomials of degree
d can be as many as O(d®)[2]. Hence keeping the de-
gree of fitting surfaces as low as possible benefits both



E :anellipse

(" > an algebraic curve

Figure 1: Revolution of an Algebraic Curve along an
Ellipse

the efficiency and the robustness of post processing for
modeling and display[1].

The rest of this paper is as follows. Section 2 char-
acterizes the appropriate degree restricted bases for im-
plicit and parametric algebraic curves which would yield
revolution surfaces of the same algebraic degree as the
degree of the curves. Section 3 characterizes ('* con-
tinuous piecewise surfaces of revolution and their con-
struction from sampled data points. Section 4 describes
the development and details for constructing cubic im-
plicit algebraic (!' and (' splines for approximating
generating curves of surfaces of revolution.

2 Surfaces of Revolution

2.1 Algebraic Surfaces of Revolution

Consider an algebraic surface which is obtained by re-
volving an algebraic curve f(z, y) = 0 (on the zyplane)
around the y axis. (See Figure 1.) Rather than restrict-
ing ourselves to a circular rotation, we consider a more
general elliptic revolution where the rotation path is de-
scribed by an ellipse £ : 22+ 2 = {r(y)}? with v > 0.
Here, »(y) is the 2 coordinate of the point (z, y) on the
curve (' f(z,y) = 0.

Now, the surface that results from revolving (/
along E is specified as “z? + L—; = {r(y)}* sub-
ject to f(r(y),y) = 0.7 The equation F'(x,y,z) =
0 of the surface S, hence, becomes F(x,y,2) =
f(\/a+ 4, y) = 0 where F(xz,y,z) is not neces-
sarily algebraic due to introduction of the square root.

34

By allowing only even-powered =’s (2", #2, %, -+ ) in
f(x,y), we can force F(z,y,z) to be algebraic. Ge-
ometrically, this restriction. imposed on the revolved
curve, that maintains algebraicity, means that the curve
f(x,y) = 0is symmetric to the y axis.

For quadric curves f(z,y) = 0, 2* is the only pos-
sible factor of terms in f. Hence, [ includes a 4-
dimensional vector space sz of polynomials over real
numbers that is spanned by the basis {2, y*, y, 1}. In
case of cubic curves f(z,y) = 0, the vector space V; is
spanned by the basis {z%y, 2%, 4, v*, v, 1} withdimen-
sion 6. Quartic curves f(a,y) = 0 can be chosen from
a more abundant vector space Vf of dimension 9, gen-
erated by the basis {2, 2%y%, 2%y, 2%, v*, v, ¥, y, 1}
The bases of vector spaces Vfd for higher degree curves
are formulated in the same fashion.

Each algebraic curve of degree d in Vfd, revolved
around an ellipse, results in an algebraic surface of the
same degree. Then we naturally come to the following
question : “Is a surface, generated by revolving around
an ellipse an algebraic curve that is not in Vf" , algebraic
at all?” In fact, the surface is algebraic, though the sur-
face’s degree gets doubled. This doubling of the degree
arises from the single squaring required to remove the
square root from odd-powered x factors. For example,
consider acircle f(z,y) = (¢ = 5>+ (y =5 1=
22 — 10z + 2 — 10y + 49 = 0 of radius 1, centered at
(5,5). This conic curve is notin sz because of the term
10x. However, by moving 10z to the right hand side,
and then squaring both sides, we can obtain a quartic
curve in Vf4 which generates a torus (of degree 4) by
rotation. Intuitively, the squaring operation has an ef-
fect of putting another circle of the same shape to the
other side of the y axis in order to artificially make the
curve symmetric to the y axis. Any algebraic curve of
degree d which is not in V{ can be made to be in V7
by moving all terms with odd-powered x factors to one
side, and squaring both sides.

REMARK 2.1. Let ! : f(x,y) = 0 be an algebruic
curve of degree d, and E : x* + 35 = {r(y)}* be an
ellipse of a rotation path. Then, the algebraic surfuce
S F(e,y, z) = 0, resulting from revolving (' around
E, has degree d if (' is symmetric around the y axis, or
2d otherwise.

A geometric interpretation to Remark 2.1 is as fol-
lows : Consider a line on the zy plane parallel to the
x axis. This line intersects with (' at most d times.
Now, imagine the intersection between the line and S.
When (' is symmetric, the number of intersection re-
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Figure 2: Two Quartic Algebraic Curves

mains the same. However, if (" is not symmetric, the
number of intersection is doubled up because ¢, rotated
by 180 degrees, creates the same number of line-curve
intersections.
[tis important to understand that, the degrees of free-
dom, in Lhoosmg acurve f(x,y) = 0 of degree d from
"i T dlm( ) — 1 where dim () is the dimension of a
veuor space. Smu: all the polynomials on a line in Vs i
that passes through f and 0 describe the same curve, wc
have one less than dim(V?) degrees of freedom. It is

not hard to come up with the expression for dim( V;’) ;

(d+2)2 S "
. ] ere) f dis even
dim(V3) = i :
(%) { WEDWED) it s odd

In many situations as will be shown later, the curve
f(x,y) = 0isto be designed such that it satisfies given
geometric requirements. We are interested in design-
ing piecewise curves from given digitized data, and re-
volving them in a complicated manner to model some
class of objects with low degree algebraic surfaces. It
will be explained below how the degrees of freedom in
piecewise algebraic curves of a given degree limit the
geometric continuity between them.

EXAMPLE 2.1. Figure 2 (a) and (b) displdys two quar-
lic dlg,ebmic curves (a2 +y ) +32%y —y® = 0 and
4+ 222 — 222y — eyt + 2 =0, respectively [12].
The curves, after rotation, result in algebraic surfaces of
degree 4 and 8, respectively, and shown in Figure 3 (a)
and (b).

2.2 Parametric Surfaces of Revolution

Now, we get to a question : “Is it also possible to find a
restricted bases of rational parametric curves that result
in rational parametric surfaces of the same geometric
degree after revolution around an axis?” Consider a

(b)

(a)

Figure 3: Degree 4 and 8 Algebraic Surfaces of Revo-
lution

rational parametric curve of degree d
X (1)

r(t)
1 _ _ w(t)
co-(5)-( )

where the degrees of the polynomials (1), y(t), and
w(t) are at most d. The surface obtained by wvolvmé

B

(,'(t) around y-axis along an ellipse F : 2% + 2 =

a?

{r(y)}* with « > 0 can be represented as F(s t)

Il

(X(s.1),Y (5,1), Z(s,1)), where
o _ 2s =)
0= e
W
Y(s,t) = w(t)
. o a(l - Qz)ﬂ
Z(s,t) = Wtu(t)'

First, this representation answers that the revolved
surface is always rational parametric. Then, the second
question on the degree of F'(s, t) must be answered. We
are interested in lowering both the algebraic degree in
the polynomials in F(s,t) and the geomerric degree of
F(s,t) (the maximum possible intersection of F(s,t)
with a line). In construction of rational parametric re-
volved surfaces, we follow the same path we did in the
previous subsection. From Remark 2.1, we know that
an algebraic curve of degree d generates an algebraic
surface of the same degree only when it is symmetric
around an axis. Since every rational parametric curve of
degree d is an algebraic curve of degree d, we are led to
the fact that F(s, t) is of degree d if (/(¢) is symmetric
around the y-axis.

A rational parametric curve is symmetric if there is
a parametrization (/(t) = (X(t),Y (1)) = (% %)
such that X' () = —X(—t)and Y () = Y(—t). That

IS,

= = 3)
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yt) _ (=) @)

w(t) w(—t)

The above conditions are met if either x(t) is an
odd function (all the terms with nonzero coefficients are
odd-powered), and y(t), w(t) are even functions (all
the terms with nonzero coefficients are even-powered),
or z(t) is an even function, and y(t), w(t) are odd
functions. It is not difficult to see that the polynomials
in the second case can be converted into the first case
polynomials by multiplying ¢ to both numerator and
denominator, and vice versa. In fact, any polynomials
that satisfies the conditions (3) and (4) fall in the above
two categories.

LEMMA 2.1. Let z(t), y(t), and w(t) be polynomials
in t such that x(t) and w(t) are relatively prime, and
y(t) and w(t) are relatively prime. Then, a(t) is an odd

function, and y(t), w(t) are even functions if and only

i y(—1
i 565 = — 504 and ¥ = I

PROOF : See [3]. O

From now on, we assume that z(¢) is an odd function,
and y(t) and w(t) are even functions without loss of gen-
erality. Sinccadcgree dcurve C'(t) = (X(t),Y(t)) =
(f;%l), w(t)) is symmetric around g J-XmS the surface
made by revolving it around y-axis is a surface of ge-
ometric degree d. The surface equation F'(s,t) given
above is represented by degree d + 2 polynomials. In
[3] we show it is possible to reduce the algebraic degree
of the parametric surface equations to d by applying a
transformation to F(s, ).

REMARK 2.2. Let (' : C(t) = (%,%&%) be a ra-
tional parametric curve of degree d where xz(t) is an
odd function, and y(t), w(t) are even functions, and
E : 2®>+ fo = {r(y)}* be an ellipse of a rota-
tion path. Then, the algebraic surface S : F(s,t) =
(X(s,t),Y(s,t),Z(s,t)) in the rational parametric
form, resulting from revolving (' around E, has geo-
metric degree d, and can be parameterized in the way
that X (s,t), Y(s,t), and Z(s,t) are degree d rational
polynomials.

The class of the above rational parametric curves con-
tains symmetric parametric curves that intersect with
y-axis. The set of all such curves is only a proper
subset of all symmetric parametric curves. Another in-
teresting class of symmetric rational parametric curves

is defined as C'(t) = (X(t),Y (1)) = (f}(('t)) ff,‘('t))) such

that X(t) = —X(=%)and V() = Y(—7)'. It still
remains open how to specify all the bases of symmetric
rational parametric curves of a given degree.

EXAMPLE 2.2. Recall the “three-leaf clover” in Examn-

. ~ . ¢ 3_
ple 2.1. Its parametric form is (/({) = (ﬁuiﬁ_ﬁ*

ﬁ) After circular revolution and the above

mentioned repar(unetrlzdtlon the quartic surface is
_ u(u +U2—'§) (u +v* ) —3(u +v?

F(u, U) = ((u2+v2)2+2(u2+v2)+1 > it +2(ui+o?) +l 5

v(uz—f-v -3)
QLT ey ) and shown in Figure 3 (a).

3 Construction of Piecewise C*
Continuous Revolved Objects

So far we have discussed about revolution of a single
algebraic curve, represented in either the implicit or the
parametric form. A revolved object with a complicated
shape, however, cannot be modeled by rotating only
one low degree curve. Instead, it is more appropriate
to approximate a revolved object using surface patches
meeting together with some order of geometric continu-
ity. Hence, the revolved object design problem lcdds to
the following basic problem: design piecewise C* con-
tinuous algebraic curve segments, with restricted bases.

In this paper we focus on the design of piecewise
(% continuous implicitly represented algebraic curve
segments.” Designing with parametric splines is ex-
plained in [5] in detail. Also, we shall exhibit that de-
signing with symmetric (restricted bases) implicit alge-
braic curves is no more difficult than with the complete
basis. The corresponding case of designing with sym-
metric parametric curves does not directly follow from
the general parametric case and is a an open problem
for further research.

3.1 Algebraic Curves and Geometric Con-
tinuity

In this subsection, we describe how to compute two
algebraic curves that meet with ( 'k continuity at a point.
First of all, we assume the geometric information about
a point p is expressed in terms of a (truncated) power
series ((t) of degree k, where C'(t) = (2(t),y(t)) =
pteit+ept’ +- - +cxt®, and ('(0) = p. This truncated
power series approximates the local geometric property
(up to order k) of a curve about the point within a radius

1For example, a hyperbola is in this class.
2From now on, by “algebraic”, we mean “implicit algebraic™.
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of convergence. (We will discuss later how this power
series is computed.)

Now, given a (truncated) formal power series (/(¢)
about a point p, we find an algebraic curve f(x,y) = 0
whose power series expansion at p is the same as
C'(t) at p. If all terms upto degree k agree for
f(z,y) = 0 and C'(t) at p then f(z,y) = 0 is con-
sidered to meet (/(t) with C'* continuity at p. Let
fle,y) = Yiyicatije ‘¥’ = 0 be an algebraic curve
of degree d, and

e | AL
ElH = ( y(t)

be a given parametric polynomial such that (/(0) =
(pz,py) = p. The relations on the coefficients of
f(z,y) can be extracted by repeatedly differentiating
F(C'()) up to order k, making all the derivatives vanish
att =0 [7]. The first few partial derivatives are :

flCW) k=0 = f(p)=0
YCD Ly = 1) )+ f ) ©)
= ase(p) + ey fy(p) =0
li=o = fm(P)J’l(())2
+2frya (0)y'(0)
+E(P): ’(0)2
+f(p)2" (0) + £,(p)y" (0)
=l fes(P) + 2e10¢1y foy (P)

'H%yfyy(l') + FZJ‘f.r(]))
+(’2yfy(]’) =0

P + clxt + chtz +
Py + eyl + C2yt2 + -

EfC1)

(lf2

For each derivative of f(('(t)), a linear equation in
terms of the unknown coefficients «;; of f is generated,
hence, any solution of the homogeneous linear system
of k£ + I equations becomes coefficients of algebraic
curves of degree d meeting (/(¢) with ('* continuity.
Since an algebraic curve segment needs to satisfy the
C'* conditions at both end points, 2k + 2 linear con-
straints must be satisfied. Hence, in order for an alge-
braic curve of degree d to exist, d must be chosen such
that (“1%) — 1 > 2k + 2, that is, the number of the de-
grees of freedom in coefficients of the curve is greater
than or equal to the constraints for (/¥ continuity. Ex-
actly the same process is applied for symmetric implicit
algebraic curves of degree d with restricted bases, with
the difference being that the number of degrees of free-
dom is given by dim(Vf“) — 1 as shown in section 2.1.
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Power Series

.2 Computation of a Truncated Power
Series

There are various forms of divided-difference methods
that extract geometric information around a poiit, from
a given list of points [5]. In our case, we choose a
parabola to locally approximate the points about a junc-
tion point, and take out tangential information from the
parabola. The junction points themselves are for now,
computed using the dynamic programming scheme in
[8] which minimizes the error for a piecewise linear
approximation (with fixed number of segments) to a
set of digitized points. Consider a sequence of points

©y Pi=2, Pi—1, Pi, Pi+1, Pi42, - - - around the junction
point p; and an imaginary power series (/(¢) from which,
we assume, the digitized points near p; arise, and whose
parameter value is ¢ = 0 for p;. Then, the tangent
vector of /() at ¢ = 0 can be approximated by the
approximation :

7 (T'
I vz
(0) dist(p;, pi+1)

1 —o;

Q

(Pi+1 — i)

= .7 —\DP; —D;_
Fstlpe1,pr) 7 T PV
dist(pi—i,p:)
dlst(p,,p,+1)+dlst(p, 1L,Pi)

the distance between two points.

Repeatedly applying this approximation formula, we
introduce a divided-difference :

where o; = and dist(x, %) is

4 ifj=0
(@ (1~ )
toee s (= pi)) >0

AjPI =

Using this divide-difference operator, a truncated power
series isrepresented as (;(t) = Ap; +A' pit + A2p;t2 +
-+ AFp;t*.  Note that the geometric information,



stored in the coefficients of the power series is extracted
from a sequence of 2k + 1 neighboring points, centered
at the junction point. This locality in the construction
of a power series enables an interactive local modeling
operation.

EXAMPLE 3.1. In Figure 4, two sets of digitized points
are illustrated. () shows three lists of points that model
engine parts®, and (b) is a sequence of points that mod-
els a goblet. Each point sequence is displayed with
truncated power series of order two at junction points.

3.3 Families of Algebraic Curves [(z,y)

In order to compute each curve segment fi(z,y) = 0
that interpolates two truncated power series (;(¢) and
(' 4+1(t) at two end points p; and p; 4, respectively, we
construct alinear system Myx = 0 where the unknowns
are coefficients of f;(x,y) = 0. The linear system is
made of 2(k + 1) equations that are generated for both
truncated power series. Note that the rank of My must
be less than the number of unknowns for a nontrivial
solution to exist. Any nontrivial solution represents an
algebraic curve that meets (t) and (54 (1) at p; and
pis1. respectively, with ('* continuity. One heuristic
that we have often used is to select a nice curve segment
is to generate a sequence of additional points between
the end points that approximate a curve segment, and
then, apply least-squares approximation to these addi-
tional points. In the case of cubic algebraic curves, in
Section 4 we derive a condition on the Bernstein-Bezier
coefficients of cubic curves, in either the general or the
restricted basis, that guarantees a smooth single curve
segment inside a given control triangle.

In case all possible terms of degree d are used as a
basis of fi(z,y) = 0, then there are (*1?) unknowns,
and hence (d}fz) — 1 degrees of freedom. However,
if we choose a curve from Vf‘i, we have fewer degrees
of freedom due to restriction in the basis. There are
only dim( Vf") — 1 degrees of freedom for degree d, and
this number must not be less than 2(k + 2), the max-
imum possible rank for a homogeneous linear system
that needs to be satisfied for order k continuity. For
instance, for ('' continuity, symmetric cubic curves are
necessary, while order 2 continuity requires symmetric
uartic curves.

34 Piecewise ('* Continuous Revolved
Objects

3This data originated from 3D) scanned engine data from NASA.
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Figure 5: Symmetric (! Cubic and (* Quartic Alge-
braic Splines

(@) (b)

Figure 6: Symmetric (' and Arbitrary (> Cubic Alge-
braic Splines

(@) (b)

Figure 7: (' Cubic and (* Quartic Revolved Surface
Models

(b)

(a)

Figure 8: ("' Cubic and ( 2 Sextic Revolved Surface
Models
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Figure 5 (a) displays piecewise ("' approximation with
cubic algebraic curves in the restricted basis V;. Note
that a symmetric cubic curve in V; can have a tan-
gent line parallel to z-axis only at points on the y-axis.
Hence, the order of geometric continuity is only () at the
extreme junction points on the cowls around which the
curve segments make vertical turnabouts. With sym-
metric quartic algebraic curves in Vf4, it is possible to
approximate the point data with (> continuity every-
where. (See Figure 5 (b).) For the goblet data, cubic
curves in Vf", again, successtully model the data with
(' continuity in Figure 6 (a). Figure 6 (b) shows a (2
approximation of the same data with cubic curves in
the general basis, which, hence, may not be symmetric
about the y-axis.

Once algebraic splines are constructed to fit the digi-
tized data, their revolution surface models are easily ob-
tained, with the appropriate surface degree bounds. (!
approximation with cubic algebraic surfaces is shown in
Figure 7 (a) and are a revolution of the cubic splines in
Figure 5 (a). Quartic algebraic surfaces approximate the
same object well with (% continuity in Figure 7 (b) and
are a revolution of the quartic splines in Figure 5 (b).
A (' cubic algebraic surface goblet is illustrated in
Figure 8(a) and is obtained by revolving the symmetric
cubic spline in Figure 6 (a). The (2 goblet in Figure 8(b)
is obtained by revolving the arbitrary cubic splines in
Figure 6 (b), and is made of degree 6 algebraic surfaces.

4 Cubic Algebraic Splines

In this section, we focus on implicitly defined cubic
algebraic curves, and give conditions on the coefficients
of cubic algebraic curves that guarantee nice properties
inside regions bounded by triangles. These conditions
can be equally applied to cubic curves in the restricted
or the general basis.

Paluszny and Patterson [9] considered a special fam-
ily of implicit cubic curves which yields tangent contin-
uous cubic splines. Our method here ditfers in that both
tangents and curvatures are specified and the splines are
not limited to be convex inside the bounding triangles.
Bajaj and Xu [4] show how to construct (;* continu-
ous cubic algebriac splines, however their method is not
directly applicable for symmetric restricted bases.

39

4.1 Interpolation with Cubic Algebraic

Curves

A general * cubic algebraic curve in the Bernstein basis
is defined as B>(u,v) = Y, <3 wij B (u,v) = 0.
(For introduction to barycentric coordinates, see [6].)
Sederberg [10] proposed to view an algebraic curve as
the intersection of the explicit surface w = B¢ (u,v)
with the plane w = (), hoping to associate geometric
meanings to the coefficients of the polynomial. Espe-
cially, the coefficients in the polynomial are considered
as the w cooruinates of the control net of a triangular
Bernstein-Bézier surface patch, where the coefficient
w;; corresponds to the control point b;; = (%, 1) in the
Bernstein basis. The coefficients w;; is relative to se-
lection of a control triangle 7 = (Fyo, P30, Fo3) in the
power basis. There are ten coefficients, and since di-
viding the equation out by a nonzero number would not
change the algebraic curve, we see that there are nine
degrees of freedom. For symmetric restricted cubic al-
gebraic curves in the Bernstein basis there are only five
degrees of freedom. Hence, three degrees of freedom
are left after (2 interpolation with general cubic alge-
braic curves, and one for (! interpolation with restricted
cubics.

4.2 Computation of Effective Cubic Alge-
braic Spline Curves

We describe in some detail the case of (> continu-
ous general algebraic cubic splines. Computation of
C'! continuous restricted algebraic cubic splines can be
achieved along similar lines. Let ('g,(t) and C'g, (1) be
two truncated power series of degree two that describe
geometric properties at two points m, and m, respec-
tively. One of goals we try to accomplish is to find a
triangle within which a single connected smooth seg-
ment of a cubic algebraic curve is confined such that the
curve segment achieves (/> continuity at my and 7; and
subdivides the triangle into a positive and a negative
space. (See Figure 4.2.)

DEFINITION 4.1. Let 7 be a triangle made of three ver-
tices Pyo, Pao, Foa. Consider a smooth curve segment of
degree n on B%(u,v) = 0 whose two end points are on
the two sides Fpo P40 and Poo Foq. The curve segment is
called an effective algebraic spline associated with the
bounding triangle T if the curve segment intersects ex-
actly once a line segment connecting Fyo and any point

4We use the adjectives general and restricted to distinguish cubic
algebraic curves in the general and the restricted bases, respectively.
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Figure 9: An Effective Spline Curve

on the side Pgo Pog.

The restriction imposed in the definition of an effec-
tive spline reomves disconnected curve segments, loops,
unwanted extra pieces and singularities from within the
bounded triangle. It also forces the spline curve seg-
ment to subdivide a bounding triangle into a positive
and a negative space. The ability of finding an effective
spline with a proper bounding triangle is essential in that
itallows easy implementations of many geometric mod-
eling operations [1]. A point can be easily classified as
in, out, or on the boundary of an object that is made of
several algebraic splines. This point-classification op-
eration is a primitive operation to high level geometric
modeling operations.

For a spline curve segment that is (2 continuous
at the end points mo and m; within the triangle 7, in-
terpolation of the respective truncated power series at
these points with a cubic polynomial generates six con-
straints, leaving three degrees of freedom. After solving
the homogeneous linear system with ten unknowns, and
six linearly independent constraints, the ten coefficients
can be expressed in terms of linear functions in four
free parameters Ao, Aj, Az, and A3, We next set up
constraints on these free parameters such that for fea-
sible values of A;, ¢ = 0,1,2,3, the curve segment is
a single piece within 7. Note that the feasible values
of \;, ¢ = 0,1,2,3, are those for which the triangular
Bernstein-Bezier surface patch corresponding to 7 in-
tersects the plane w = 0 within 7 exactly once and as
shown in Figure 10.

LEMMA 4.1. Let ten coefficients w;; of B*(u,v) be ex-
pressed linearly in terms of Aj, j = 0,1,2,3 after 0+
interpolationof C'p,(t) and (g, (t) at mo and 7, respec-
tively, with respect to a control triangle T . Then, there

exists an effective cubic algebraic spline associated with
T if and only if there exists some A;, j =0,1,2,3 such

that the univariate cubic polynomial G(z) £ B3((1 —
o), ax) = ga(a)x + ga(@)2? + gi(a)z + go(«) has
one and only one root in 0 < x < 1 for all c« € [0, 1].
The gi(«), (i = 0,1,2,3) are polynomials of degree i
in c with coefficients which are linear relations on w;;
and hence of the free parameters X;, (3 = 0,1,2,3).

PROOF : See [3]. O

Due to the limited space, we now present only the
final results Details can be found in [3]. Consider the
three cases where h; (), (i = 0,1,2,3)isadegree 3 —:
polynomial in « and a linear combination of the above
¢i(«) polynomials. The coefficients of ;(«) are linear
combinations of the free parameters A;, (j = 1,2,3):

e [CASE 1] hafa) = 1 > 0, hia)? —
3hs(c)hi () <0, hy(er) <0

e [CASE 2] hi(«) =1 >0, (either hy(c) >0
or hy(a) <0), ho(e) <0
e [CASE 3] hs(e) = 1 > 0, ha(er) < 0,

hi(e) > 0, ho(x) < 0, ha () = 3hs(a)hy () >
0, (=27ho(c)hs(@)? + 9h(@)ha(a)hs(a) —
20, ()?) > 0,
(27ho(a)*hs(a)? — 18hg(ct)hy(ev)ha () hs(er) +
4hy () ha(a)+4ho()ha () =hy () ha()?) >
0

THEOREM 4.1. Let ten coefficients w;; of B*(u,v) be
expressed linearlyin terms of A;, j = 1,2, 3 withwoo =
1 after C* interpolation of C'g,(t) and C'g, (t) at 7 and
w1, respectively, with respect to a control triungle T .
Then, there exists an effective cubic ulgebraic spline
associated with T if and only if there exists some A;,
j = 1,2,3 such that, for all o« € [0,1], either [CASE
1], [CASE 2], 0r [CASE 3] is satisfied.

Theorem 4.1 generates inequality constraints whose
expressions are linear, quadratic, cubic, and quartic in
A, A2, A3. Hence, all the feasible solutions (A}, A,,
A3) of those constraints comprise a union of subspaces
in the three dimensional A| A A3 solution space bounded
by linear, quadratic, cubic, or quartic algebraic surfaces.
Choosing an effective cubic algebraic spline associated
with a bounding triangle becomes equivalent to finding
feasible points in these subspaces. In our implemen-
tation we currently use standard nonlinear numerical
optimization techniques to compute feasible solutions.
Given the low dimensionality of the solution space and
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Figure 10: ¢ Continuous Cubic Algebraic Spline
Curves

the bounded degree of the constraints, we are currently
experimenting with symbolic methods which yield a cell
decomposition of the feasible region for easy solution
point generation and navigation.

EXAMPLE 4.1. Figure 10(a), shows three instances
of cubic algebraic curves that (' interpolate the
two endpoint truncated power series Co(¢) = (1 +
t,82) and C1(t) = (t,1 — 2*) with respect to
T ((0.0,-1.0),(1.5,0.5),(0.0,1.5)). The three
curves chosen from the four dimensional space are
folz,y) = 0.75733323 — 1.19933 22y — (.768667 2> +
0.5346672y* + 02zy — 0.734667x + 0.004y> —
0.246y* — 0.504y + 0.746, fi(z,y) = 4.082° —
7.3722y—5.992240.0621> +0.22y—0.262 —1.42y> —
1.67y* + 0.92y + 2.17, and fo(z,y) = 0.4213332° —
0.575333 2%y — 0.2406672° + 0.582667 2% + 0.2zy —
0.782667x 4 0.148y* — 0.102y? — 0.648y + 0.602. As
(2 continuity implies, f;(C;(t)) = O(£}),i = 0,1,2,
J = 0, L. Figure 10(b) illustrates how a cubic Bernstein
surface patch intersects once with the bounding triangle
to produce an effective cubic algebraic spline.

5 Conclusion

We have presented a comprehensive characterization
and computation of the appropriate degree restricted
bases for implicit and parametric generating spline
curves which would yield revolution surfaces of the
same algebraic degree as the degree of the curves. A
number of open problems remain, as mentioned in this
paper, and we are currently pursuing these.
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