
53

A Ray Tracing Accelerator Based on a
Hierarchy of 1 D Sorted Lists

Alain Fournier
Pierre Poulin

Department of Computer Science
University of British Columbia
{fournier I poulin}@cs.ubc.ca

ABSTRACT

Since the introduction of ray tracing as a rendering tech­
nique, several approaches have been proposed to reduce
the number of ray/object intersection tests. This paper
presents yet another such approach based on a hierarchy
of ID sorted lists. A bounding box aligned with the axes
encloses an object. The coordinates of each bounding box
are ordered in three sorted lists (one for each axis) and are
treated as event3. Traversing a scene with a ray consists of
traversing each sorted list in order, intersecting an object
only when for this object a first event has been encoun­
t ered (entered) in every dimension before a second event
has been encountered (exited) in any dimension. To re­
duce the number of events (entries and exits) traversed, a
hierarchy of sorted lists is constructed from a hierarchy of
bounding boxes . The results are favourable for scenes rang­
ing from moderate to high complexity. Further applications
of the technique to hardware assist for ray tracing and to
collision detection are discussed.

RESUME

Depuis l'introduction du lancer de rayon comme tech­
nique de synthese d 'image, plusieurs approches ont He pro­
posees pour reduire le nombre de tests d'intersection entre
les rayons et les objets. Cet article presente une approche
basee sur une hierarchie de listes ordonnees dans chaque di­
mension. Chaque object est entoure par une boite alignee
avec les axes. Les coordonnees de chaque boite sont or­
donnees dans trois listes (une pour chaque axe) et sont
traversees comme des evenement3. Traverser une scene avec
un rayon consiste a traverser chaque liste en ordre, inter­
sectant un object seulement s'il a ete rencontre par un pre­
mier eVEmement (d'entree) dans toutes les dimensions avant
un deuxieme evenement (de sortie) dans n'importe quelle
dimension. Pour reduire le nombre d' evenements (entrees
et sorties) traverses, une hierarchie de listes est construite
a partir d 'une hierarchie de boites . Les resultats sont fa­
vorables pour des scenes de complexite moyenne a eIevee.
D'autres applications de la technique pour l'acceleration
par materiel du lancer de rayon et pour la detection des
collisions sont aussi presentees.

KEYWORDS: ray tracing, acceleration, culling, sp::.ce
subdivision, bounding volumes, collision det.'.'!ction.

INTRODUCTION

Whitted [whit80) introduced ray tracing as a rendering
technique. In its naive implementation, each ray must be
intersected with each primitive in a scene. This approach is
feasible only for scenes of modest size, and much research
has focused on ways to make this technique more efficient
for complex scenes.

Arvo and Kirk [arv089) give a good survey of ray trac­
ing acceleration techniques. They classify acceleration tech­
niques in three categories: (1) faster intersections, (2) fewer
rays and (3) generalised rays. Faster intersections are ob­
tained by (l.a) reducing the intersection cost ·between a
primitive and a ray or by (l.b) reducing the number of
ray / object intersection tests. Our ray tracing acceleration
belongs to this later classification (l.b). This category in­
cludes various space subdivision schemes, directional tech­
niques and hierarchies of bounding volumes.

We can divide 3D spatial subdivision algorithms into two
classes: uniform and non-uniform. Uniform subdivision
[fuji86) [aman87) has the advantage of being easy to imple­
ment and the cost of traversing each element of the regular
grid is very small. Unfortunately, the performance degrades
when there are too many voxels because many empty voxels
might be traversed and because of the cost of storage of the
voxels. The performance degrades also when there are too
few voxels because of the possibility of having a large num­
ber of objects to intersect within a single voxel. Moreover,
there is not yet any good criteria to determine the optimal
or even near optimal grid subdivision for a given scene.

Non-uniform space subdivision can adapt its resolution
to the complexity of a scene and therefore it is less sensi­
tive to the problems of uniform space subdivision. U nfortu­
nately, traversing a non-uniform structure is more expensive
than traversing a regular grid. Various non-uniform subdi­
visions have been used, including irregular grids [giga88),
octrees [glas841, BSP trees [kap185) and k-d trees [fuss88).
Snyder and Barr [snyd87) propose a technique that can be
used along with most of these techniques. They surround

Graphics Interface '93

each ray by a box to check against the bounding volumes
of the objects to intersect. Some researchers have also pro­
posed to use combinations of uniform and non-uniform sub­
divisions to alleviate the disadvantages of each structure
while trying to benefit from their respective advantages.

Directional techniques rely, as the name indicates, on the
direction a ray takes. These directions are classified by di­
rection cubes subdivided regularly or adaptively. The cubes
can be located at specific point locations as for the light
buffer [hain86), onto surfaces as for ray coherence [ohta87)
or in volumes as for ray classification [arv087J.

Other algorithms have been using hierarchical bounding
volumes to reduce the number of ray/object intersection
tests. Rubin and Whitted [rubi80) were the first to use hi­
erarchies of bounding volumes in ray tracing. Weghorst et
al. [wegh84) studied criteria for choosing efficient bounding
volumes for ray tracing. Kay and Kajiya [kay86) use slabs as
tighter bounding volumes. Charney and Scherson [char90)
use binary trees of bounding volumes to reduce the num­
ber of ray/bounding volume intersections. However each
of these approaches (except [char90)) relies on sorting the
intersections with sub-bounding volumes or primitives each
time a bounding volume is entered. We propose to sort once
as preprocessing the bounding volumes along three orthog­
onal axes. This, as we will see later, still requires some
sorting for each level of the entered bounding volumes, but
we claim that the savings in unnecessary intersections and
sortings are valuable. The traversal also allows for a fast
initialisation of secondary rays.

To make the description of our method clearer, we will
start by describing the ray traversal without any hierarchy.
Then, we will explain how we build automatically our hi­
erarchies and how to make the required extensions to the
ray traversal. Finally, we will compare our algorithm to
uniform grid traversal to show its advantages and disad­
vantages, and discuss other possible developments.

TRAVERSING SORTED LISTS

Assume each object is surrounded by a 3D bounding box,
a parallelepiped aligned with the axes. For each axis, this
bounding box is delimited by two values in world coordi­
nates that we call events. Three doubly linked event lists
are constructed from the events of every bounding box in
the scene. Each node in these lists contains the value of its
event (world coordinate), an integer ranking this event, a
pointer to its object and pointers to the previous and next
events.

When a ray traverses a scene, it goes through a series of
events determined by the event lists . Assume for now that
the ray origin is outside of all three event lists. The first
event in each X, Y and Z event lists are identified, according
to the ray origin and direction. A ~t is associated with the
distance traversed along the ray such that

A [.) _ (event[i) - ray.origin[i))
ut I - ,

ray.dir[i)
i E X,Y,Z.

54

For each next event in the three event lists, the ~t's are
computed and the smallest is chosen and treated. After
this event has been treated, only the ~t for the next event
in the corresponding event list needs to be recomputed.

The ray owns a list of active objects in what we call a
ray list. For an object to become active, an event has to
occur for it in X, Y and Z. Treating an event corresponds
to do the following:

if the object is marked processed for the current ray
return

test the event status for the current bounding box
if the event is IN in the current dimension

if the object is marked IN in every other dimension
the object is added to the ray list
the object is tested for intersection

else 1* the event is 0 UT in the current dimension * /
the object is marked processed for this ray
if the object is marked IN in every other dimension

the object is removed from the ray list.

The event lists are traversed until the end of one of the
lists is reached or until the next event has a ~t larger than
the ~t of the closest intersection computed so far.

When a secondary ray (reflection, refraction, shadow) is
started after an intersection, the ray list of its parent ray
is first copied for this secondary ray. The next events must
then be found . For each dimension, the next event is the
same as the parent ray if the secondary ray has the same
direction. Otherwise the next event is simply the previous
event. Since the origin of the secondary ray and of the pri­
mary ray are different, the three ~t's need to be recomputed
too. Finally, once this initialisation is done, before treating
any event, the ray list is checked for the objects that are
IN in every dimension. These objects will be tested for in­
tersection and the smallest positive ~t will be kept in case
of intersection. After this initialisation, the secondary ray
can traverse the scene as previously described.

In the general case the camera position, which is the
origin of the primary rays, can be inside the event lists . Its
ray list also needs to be initialised. For that purpose, once
per image, as preprocessing, the event lists are traversed,
one at a time, from any end of each event list until the
camera position is reached. No intersection is computed
during this traversal. When a primary ray is shot, the same
initialisation than for a secondary ray occurs, but the ray
list of the camera is used as the ray list of the parent ray.

We implemented our algorithm as described in this sec­
tion. As expected, we observed a great reduction in the
number of ray/object intersection tests over testing every
primitive. In fact, our ray traversal guarantees the minimal
number of ray/object intersection tests if this number is
solely based on the information provided by the 3D bound­
ing volumes. Table 1 shows the results for two standard

Graphics Interface '93

55

Ray Traversal No Grid 3 Sorted Lists
Technique No Hierarchy

Scene Number Minimum Time per ray Intersections Events Time per ray
Objects Intersections (msec) (per ray) (per ray) (msec)

Spheres I 11 0.34 0.25 1.30 28.2 0.58
Spheres II 92 0.38 1.29 1.41 241.7 3.67
Spheres III 821 0.42 10.69 1.50 2048.8 29.75
Tetra I 4 0.32 0.12 2.07 4.9 0.27
Tetra II 16 0.30 0.20 2.72 19.2 0.51
Tetra III 64 0.29 0.54 3.29 78.8 1.41
Tetra IV 256 0.29 1.90 3.61 322.3 4.92
Tetra V 1024 0.28 7.30 3.77 1315.8 18.98
Tetra VI 4096 0.27 28.80 3.84 5354.1 75.58
Teapot 29 1.00 1.67 2.70 119.9 2.63

Table 1: No Hierarchy

test scenes [hain87) (top left and bottom right of figure 2)
and Newell's teapot. We can observe that increasing the
number of objects in these scenes leads to a fairly stable
ratio of intersections for our ray traversal technique while
the naive approach must test for intersection every prim­
itive. For instance in "Spheres Ill", uniform grid traver­
sal must perform 1955 times more ray/object intersection
testing than the minimum while the ratio for list traver­
sal is only 3.57. Therefore, we met our goal of reducing
the number of ray/object intersection tests. Unfortunately,
treating an event represents a significant portion of inter­
secting a bounding volume. Moreover a large number of
events is treated as illustrated by the Events column for
each scene. These events account for the major portion of
rendering time. So much in fact that as the number of ob­
jects increases , traversing their respective events completely
overwhelms the benefits of the reduction of ray/object in­
tersection tests.

To reduce the number of events to traverse, we adopted a
strategy based on a hierarchy of event lists. The attraction
of the hierarchical structure lies in its low sensitivity to the
complexity of a scene. Assuming a well balanced tree to
represent a hierarchy, adding an order of magnitude more
objects to a scene leads only to a logarithmic increase of
the rendering complexity. In the next two sections , we will
explain how we build our hierarchies and what are th.eir
effect on the performance of our implementation.

BUILDING A HIERARCHY OF SORTED LISTS

Building an optimal hierarchy can lead to a logarithmic
growth of the number of intersection calculation per ray as
a function of the number of objects. As such, this approach
is very appealing for any ray tracer that might need to ren­
der thousands , if not millions of primitives. Building an
optimal hierarchy, however, can be very costly as the num­
ber of objects increases, and often we do not know enough
about the statistics of the scene to define adequate criteria
of optimality. Most criteria are based on the randomness

of the direction of rays, but this is not met in most scenes
where a large proportion of rays emanates from a single po­
sition (the camera position) or are directed towards a few
positions (light sources) . Nevertheless, some simple criteria
are useful to roughly estimate the relative cost of different
hierarchies.

Various criteria have been proposed to evaluate hierar­
chies. Weghorst et al. [wegh84) included the cost of in­
tersection and the tightness of fit of the bounding volumes.
Kay and Kajiya [kay86) relied mostly on surface area and
closeness between objects. Goldsmith and Salmon [gold87)
used surface area and conditional probability to intersect
the enclosed objects.

Building a hierarchy of bounding volumes can be done
manually, automatically or both. For instance, a single
bounding volume containing an entire hierarchy can be
added automatically while its content will remain in the
same structure. Our automatic hierarchy of bounding vol­
umes is built in a top-down fashion using proximity to cur­
rent volumes. It is very similar to Glassner's [glas88) con­
struction except for the fact that we permit overlapping
between bounding volumes . This avoids splitting objects
or duplicating them in two or more volumes . This also
allows for easier merging of hierarchies.

First the bounding volume enclosing the entire scene is
computed. If this bounding volume encloses more than a
predefined number of objects, it is subdivided. To subdi­
vide this volume, a regular grid is laid on it in order to
partition it into smaller volumes. It is important to note
here that the resolution of the grid can be different along
different axes. The center of mass of the bounding volume
of each object is computed and the object is included in
the grid element countaining its center of mass . For each
grid element, two kinds of boundaries are maintained: the
boundaries defined by the regular grid, and the boundaries
defined by the bounding volumes of the included objects .

Graphics Interface ' 93

At the end of one pass, the latter becomes the permanent
boundaries of the bounding volume. It is therefore conceiv­
able to end out with empty (in which case they are removed
from the structure) or overlapping bounding volumes.

This subdivision scheme is applied recursively until the
number of objects in a bounding volume is smaller than a
specified threshold or all the remaining objects are added
to a single bounding volume. In this case, at least one ob­
ject must cover a large portion of the bounding volume.
These objects are identified and put in a special grid el­
ement for this bounding volume. A bounding volume has
then a predefined maximum number of children, but the ac­
tual number varies; as we have seen the empty volumes are
removed from the data structure. Once the entire hierarchy
is built, the event lists are built for every bounding volume.
In the following, to simplify the terminology we will use
the term object.5 to designate the bounding volumes of sin­
gle objects (the leaves of our tree), and bounding volume.5
for the non-leaf nodes.

TRAVERSING A HIERARCHY OF SORTED LISTS

In order to use this hierarchy in our ray traversal scheme,
we must modify a few elements of our algorithm. First,
both objects and bounding volumes can appear in the ray
list; they have to be treated differently. When an object is
entered in its three dimensions, it is tested for intersection.
When a bounding volume is entered in its three dimensions ,
it is opened. Opening a bounding volume corresponds to
traversing the list of events of the bounding volume in every
dimension but the current one. These events are traversed
until the ~t of the next event is greater than the ~t in the
current dimension. The next events in every dimension will
then be added to the list of next events according to their
~t's .

Since a list of events is sorted in advance only for each
direct children of its bounding volume, we need be able, to
chose efficiently the next events among the candidates from
each currently opened bounding volume. The li.5t of nezt
event.5 in one dimension is a list ordered by the ~t's of its
events. When a bounding volume is opened, its next events
are the OUT events in every dimension. The events within
the bounding volume must also be treated, which explains
the need for a list of next events per dimension, with one
node for each opened bounding volume.

When a bounding volume has been entered in every di­
mension, the next OUT event for itself requires a clean-up
of the list of next events. Every next events for the other
dimensions that correspond to an object/bounding volume
of the current closing bounding volume must be removed
from the list of next events.

To better understand the hierarchical ray traversal, con­
sider the 2D example of figure 1. The ray starts at origin
O. The first event encountered (event 1) is IN in X for the
bounding volume. This event is followed by event 2 in Y.
Since we are in 2D and both dimensions are IN, we need

56

15,16 - -r-----"""T"-------.
A

12- - - - - - - ..---+-----~
B

10 - -f-----jf-_f_

8--

6 -
c

2,4 - -,....:;.......;.-"""T"--I..-""""!"'-~

I

o 1,3 5 7 9 11 13,14

Figure 1: Ray hierarchy traversal

now to open this bounding volume and to add it to the ray
list. It contains three objects A, B and C. Since we entered
in Y, we need to update the events only in X . We traverse
event 3 IN in X from object A and event 4 in Y from object
C. Then 5 in X and 6 in Y requires an intersection test of
object B. If an intersection is found that has a ~t smaller
than the next event (7), then the ray traversal is stopped.
If the ~t is larger than the one of event 7, since the inter­
section must be along the ray and within object B, we are
guaranteed the ~t must be smaller than the ~t of event 11
and therefore, the ray traversal will stop before event 11 is
treated. If no intersection is found , the traversal continues
with event 7. Event 7 is an OUT in X for object A with no
IN in Y. So object A is marked as processed for this ray.
Similarly when event 8 is treated, object C is marked pro­
cessed. If we look at the list of next events at this point, we
find in X the next events being 9 (IN for object C) and 14
(OUT for bounding volume) in that order. In Y, we have 10
(IN for object A) and 16 (OUT for bounding volume) . At
events 9 and 10, objects C and A are not treated since al­
ready marked processed. After event 11, object B is OUT,
so it is removed from the ray list and marked as processed.
At event 12, B is not treated. Object C is not treated again
at event 13 in X and at event 14, the bounding volume is
exited. It is marked as processed and removed from the
ray list. While closing this bounding volume, every event
associated with objects A, B and C will be removed from
the list of next events (i.e. 15 in Y for object A) . The final
event to be treated will be 16, an OUT in Y.

RESULTS AND COMPARISONS

We compared our list traversal algorithm to the uniform
grid traversal described in [aman87) . Uniform grid traver­
sal is a fairly standard acceleration technique we believe is
stable enough from implem entation to implementation t o
be considered a good frame of reference. Some compar­
isons between uniform grid traversal and other acceleration
techniques can be found in Ueva89) [sung91) [subr91) .

Graphics Interface ' 93

Figure 2: Haines' Testbed Scenes

Figures 3 through 10 give the timings and intersection
computations for uniform grid traversal and list traversal
for Haines' testbed scenes [hain87) illustrated in figure 2.
Each scene is a sequence of increasing complexity. If we
consider the number of intersections tested, except for the
first 500 objects in the tetrahedron scene of figure 10, list
traversal is always well below uniform grid traversal for a
grid resolution of 30 X 30 X 30. In fact in most cases, the
curves for the number of intersection tests for list traver­
sal follow quite nicely the curves for the minimum num­
ber of intersections. This is still true even if we include
the number of bounding volumes opened. For two of these
scenes (Spheres of figure 3 and Tree of figure 5) , the render­
ing time of list traversal is significantly lower than uniform
grid traversal. For these two test scenes, the list traversal
curves approximate well a logarithmic rate of growth. For
the other scenes however we do not have the same situa­
tion. In those scenes (Gears of figure 7 and Tetrahedron of
figure 9), while the number of intersections tested remain
much lower with list traversal, we observe that the number
of events in list traversal is quite larger than the number of
intersections in grid traversal. This large number of events
treated is attributable to the characteristics of the hierar­
chy.

In Gears (figures 7 and 8), often several events occur
at the same coordinate. For instance, each tooth (145 per
gear) produces two events in Z at the same coordinates than
the two faces of the gear. This means a ray has to traverse
several layers of the hierarchy and treat several events in
Z before finding an intersection. On the other hand, each
occupied voxel has a maximum average of 22.8 polygons per

57

voxel (for 31537 objects) and very few occupied voxels are
traversed before an intersection is found. Since treating an
event is a significant fraction of computing the intersection
of a ray with a polygon, the time saved on intersection is
more than offset by the cost of event processing.

In Tetrahedron (figures 9 and 10) , the maximum average
number of objects per occupied voxel is 28.6 (for 65536
objects). Up to 14 intersection tests per ray are observed
for grid traversal. Our automatic hierarchy ends out with
a balanced tree with 8 levels, 4 nodes for each level with all
objects in the lowest level. A ray coming from the eye would
therefore have to traverse a minimum of 24 events before
intersecting a triangle. Unfortunately, a ray traverses in
average 3 times this number of events which makes grid
traversal faster than list traversal.

It should be noted that especially in the last example,
the cost of testing an intersection is quite low due to the
simplicity of each primitive object (a triangle) . In the case
of more costly primitives (such as parametric patches), if
treating an event is much faster than testing an intersection,
there will always be a scene of a size such that list traversal
will result in less computing time.

These results prove the efficiency of hierarchies of bound­
ing volumes for some scenes but also its deficiency for oth­
ers. The timings obtained in this paper are for a very sim­
ple algorithm to build automatically the hierarchy. Minor
changes in the algorithm resulted in drastic differences in
rendering time. This suggests, as many researchers previ­
ously working with hierarchies of bounding volumes con­
cluded, the strong need for a better algorithm to build hi­
erarchies and methods to evaluate their efficiency.

While the proposed testbed from Haines measures some
important aspects of ray tracing, it is not typical of scenes
used in computer animations. We compared list traversal
to grid traversal with a scene taken out of the computer
animation: Around Again [tess92) . This scene is made
of 25426 triangles, 4610 quadrilaterals and 636 polygons
with more than four vertices. Figure 11 shows the rendered
scene. This scene is representative of a more typical scene
with large meshes of small polygons (cans) positioned next
to long polygons (walls and ground) . On this scene, grid
traversal tested as much as 618 times the minimum num­
ber of intersections. List traversal tested only 4.5 times this
number and this resulted in 35% of the total rendering time
of a 30 X 30 X 30 grid traversal.

FURTHER DEVELOPMENTS

Traversing Multiple Directions

We described 3D traversal with three ID sorted lists. It
is also possible to use multiple sorted lists to do the traver­
sal. In that sense, we could use an arbitrary number of
directions with their sorted lists and therefore build con­
vex slabs as in Kay and Kajiya [kay86) . The added cost is
from adding new sorted lists to traverse, new dimensions

Graphics Interface '93

58

nmoc_>.I03
rT------~------_,-------,--_,md

6.50 'tl\n

6.00

S.SO

S.OO

4.SO

4.00

3.50

3.00

l.5O

2.00

1.50

1.00 L------------..... -.. --... -.... - ..
0.50

0.00
~----------~--------~---------L---+~~~~«U.103
0.00 20.00 40.00 60.00

Figure 3: Sphereflakes' timings

n ... c_ >.I03

1.00 ~-------r-------r------_,~md

7.SO
'tl\n

7.00

6.SO

6.00

S.50

S.OO

4.50

4.00

3.SO

3.00

l.5O

2.00

I.SO

1.00

O.SO ----_ _ .•.......•............... -----
0.00

0.00 10.00 20.00 30.00

Figure 5: Tree's timings

N..-of Int..-Iano per JUy

200.00

190.00

180.00

170.00

160.00

1SO.00

140.00

130.00

120.00

110.00

100.00

90.00

80.00

70.00

60.00

SO.OO

40.00

30.00

20.00

10.00

0.00

70&
't1bj -- ----- .
biij Aboi-
tvtrii- - --

-----_.

~----------L---------~-------L---+~~~Obj«U.103
0.00 20.00 40.00 60.00

Figure 4: Sphereflakes' intersections

ro---------r--------.---------r---.~~~---

130.00 't;M"' .. :-----

120.00

110.00

100.00

90.00

80.00

70.00

30.00

20.00 /'
I

10.00 !

0.00

--------~------- ----- -.

10.00 20.00 30.00

Figure 6: Tree's intersections

't1bj ... -- ---_.
bbjCc1.1iho,- .
l --- ·

Graphics Interface ' 93

59

TIme(ICC)'I03 NWJlbc< 01 Intencctiono pe< 1Uy

1.40

1.30

1.20

1.10

1.00

0.90

0.80

0.10

0.60

0.30

0.40

0.30

~-----------L----------L----------L~~~oIObj«U'I03
0.00 10.00 20.00 30.00

Figure 7: Gears' timings

TIme(_)

110.00 ,.....,----------..,-----------r----------.-----..'tn.r
160.00

130.00

140.00

130.00

120.00

110.00

100.00

90.00

80.00

10.00

60.00

30.00

40.00

30.00

20.00

10.00

'lliin

LJ----------~---------L--------~--~~~oIObj«U'I03
0.00 20.00 40.00 60.00

Figure 9: Tetrahedron's timings

44.00

42.00

40.00

38.00

36.00

34.00

32.00

30.00

21.00

26.00

:14 .00

22.00

20.00

11.00

16.00

14.00

12.00

10.00

8.00

6.00

4 .00

2.00

0.00

60.00

30.00

40.00

30.00

25.00

20.00

0.00

Graphics Interface '93

I
r

I

I
I

I

---""

------------------------ ----------
-------------.---------_.-_._ ---------.

Mtn
(:5bject ------ ·

b!;jOc"i.libO'- .
'tvenr.- - - .

~----------~--------~-----------L~~~oIObj«U'I03
0.00 10.00 20.00 30.00

Figure 8: Gears' intersections

,,---------r--------.---------r---,~hri~dr----

,
I

","'- -
.. ----- --- --- ---- MiD

't5bjCCi------·
b!;jOc"i+lIbOi" .
'tvUii- - _.

LJ'-________ .J-________ -'--________ ~ __ ~Hun~ oIObj«u' 103
0.00 20.00 40.00 60.00

Figure 10: Tetrahedron's intersections

Figure 11: Scene out of the computer animation Around
Again

to keep in the ray lists and new entries for the lists of next
events. This cost would be offset only if the reduced area of
the slabs versus regular 3D bounding boxes is significant,
which has yet to be shown.

Hardware Ray Tracing

We used in our implementation sorted lists aligned with
the axes in world coordinates. We can use different axes
to speed up certain aspects of the ray traversal. If the
traversal is done in the screen coordinate system, after the
perspective transformation, all the primary rays have an
origin at the center of pixels, and are parallel to the Z axis.
For a ray, once the XY traversal is done to establish the ray
list at the origin, only Z traversal takes place, and no f:l.t
has to be computed. For the following pixel, the original
ray list is inherited from the preceding one, with only a
short X or Y traversal necessary to update it. After, the
traversal is done only in Z. The whole process is easily done
in firmware or hardware. Such an approach is compatible
with the extensions included in the ZZ-buffer of Salesin and
Stolfi [sale90).

It is also possible to transform the coordinates to speed
up shadow determination for up to two directional light
sources. To do so, two of the axes become the direction of
each light source while the third is the direction away from
the screen. Traversing the events to find the visible surface
or the shadow determination is then done only for one list
at a time.

60

Collision Detection

A ray list can be associated with the leading vertex of
a bounding volume of an object . This leading vertex cor­
responds to the first vertex in the motion direction. To
determine if a collision occurs while this object is moving
in a 3D scene, we simply need to traverse the sorted lists
in the motion direction. An event will be considered IN in
one dimension if there is an overlap between the moving
bounding box and the bounding box of the treated event .
An intersection will be performed only when the event sta­
tus is IN in every dimension. Once again, this scheme is
suitable for hierarchies of bounding volumes.

CONCLUSION

We presented a speed up technique for ray tracing based
on a hierarchy of ID sorted lists. Unlike previously pro­
posed bounding volumes approaches, our technique relies
on pre-sorting the coordinates of the bounding volumes be­
fore rendering to avoid sorting intersections during render­
ing. This technique guarantees we always open a bounding
volume or intersect an object in the order the ray traverses
the scene. In that sense, if we rely only on the informa­
tion provided by the bounding volumes of objects, we are
guaranteed the minimum number of intersection tests with
the objects, even for overlapping bounding volumes. The
overlapping also allows for a more flexible handling of hier­
archies.

The results demonstrate the interest of this technique for
scenes of moderate to high complexity (~ 10,000 of objects).
The graphs show how this technique is expected to be faster
than uniform grid traversal as the number of objects grows.
With the advent of faster CPUs and cheaper memory, we
expect the number of objects used in common ani mat ions
to reach easily this level of complexity. If ray tracing is
considered for rendering these scenes, we believe hierarchies
of some sort are the only realistic approach.

The next step in that direction should address the issue
of creating more reliable hierarchies of bounding volumes.
Many papers proposing hierarchies of bounding volumes
to speed up ray tracing give various criteria to consider,
but none seem to be implementing any of these criteria
other than the proximity of the objects. In this paper,
we described a technique similar to Glassner 's [glas88) to
create better hierarchies. However our experience shows
how sensitive the rendering time can be to small changes in
hierarchies. Better results in this direction are expected.

Finally, traversing a hierarchy of bounding volumes lends
itself well to parallel processing. We are currently investi­
gating the impacts of using our ray traversal method in this
context .

ACKNOWLEDGEMENTS

We would like to thank Andrew Woo for his comments
on early drafts of this paper, Chris Romanzin for his script

Graphics Interface '93

conversion program and Markus Tessmann for his scene de­
scription taken from Around Again. We acknowledge finan­
cial support from NSERC, ASI, IBM Canada, UGF and the
University of British Columbia.

REFERENCES

[aman87] John Amanatides and Andrew Woo. "A fast
voxel traversal algorithm for ray tracing". Eu­
rographics '87, pp. 3-10, August 1987.

[arvo87] James Arvo and David Kirk. "Fast Ray Trac­
ing by Ray Classification". Computer Graphics
(SIGGRAPH '87 Proceedings), Vol. 21, No. 4,
pp. 55-64, July 1987.

[arvo89] James Arvo and David Kirk. "A survey of ray
tracing acceleration techniques". An introduction
to ray tracing. pp. 201-262. Academic Press,
1989.

[char90] Mark J. Charney and Isaac D. Scherson. "Ef­
ficient Traversal of Well-Behaved Hierarchicial
Trees of Extents for Ray-Tracing Complex
Scenes". The Visual Computer, Vol. 6, No. 3,
pp. 167-178, June 1990.

[fuji86] Akira Fujimoto, Takayuki Tanaka, and Kansei
Iwata. "ARTS: Accelerated Ray Tracing Sys­
tem". IEEE Computer Graphics and Applica­
tions, Vol. 6, No. 4, pp. 16-26, 1986.

[fuss88] Donald Fussell and K.R. Subramanian. "Fast
Ray Tracing Using K-D Trees". Technical Re­
port TR-88-07, U. of Texas, Austin, Dept. Of
Computer Science, March 1988.

[giga88] Michael Gigante. "Accelerated Ray Tracing Us­
ing Non-Uniform Grids". Proceedings of Aus­
graph '90, pp. 157-163, 1988.

[glas84] Andrew S. Glassner. "Space Subdivision For Fast
Ray Tracing" . IEEE Computer Graphics and Ap­
plications, Vol. 4, No. 10, pp. 15-22, October
1984.

[glas88] Andrew S. Glassner. "Spacetime ray tracing for
animation". IEEE Computer Graphics and Ap­
plications, Vol. 8, No. 2, pp. 60- 70, March 1988.

[gold87] Jeffrey Goldsmith and John Salmon. "Auto­
matic Creation of Object Hierarchies for Ray
Tracing". IEEE Computer Graphics and Appli­
cations, Vol. 7, No. 5, pp. 14-20, May 1987.

[hain86] Eric A. Haines and Donald P. Greenberg. "The
Light Buffer: A Ray-Tracer Shadow Testing Ac­
celerator" . IEEE Computer Graphics and Appli­
cations, Vol. 6, No. 9, pp. 6-16, September 1986.

[hain87] Eric Haines. "A Proposal for Standard Graphics
Environments" . IEEE Computer Graphics and
Applications, Vol. 7, No. 11, pp. 3-5, November
1987.

61

lieva89] David Jevans and Brian Wyvill. "Adaptive
voxel subdivision for ray tracing" . Proceedings of
Graphics Interface '89, pp. 164-172, June 1989.

[kapI85] M. Kaplan. "Space-Tracing: A Constant Time
Ray-Tracer". SIGGRAPH '85 State of the Art
in Image Synthesis seminar notes. pp. 149-158.
July 1985.

[kay86] Timothy L. Kay and James T. Kajiya. "Ray
Tracing Complex Scenes". Computer Graphics
(SIGGRAPH '86 Proceedings), Vol. 20, No. 4,
pp. 269-278, August 1986.

[ohta87] Masataka Ohta and Mamoru Maekawa. "Ray Co­
herence Theorem and Constant Time Ray Trac­
ing Algorithm". Computer Graphics 1987 (Pro­
ceedings of CG International '87), pp. 303-314,
1987.

[rubi80] Steven M. Rubin and Turner Whitted. "A
3-Dimensional Representation for Fast Render­
ing of Complex Scenes". Computer Graphics
(SIGGRAPH '80 Proceedings), Vol. 14, No. 3,
pp. 110-116, July 1980.

[sale90] David Salesin and Jorge Stolfi. "Rendering CSG
Models with a ZZ-Buffer". Computer Graphics
(SIGGRAPH '90 Proceedings), Vol. 24, No. 4,
pp. 67-76, August 1990.

[snyd87] John M. Snyder and Alan H. Barr. "Ray Trac­
ing Complex Models Containing Surface Tessel­
lations". Computer Graphics (SIGGRAPH '87
Proceedings), Vol. 21, No. 4, pp. 119-128, July
1987.

[subr91] K. R. Subramanian and Donald S. Fussell. "Au­
tomatic Termination Criteria for Ray Tracing Hi­
erarchies". Proceedings of Graphics Interface '91,
pp. 93-100, June 1991.

[sung91] K. Sung. "A DDA Octree Traversal Algorithm
for Ray Tracing". Eurographics '91, pp. 73-85,
September 1991.

[tess92] Markus Tessmann. "Around again". SIG-
GRAPH '92 Electronic Theater, July 1992.

[wegh84] Hank Weghorst, Gary Hooper, and Donald P.
Greenberg. "Improved Computational Methods
for Ray Tracing". A CM Transactions on Graph­
ics, Vol. 3, No. I, pp. 52-69, January 1984.

[whit80] Turner Whitted. "An Improved Illumination
Model for Shaded Display". Communications of
the A CM, Vol. 23, No. 6, pp. 343-349, June 1980.

Graphics Interface '93

