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1. Abstract 

Palterns used for supersampling in graphics have been 
analyzed from statistical and signal-processing 
viewpoints. We present an analysis based on a type of 
isotropic discrepancy-how good patterns are at estimat
ing the area above an arbitrary edge through a pixel. An 
algorithm is presented for computing the worst-case 
discrepancy. Experimental evidence shows that popular 
supersampling patterns have discrepancies with better 
asymptotic behavior than random sampling, which is not 
inconsistent with theoretical bounds on discrepancy. 

2. Introduction 

Supersampling is one of the most general approaches to 
the antialiasing problem in graphics. Since symbolic 
images usually cannot be prefiltered, aliasing is reduced 
by smnpling at a very high rate, and then digitally resam
pling to the pixel rate. In applications like ray tracing and 
distribution ray tracing, this is the only general solution to 
alim;ing currently known. In the simplest form of resam
pling, supersmnples are averaged within a square pixel 
area to compute a pixel value. 

Supersampling can be done in a uniform pattern, but it has 
been shown that there are advantages to using non uniform 
or stochastic sampling patterns. Uniform sampling can 
lead to visually conspicuous aliasing artifacts like Moire 
patterns. This is worst-case behavior in the context of 
adaptive sampling, where a pure high-frequency signal 
aliased to a pure low-frequency pattern will fool schemes 
for deciding where to apply extra samples [WhittedSO). 
Rmldomizing the sampling pattern leads to random-noise 
aliasing and is more likely to avoid the worst-case 
scenario for adaptive sampling. 

The ql1ality of sampling patterns has been analyzed from 
several viewpoints. Estimating the integral of a pixel area 
by averaging samples can also be viewed as a statistical 
sampling problem, and variance-reducing techniques of 
experimental design (e.g., stratification) can be applied 
[Lee85, KajiyaS6, PurgathoferS6, PainterS9]. The Central 
Limit Theorem implies that pixel error will decrease with 
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the number of samples as O(N- 1!2), but this viewpoint 
does not describe overall image-noise characteristics. 

Some researchers have taken a signal-processing 
viewpoint of the image-sampling problem [DippeSS, 
CookS6, MitchellS7] and of the distribution ray-tracing 
problem [Mitche1l91]. Here, it has been shown that sam
pling patterns can be designed to drive aliasing noise into 
higher frequencies, where it may be removed by the 
pixel-resampling process and where it is less visually con
spicuous. This is achieved with samples having a high
frequency spectrum ("blue-noise"). 

A third viewpoint which can be applied to the problem of 
sample-pattern analysis is the theory of discrepancy or 
irregularities of distribution [BeckS7]. This viewpoint 
was introduced to computer graphics by Shirley [Shir
ley91]. Niederreiter has also pointed out the possible 
importance of discrepancy in computer graphics [Nieder
reiter92]. This subject grew out of the study of certain 
low-discrepancy sampling patterns which have been used 
in quasi-Monte Carlo integration [Halton70, Nieder
reiter7S]. What is interesting about discrepancy is that it 
provides a fairly direct measurement of how good a sam
pling pattern is at estimating certain simple integrals. 
From the theory of this subject has emerged the fascinat
ing fact that some sampling patterns yield sam~ling errors 
that are asymptotically smaller than the 0 (N- 12 ) of uni
form random sampling. 

In the next two sections , we study discrepancy function 
relative to two simple geometric measures, axis-aligned 
rectangles and arbitrary edges. Theoretical as well as 
empirical results are presented. In section 4, we give 
efficient algorithms for computing the discrepancy with 
respect to arbitrary edges. We conclude with further 
experimental results and a discussion of open problems. 

3. Discrepancy of Axis-Aligned Rectangles 

Assume, for example, we are given a pattern of N samples 
in the unit square. For some (x,y) in the square, we can 
estimate the area of the rectangle [O,x] x[O,y] by count
ing the number of samples v (x,y) witt>1n it. 
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The true area is given by the product xy and we will call 
the error the local discrepancy at the point (x,y): 

A( ) v(x,y) 
Ll x,y = N - xy 

The irregularity of the distribution of samples can be 
measured by averaging the local discrepancy over all pos
sible values of x and y in the square (with the obvious 
extension to higher dimensions). The L ~ -discrepancy is 
defined to be the maximum absolute value of il(x,y): 

D N = sup I Ll(x,y)1 
x,y 

and the L 2 -discrepancy is given by: 

TN ~ [H,,2(x.Y)dxdf 
This is motivated by the importance of low-discrepancy 
sampling in numerical integration. For example, in one 
dimension, there is the significant result: 

Theorem (Koksma 1942). If f is a function 
of bounded variation V(f) on the unit inter
val I and XI, .. . XN are points in I with L~ 

discrepancy D N . then 

I N I I 
I~ 1:f(xj) - ff(t)dtl $; V(f)DN 
IN . = 1 0 I 

This is actually quite easily proven with integration by 
parts, noting that av(x)/ax will be a sequence of Dirac 
del!;l functions, 1: Sex - x d, Koksma's theorem was 
extended to higher dimensions [Niederreiter78], but the 
definition of bounded variation is problematic. Neverthe
less, for a given function obeying the bounded-variation 
conditions, the error of numerical integration is 0 (D N)' 
Roth has proven that, in k dimensions, the best sampling 
patterns have discre~ancy tightly bounded by 
TN = 0(N- I (IogN)(k-1 12 ) [Beck87] . 

Sampling patterns have been constructed with discrepan
cies of DN = O(N- I (logN)k- I) , such as the Hammers
ley points. Let <p,(n) be the radical-inverse function of n 
base r. Its value is a real number from 0 to 1 constructed 
by taking the integer n, represented in base r, and 
reflecting its digits about the decimal point to form a frac
tion, base r. Given the sequence of prime numbers 
2,3,5, ... , one of N Hammersley points is gi ven by: 
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Xi = (if N, <P 2 (i), <P 3 (i) , <P 5 (i), ... ) 

An improvement suggested by Zaremba and generali~ed 
to k dimensions by Wamock is based on the folded radical 
inverse 'V ,en) [Wamock72]. Here, the i th most 
significant digit a i is replaced by (a i + i) mod r before 
the reflection about the d~imal point. In the same paper, 
Wamock presents an O(N2) algorithm for computing TN 
and experimental results for several proposed low
discrepancy patterns. 

Shirley computed the L ~ - and L 2 -discrepancies of a 
number of commonly used nonuniform sampling patterns. 
It is worth doing a similar set of experiments again, but 
with progressively higher densities to get a flavo~ of the 
asymptotic behavior. We will consider four sampling pat
terns. The first is Zaremba's low-discrepancy pattern gen
erated with the folded radical inverse function. The 
second is the jittered sampling pattern obtained by ran
domly perturbing a regular periodic pattern. The third is 
the random Poisson-distributed pattern which is approxi
mated by generating N uniformly-distributed points on the 
unit hypercube (in a section of a true Poisson process, N 
itself would have a Poisson distribution about the mean 
sample density). The fourth pattern is a "Poisson-disk" 
pattern generated by a dart-throwing algorithm on the unit 
torus (promoted as the "best pattern known" by advocates 
of the signal-processing viewpoint). 

Process 16 points 256 points 1600 points 

Zaremba 0.0358 0.00255 0.000438 
jittered 0.0501 0.00627 0.00161 

Dart-Throwing 0.0521 0.00794 0.00258 

Poisson 0.0900 0.0211 0.00867 

Table 1. 2-Dimensional L 2 -discrepancies 

These numbers are averages from 100 trials (except for 
the deterministic Zaremba pattern). The values for 
N = 16 agree fairly well with Shirley's results, and the 
values for the Poisson process agree with the theoretical 
value of T~ = N- I (2- k - rk) for k-dimensional pat
terns. 

The most important feature to notice is the asymptotic 
behavior as N increases. For Poisson patterns, the 
O(N- I12 ) behavior is evidenced by the fact that increas
ing N by a factor of 100 only decreased the discrepancy 
by a factor of 10. At the other extreme, the discrepancy 
of Zaremba's pattern decreases at an impressive rate. The 
jitter and dart-throwing patterns are intermediate, but it is 
very intersting to note that their discrepancy seems to be 
better than O(N- I /2

). 

4. Discrepancy of Arbitrary Edges 

Theorems such as Koksma's and the remarkable 
O(N- I (logN)k-I) low-discrepancy patterns give an ini
tial impression that vast improvements can be easily made 
in the efficiency of ray tracing or distribution ray tracing 
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(by replacing Monte Carlo integration with quasi-Monte 
Carlo methods). This section may, to some extent, dash 
those hopes. First, it should be noted that it is easy to 
create an image which does not have bounded variation 
everywhere (a checkerboard viewed in perspective, for 
example). A more fundamental problem occurs if we 
notice that synthetic images contain edges and curved 
boundaries at arbitrary orientations. The existence of 
8CN- 1 (IogN)(k -I )/2) low-discrepancy patterns is limited 
to the problem of estimating the area of axis-aligned rec
t'Ulgles. 

Consider the problem of estimating the area of disks or of 
boxes at arbitrary orientation. Surprisingly, the 
discrepancy Ll is much larger. Work by Schmidt and oth
ers have shown that one can do no better than the lower 
bound of n(N- 1/2k -1/2) in k dimensions [Beck8?]. 
Upper bounds on the best. discrepancy are known, and are 
typically larger than the lower bounds by a polyloga
rithmic factor (for various generalized discrepancy prob
lems). In two dimensions, this still suggests the existence 
of patterns that are much better than random; however, as 
the dimension increases, one can probably not do better 
than random sampling. 

A common problem in computer graphics is a pixel in the 
neighborhood of an edge. Therefore, consider a unit 
square with an arbitrary line passing through it. As 
before, we have a pattern of samples inside the square. 
We can define a arbitrary-edge discrepancy between the 
area of the square above the line and the fraction of sam
ple points above the line. Our goal is to develop an algo
rithm for measuring the L - norm (worst-case arbitrary 
line) for a given sampling pattern and then to analyze the 
behavior of the four sampling patterns. 

Theoretical analysis has been done on the similar problem 
of arbitrary edges through samples within a unit-area disk 
[Beck8?]. Bounds on the worst-case (the best pattern you 
c,Ul get, given the worst-case line) are 
U(N- 3/4 (logN)-7 /2) and O(N- 3/4 (logN)1/2). These 
bounds also apply to our case of points in a unit square 
[Beck92]. 

5. Algorithms for Computing Arbitrary-Edge 
Discrepancy 

In this section, we give an O(N2) algorithm for comput
ing the maximum arbitrary-edge discrepancy of a set of N 
points in the unit square. Our methods work by appealing 
to intuition in dual space to aid in deriving the algorithm. 
We then bring these methods back to primal space to ease 
their actual implementation. Our techniques first 
appeared in the papers [Edelsbrunner86,Chazelle85J. 
Further details are given in [Edeisbrunner8?]. 

The problem presents itself as having as input a collection 
of points Pi = (Xi . Y i) (i = 1, .. . ,N) in the unit square. 
Initially, we might think we have to consider all lines 
through the unit square. This is not the case. Rather, we 
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give a collection of O(N2) lines which are sufficient to 
determine the maximum arbitrary-edge discrepancy of the 
set. 

We think of lines as being oriented, so that a line gives 
rise to a region of points above the line within the unit 
square. Points of this region are in counterclockwise 
orientation with respect to the line. For each line we can 
measure an edge discrepancy. This is determined as the 
difference between the fraction of the points {P i } we 
expect to see in the region (i.e. the region 's area) and the 
fraction we actually see. We show how to compute the 
area of the unit square above a clipping line and the 
number of points above that line. From these quantities, it 
is a simple matter to compute the edge discrepancy of the 
line in either orientation. 

Our original points are given in primal space (as coordi
nate pairs (x,y». Lines are expressed most naturally by 
equations y = mx + b. They can also be represented as 
points (the coordinate pair Cm.b» in dual space. We will 
move between these two spaces as needed to simplify our 
discussion. 

To begin. we reverse the problem. Instead of talking about 
points above a line. we talk about all lines which a point is 
above. Suppose P = (x,y) is a point in the unit square. 
Then, P is above the line L given by the point (m ,b) in 
dual space if y > mx + b. This gives rise to the line 
b = xm - y in dual space. Any (m,b) above this line 
corresponds to a line which P is above. It is this transfor
mation to dual space which defines our algorithm. 

For each point Pi, we now can create a line in dual space. 
The collection of these lines is called their arrangement. 
Observe that the regions of the arrangement correspond to 
lines which have the same set of (primal space) points 
above them. Further, these regions are convex. We next 
turn to a discussion of how to compute the area of the 
region of the unit square corresponding to a given (m.b) 
clipping line. If this area function is well-behaved, in a 
manner to be made precise below, it will suffice to com
pute the maximum discrepancy as the maximum 
discrepancy at any vertex of the line arrangement. 

The area function is computed by a case analysis. We 
consider 9 classes of lines, given three ranges of the y 
intercept and which of three sides of the square (not on 
the y axis) the line passes through. For convenience. we 
define A (m.b) as twice the area of the region in the table 
below. 

The area A(m,b)/2 is displayed as the surface in Figure 1. 
In addition, we can define a counting function C(m.b) 
which returns the number of points above the line. For a 
typical set of 16 jittered points. Figure 2 shows the func
tion C(m.b)/N which is the discrete approximation to the 
area. We define a discrepancy function 
D(m.b) = I A(m,b)/2 - C(m.b)/NI which is illustrated 
in Figure 3. 
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m > I-h 0 
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m m 

I-h>m>-b -
(m+b - l)2 

2-(m+2b) 2-
(m+b )2 

m m 

-h >m 
2m+2b-l b 2 

2+- 2 
m m 

Table 2. A(m,b) - twice the area of the region. 

Figure I : The Function A(m,b) with boundary lines added 

We observe that the area function A (m,b) is continuous 
between the regions defined in the table. Furthermore, 
within each region, the partial derivatives dA (m ,b) and 
dA(m,b) dm 

db are non-zero. 

This non-zero condition tells us that a point in dual space 
c,m always be moved in some direction to increase the 
area of the clipped region to which it corresponds. Simi
larly there is a direction of motion which will decrease 
this area. This leads to the observation. 

Lemma: Let R be any region in (m,b) space 
which is defined by a convex polygon and lies 
totally in one region of the partition defined 
above. Then . the extrema of A(m,b) over R 
occur along the edges of R. 

VIe can .extend the power of this lemma by adding the 
lInes whIch define the boundaries between regions of the 
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Figure 2: The Count function 

Figure 3: The Discrepancy function 

area function to the arrangement. This then leads to the 
following 

Lemma: Consider the set of points 
Pi ,i = I, ... F If we ff?rm the arrangement 
of the lines Pi (where Pi is dual to P i) with 
the additional lines b = 1. b = 0, b = 1-m. 
and b = - m. the maximum edge discrepancy 
occurs along an edge of this arrangement. 

Proof: We observe that the added lines create regions in 
the arrangement such that each region is convex. 
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Corresponding to each region is a subset of the P j which 
lie above all lines (in primal space) represented by points 
(in dual space) in the region. Further, the partial deriva
tives of the area function are nonzero and of the same sign 
within the region (ie the function is also convex). The 
previous lemma combined with this observation implies 
that the extrema of the function occur along edges of the 
region. Since the discrepancy is defined at points of the 
region by subtracting a constant from the area, the 
extrema of the discrepancy must also occur along the 
edges. Note that the added lines yield the subdivision of 
the area function as shown in Figure 4 illustrating the 
proof of the theorem. 

We have specified above that the regions be convex and 
that both partial derivatives be non-zero within a region. 
This assures that if we translate the origin of our coordi
nate system to any point of the region, we get 4 quadrants. 
In one of these, the area function increases as we traverse 
a vector. In another, the function decreases. We can 
make no assumptions about the other two since we are 
taking linear combinations of a positive and a negative 
quantity. Indeed there may be vectors in these quadrants 
along which the directional derivative passes through 
zero. It is these vectors that require us to consider the 
behavior of the area function along edges as well as at 
vertices. 

Consider now a line in dual space, corresponding to a 
point in primal space. The points on the line in dual space 
correspond to the lines through the point in primal space. 
Traversing the dual line is the same as rotating a line 
about the primal point. Suppose we were to compute the 
area clipped by each line through the point. This compu
tation is the same as computing this area at each point of 
the line in dual space. This area function in primal space 
potentially has 8 extrema. Four of these occur at the 
corners of the unit square (and correspond exactly to the 4 
clipping lines we added to the arrangement). These 
correspond to situations where the shape of the clipped 
area changes. 

The other 4 potential extrema are more subtle. These 
occur in situations where our rotating line clips regions 
through which the area function is non-monotonic even 
though we pass through no corner point. To see this, 
observe that the rotating line always divides the unit 
square into either 2 trapezoids or a pentagon and a trian
gle. In the former case, extrema are realized at vertices of 
the unit square and nowhere else. It is the latter case that 
interests us. 

Consider the counterclockwise rotation from the line 
labelled B to the line labelled A in Figure 5. At B, a trian
gle is being clipped. The vertices of this triangle lie on 
the line Y = I, at the vertex (0, I) and on the line x = 0. 
The triangle is a right triangle, so its area is the product of 
the lengths of its two legs along the square ' s boundary. 
Consider a line of slope m passing through the point 
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(p,q) , its area is (1- (q-mp}}2/m. Differentiating, we 
determine that this results in an extremum when 
m=-(q-I}/p. This extremum is realized by the seg
ments labelled R x CA) and R y CA} in Figure 5. This con
struction could be translated to any of the other corners 
resulting in possible clipping lines of slope -q/p, 
- q/(P -I}, and - (q -\ }/(p -I). We realize endpoints of 
these lines by the reflections shown in Figure 5. Notice 
that some of the reflections yield points outside the unit 
square and so can be ignored. Others, such as RxCD} lie 
within the square but lead to clipping lines that create tra
pezoids and so are uninteresting. 

Figure 5: We begin with the four segments A ,B ,C ,D join
ing the point to the four corners. The other segments 
represent reflections. R xCA) (resp. R y (B)) is the 
reflection of the segment A (resp. B) through a line of con
stant x (resp. y). 

By considering all of the reflections (i.e. 4 lines of special 
slope for each input point) we assure that we find all 
extrema. Each of the cutting lines correspond to a point 
along the dual line. The addition of these 4n vertices is 
sufficient to assure that the maximum discrepancy occurs 
(ie all extrema of the area function occur) at vertices of 
the arrangement. 

This leads to the theorem: 

Theorem (dual) : The maximum edge 
discrepancy for the input points 
P i ,i = I, . . . N occurs at a vertex of the 
arrangement constructed as follows : 

~ 

(i) We form the arrangement of the lines P j 
dual to the Pj. 

m) We add to this arrangement, the boundary 
linesb = l,b = O,b = I-m,andb = -m. 

(iii) For each point Pi = (Xj,Y i ), we add the 
points of slope (i.e. m -coordinate in dual 
space) -y;!Xj, -(l-y;)/xj, -y;!(1-Xj), 
and -(l-yj)/(l-x;) as vertices of this 
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arrangement. 

It remains to turn the theorem above into an algorithm. 
To satisfy condition (iii), we can in quadratic time com
pute the discrepancy at each of the 4n slopes mentioned 
there. Since this running time will be dominated by any
thing else we do, we perform this computation and then 
turn to satisfying conditions (i) and (ii). 

We could satisfy the first two conditions by first comput
ing the arrangement of the N + 4 lines (comprised of the N 
dual lines and the 4 additional lines). Each region of the 
<UTangement could record the number of points dominated 
by lines in that region. We would then determine the 
o (N 2 ) vertices of the arrangement, compute the 
discrepancy at each and determine the maximum 
discrepancy. Finding the arrangement takes O(N 3

) by the 
naive algorithm but can be computed in O(N2) by the 
algorithms of [Edelsbrunner86,Chazelle85]. In practice, 
this approach is prone to difficulties if data are not in gen
eral position. 

An alternative is to consider how vertices in the arrange
ment (in dual space) arise. A vertex is at the intersection 
of two lines, each of which is the dual of a point in primal 
space. In primal space, the vertex corresponds to the line 
connecting the 2 points. Thus, we can restate the theorem 
above as follows: 

Theorem (primal): The vertices of the 
arrangement created by conditions (i) and (ii) 
of the dual theorem can be created as fol
lows : 

Given the set of points P j ,i = I , . . . N. Con
sider the set of lines formed by connecting 2 
of the n +4 points consisting of the P j 
enhanced by the 4 points 
(0 ,0), (0 , I) . (1,0) ,( 1,1). The maximum 
arbitrary-edge discrepancy is the edge 
discrepancy of one of these lines. 

The proof of this theorem then follows by dualizing the 
previous theorem statement since the 4 added points are 
merely the duals of the 4 lines added above. 

This theorem gives rise to a trivial O(N 3 ) algorithm, and 
to an easily implemented O(N2 10gN) algorithm for com
puting the discrepancy. Let p be one of the the N + 4 
points and sort the other points radially about p. Now, we 
choose p and the first point in sort order and determine 
how tmmy points are in the region they define from which 
the discrepancy of the line they define can be found. Hav
ing done so, we can update to the next point in sorted 
order by sweeping through the sorted list. Note that if the 
sorted points are labeled q I ,q 2' .. • q k and q j and q j lie 
in the same portion of the unit square when clipped by the 
line connecting p and q" then so do all of the points 
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between q j and qj in either clockwise or counterclockwise 
order. We use this observation to show that we need 
sweep through the sorted list no more than 2 times to find 
the discrepancies of all lines having p as one endpoint. 
This immediately gives the 0 (N 2 10gN) algorithm. Note 
that the four extra points should not be counted by 
C(m,b) , just used to define extra candidate worst-case 
lines. Finally, we compare this maximum discrepancy 
with that computed under condition (iii) to get the true 
answer. 

We have implemented both of these algorithms. Timings 
(in seconds) are given in Table 3 below. These are run
ning times on a SparcStation 2. These times concur with 
our theoretical analysis and display clearly the benefit of a 
faster algorithm. 

Points Fast algorithm Slow algorithm 

100 1.7 3.2 

200 6.8 23.9 
400 28.7 178.7 
800 120.2 1399.5 

1600 513.2 112/2.3 

3200 2258.9 89351.3 

6400 9554.8 738041.4 

Table 3. Times on D(N2 10gN) and D(N 3
) algorithms 

It should be noted that it is an easy matter to extend the 
algorithm to higher dimensions. See [Dobkin92] for 
further details. 

6. Results and Conclusions 

L ~ arbitrary-edge discrepancy was computed for four 
important types of sampling patterns. For the stochastic 
point processes (dart-throwing, jittered, Poisson), 100 tri
als were made to get an average for the process. 

Two Monte-Carlo algorithms have been used to search for 
patterns of low discrepancy. An on-line algorithm builds 
of patterns one point at a time by trying to find the best 
next point. Given a pattern of N points, this method gen
erates MN random points and then selects the one which 
causes the smallest increase in discrepancy (see 
[Mitche1l91] for discussion of a similar on-line blue-noise 
algorithm). An off-line algorithm starts with N random 
points and attempts to replace points at random if the 
replacement will reduce the discrepancy. 
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Process 16 points 256 points 1600 points 

Zaremba 0.184 0.0345 0.0158 
jittered 0.183 0.0296 0.00854 

Dart-Throwing 0.180 0.0339 0.0118 
Poisson 0.299 0.0791 0.0337 

On-Line MC 0.169 0.0281 -
Off-Line MC 0.106 0.0215 -

Table 4. Discrepancy of arbitrary edges 

It is interesting to see how weU Zaremba's pattern works, 
although it is not converging as dramatically as it could 
with axis-aligned rectangles. Once again, random sam
pling is consistent with O(N- 1f2 ) accuracy. The jittered 
and dart-throwing patterns perfonn best, which is con
sistent with their good "blue-noise" properties. Of these 
two, jittered sampling shows a slightly better discrepancy, 
which is not consistent with its spectral and visual proper
ties, which are inferior to dart-throwing. The Monte 
Carlo experiments provide a low-water mark, patterns 
with the lowest discrepancy that we have found. A very 
intersting open problem is to fund the minimum
discrepancy pattern of N points. 

In conclusion, we have defined a arbitrary-edge 
discrepancy measure, motivated by the edge antialiasing 
problem in graphics. We describe algorithms for comput
ing its L - nonn. A very simple O(N 3

) algorithm and an 
only slightly more complicated O(N2 10gN) algorithm 
exist in point space, and both of these have been imple
mented. An O(N2) algorithm exists in line space, which 
we have not attempted to implement. 

Applying this algorithm to some common supersampling 
patterns, we find evidence for convergence faster than 
O(N- 1/2 ) which is theoretically possible. This is interest
ing, but the relative discrepancy of jittered and dart
throwing sampling are somewhat inconsistent with spec
tral and image-quality properties. 
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