
83

Contextual Animation of Gestural Commands

Gordon Kurtenbach, Thomas P. Moran and William Buxton t

Xerox Palo Alto Research Center
3333 Coyote Hill Rd.
Palo Alto CA 94304

(415) 812-4753, kurtenba@parc.xerox.com
(415) 812-4351, moran@parc.xerox.com

Abstract
Drawing a mark can be an efficient command

input technique when using a pen-based computer.
However, marks are not intrinsically self-explanatory
as are other interactive techniques such as buttons and
menus. We present design principles for interaction
mechanisms which make marks self explanatory for
novices but still allow experts to use efficient
command marks. The key notion is that use of the
explanation mechanism physically trains a novice to
use the efficient command marks. Two novel
interaction mechanisms we have developed using
these principles are presented.

keywords: pen input, gestures, marks, animation

INTRODUCTION
It is a very common belief that pen-based

~omputers will be easy to use because "they operate
like pen and paper." Drawing and handwriting with a
pen is a natural skill. The marks made with an
electronic pen can be recorded as "ink," which is
coming to be accepted as new basic kind of data. In
addition to creating material to be seen and read,
people also naturally use marks to designate actions on
the material. Electronically-produced marks that
produce actions are usually called gestures in the user­
interface community . Gestures are thus iconic
commands from the user to the system.

It would seem that gestures would be easy to learn
and use. However, one needs only to use any of the
current crop of pen-based computers to experience
serious difficulties. Recently, we assessed a new,
sophisticated note-taking application that was touted
as being natural and easy (and, in the press, as a real
breakthrough in pen computing). When we sat down
to learn and use the system, we expected it to be easy.
After only a short while we found ourselves asking
questions like: "What gesture do I make to undo
something?" "Are there commands available with
gestures that are not in the menus?" "Why isn't it
interpreting my X-gesture as a delete gesture?" "Does
it understand the standard proofreading marks?"

This situation is reminiscent of old-fashioned textual
command language interfaces, such as the UNIX shell
or MS-DOS, where the user is confronted with
analogous questions. Thus, the issues behind the

t Dept. of Computer Science
University of Toronto

Toronto, Ontario Canada, M5S lAI
(416) 978-6619 willy@dgp.toronto.edu

questions seem to be general to all command
languages, be they textual or iconic:

Functionality - What functions does the system
provide (in the form of commands)?

Naming - Given a function, what is the name or
shape of the command (so that it can be issued)?

Context - Given a command, when and where in
the system is it available to be used?

Method - How are the various arguments of a
command specified (so that it can be applied to
specific material in a specific way)?

There are several different strategies that the user
can employ to answer these questions. Let us consider
three: training, guessing, and learning-by-doing.

Training Strategy - The user can set aside a
chunk of time to learn the system-take a course, read
the manual, follow an on-line tutorial, etc. One
pro~lem with this strategy is that it is not tied to any
particular task the user needs to do. During training,
the user, in effect, memorizes the system ahead of
time. Later, when it is time to do a particular task, the
user may have forgotten many of the crucial details
and will end up posing the same questions anyway.
The goal of most pen-based systems is to be "natural"
so as not require up-front training, the ideal being that
one can just "walk up and use" them. We want to
minimize the need for training.

Guessing Strategy - The user can forego training
and just guess how to issue commands. This depends
on the commands being mnemonic. For verbal
commands, it has been shown that mnemonics are
unreliable; command naming behavior of individuals
is extremely variable (Carroll, 1985). But gestures are
supposed to be intuitive and/or familiar . Many
researchers have argued that users commonly agree on
certain gestures for certain operations (Wolf, 1986;
Gould, & Salaun, 1987; Buxton, 1990). However,
beyond a small set of common operations (e.g. select,
delete , move), there are few common conventions
(mainly because gestural systems are so new). Thus,
guessing by itself is inadequate.

Learning-While-Doing Strategy - A broader
strategy is for the user to seek help in various ways
while doing particular tasks and, in the process, learn
more and more about the system. Thus the need for
(and time taken in) seeking help is continually
reduced. The critical thing to make this work is to

Graphics Interface '94

84

minimize the amount of attention the user has to divert
from the performance of the task in order to seek help
(training and guessing are at the two extremes).

We can view many interface techniques of
modern graphical user interfaces as supporting a
learning-while-doing strategy. Menus of commands
and panels of buttons and icons tell the user what
functions are available and directly provide the means
to invoke them. They allow users to recognize
functions rather than having to recall them from
memory. Two examples are menus and dialog boxes.
Menus that pop up when certain objects are selected
and pull-down menus with grayed out items show
users the context in which commands are available.
Dialog boxes give users simple methods for specifying
parameters to commands.

What we propose is to extend these graphical user
interface techniques with two specific goals in mind:
(1) supporting the process of learning-white-doing and
(2) dealing with the particular features of gestural
commands. A couple of examples: We will consider
techniques for inducing rehearsal, which is important
to amplify the learning process. Gestures have the
feature that they are drawn within the materials they
are operating on (whereas textual commands,
including menus, are issued from outside of the
materials). Thus we have to provide guidance for how
to draw gestures within the spatial context of the
current materials. In this paper we define three user­
interface design principles to support interactively
learning and using gestures. We then describe two
interaction techniques we have developed based on
these design principles. The first technique supports
learning and using the subclass of zig-zag-shaped
gestures. The second technique deals with the general
case of learning and using arbitrary-shaped gestures.

DESIGN PRINCIPLES
The three design principles to support learning

and using gestures are revelation, guidance, and
rehearsal. Other researchers have described similar
general principles (e.g., Norman & Draper, 1986;
Shneiderman, 1987), and many systems have
interactions which follow some of these general
principles. Our definitions are oriented to apply the
principles to gestures.

Revelation - The system should interactively
reveal information about what commands are available
and how to invoke them.

Gestures are not revealed because the user must
recall them from memory. Menus and buttons,
however, reveal the function and names of commands.
They do not reveal the method for issuing the
command. What menu systems do is to provide a
common set of general methods (such as pointing,
dragging, double clicking), which must be learned a
priori. The Macintosh computer, for example, uses

this technique. The intention is that with this small set
of skills a user can start interactively exploring and
learning about the remainder of the system.

The interaction techniques described in this paper
use this type of design. A user must be informed, a
priori, that in order to reveal the commands associated
with an object the pen must be pressed over an object
and held still for a fraction of second. We call this
"press and wait for more information." Once users
know this, they can get further instructions
interactively from the system. This allows users to
interactively learn about what functions can be applied
to various displayed objects by pressing and waiting
on the objects for menus.

Guidance - The way in which revelation occurs
should guide a user through the method for specifying
the complete command in any specific situation.

An example is selection from a hierarchic menu.
In this case, selecting an item guides a user to the next
menu. The critical point in these systems is that getting
guidance on how to specify a command does not
interrupt the specification process. On the other hand,
a system like the on-line manual pages in UNIX
violates the principle of guidance, because the user
must terminate or at least suspend the act of specifying
the command in order to get help.

Rehearsal - The way guidance is provided should
require a physical rehearsal of the way an expert
would issue the command.

The goal of rehearsal is to develop expert skills in
a novice, in order to support the efficient transition
from novice to expert performance. Many interaction
techniques support rehearsal. When the action of the
novice and the expert are the same for a particular
function, we can say that rehearsal takes place. For
example, novices may draw lines, move icons, or
select from menus using the same actions as an expert
when there is one and only one way of issuing the
command. In many cases, the single way of issuing
the command may be suitable for both the novice and
expert.

There are also many situations, however, where a
single method for invoking a command is not
sufficient. The popUlarity of "accelerator techniques"
is proof of this. Typically, interfaces provide two
modes of operation. The first mode, designed for
novices, is revealing. Conventional menu-driven
interactions are an example of this. The revealing
component of this mode is emphasized over efficiency
of interaction, because novices are more concerned
with how to do things rather than how quickly things
can be done. The second mode, designed for experts,
typically allows terse, non-prompted interactions.
Command-line interfaces and accelerator keys are
examples of this mode. However, usually there is a
dramatic difference between novice and expert
behavior at the level of physical action. For example,

Graphics Interface '94

a novice uses the mouse to select from a menu
whereas an expert presses an accelerator key. Thus, in
these cases novice actions are not a rehearsal for
expert performance.

It is critical that rehearsal be unavoidable. For
example, the Macintosh supports novices by providing
menus and supports experts by prov iding menu
accelerator keys. The transition between novice and
user is supported by having the names of the
accelerator keys appear next to menu items in the
menu. However, actually using an accelerator key is
avoidable. The user can always just select from the
menu. Furthermore, this is easiest because the user is
already displaying the menu. The end result is that
accelerator keys are sometimes not used even after
extensive exposure to the menu. Our principle of
rehearsal is intended remedy these situations.

The intention of the three design principles is to
reduce this discrepancy in action without reducing the
efficiency of the expert and ease of learning for the
novice. The basic actions of the novice and expert
should be the same. It is hoped that as novice
performance develops the skills that lead to expert
performance will develop in a smooth and direct
manner. We next describe two interaction techniques
that apply the design principles to gestures.

MARKING MENUS
Rather than trying to initially solve the general

problem of providing revelation, guidance and
rehearsal for any type of gesture, we asked ourselves if
there were subclasses of gestures which simplified the
problem.

With this goal in mind we developed an
interaction technique called marking menus. Marking
menus provide revelation, guidance, and rehearsal for
zig-zag types of gestures. This is done by integrating
pop-up radial menus and zig-zag gestures. In effect,
zig-zag gestures are the byproduct of selection from
radial menus. This works as follows: A novice user
presses down on the screen with the pen and waits for
a short interval of time (approximately 1/3 second). A

Figure 1,' Marking menus permit two different ways to
select menu items . Using method (a), hierarchic
radial menus can be sequentially displayed and
selections made. Method (b) uses a mark (gesture) to
make the same selection.

85

radial menu (Wiseman, Lemke. & Hiles, 1969;
Callahan, Hopkins, Weiser & Shneiderman, 1988)
then appears directly under the tip of the pen. A user
then highlights an item by keeping the pen pressed and
making a stroke towards the desired item. If the item
has no sub-menu, the item can be selected by lifting
the pen. If the item does have a sub-menu, it is
displayed. The user then continues, selecting from the
newly displayed sub-menu. Figure 1 (a) shows an
example. Lifting the pen will cause the current series
of highlighted items to be selected. The menus are
then removed from the screen. At any time a user can
indicate "no selection" by moving the pen back to the
center of the menu before lifting, or change the
selection by moving the pen to highlight another item
before lifting. A user can also "back-up" to a previous
menu by pointing to its center.

The other, faster, way to make a selection without
popping up the menu is by drawing a gesture. A
gesture can be drawn by pressing the pen down and
immediately moving. The shape of the gesture
dictates the particular series of items selected from the
menu hierarchy. Figure 1 (b) shows an example.

In effect, the menu reveals the commands
associated with vocabulary of zig-zag gestures. Figure
2 shows an example of zig-zag gesture vocabulary and
the menu that reveals them.

Marking menus adhere to the design principles as
follows: Revelation is provided by the pop-up menu
(the novice can see what commands are available).
Guidance is provided by system giving the user
feedback and additional menu items as menu is
traversed. Rehearsal is provided by the physical
movement involved in selecting an item from the

/
"- /

",.

2 3 4

) / /1 7
1 :a l :b 1:< t d

'-J "'- ",. ~
2a 2b 2< I 2: d

V L. (-./
3a 3b 3 d

\ ~ [\. ~
4:a 4b <:c 4:d

menu hierarchy mark set

Figure 2,' An example of a radial menu hierarchy and
the marks that select from it. Each item in the numeric
menu has a submenu consisting of the items a, b, c and
d. A mark's label indicates the menu items it selects.
A Mt indicates the starting point of a mark.

~
-...... ..

... ~·: ·. · . . : i:,. . . .
: ;0. Graphics Interface '94

86

menu being identical to the movement required to
make the gesture corresponding to that item.

We have extensively user tested marking menus
and have found that they are used as designed.
Novices pop-up the menus but with experience learn
to use the gesture (Le., they become experts) .
Drawing a gesture has been show to be dramatically
faster than traditional menu selection techniques. See
(Kurtenbach, 1993) for an in-depth analysis of
marking menus.

THE CRm/SHEET ANIMATOR
Can an interaction technique similar to marking

menus be designed for other types of gestures? In'
other words, can the design principles be applied to the
general case? We refer to these other kinds of gestures
as iconic gestures (although the meanings of these
gestures may not be strictly based on iconic shape) and
we refer to marking menu's zig-zag gestures as menu
gestures. Thus question is: can revelation, guidance
and rehearsal be provided for iconic gestures?

In order to investigate this question we decided to
take an existing pen-based application that used iconic
gestures and attempt to design an interaction
mechanism that would provide revelation, guidance
and rehearsal for those gestures. The test bed for this
design experiment was an electronic whiteboard
application called Tivoli (Pederson, McCall, Moran, &
Halasz, 1993). Tivoli is intended to be used in
collaborative meeting situations, much in the same
way that a traditional whiteboard is used. Tivoli runs
on a large vertical display, called Liveboard, that can
be written on with an electronic pen. Much like a
whiteboard, several people can stand in front of a
Liveboard and write, erase, gesture at, and discuss
hand drawn items. Handwriting and drawings also can
be edited by a combination of direct manipulation
commands (i.e. button, menus, etc.) and iconic
gestures . Figure 3 shows Tivoli and Figure 4 shows

" /; . -: \
, 1/.././...,·, ' " 'l . , -

...... o.----=:-. ~~I

I :;=11'"

Figure 3: An application called Tivoli , running on
Liveboard, emulates a whiteboard but also allows
drawings to be edited saved and restored.

e:"l)
r- 0 ~

Copy Delete

=ll A ~ Type-in pOInt

\

""'- C7 V
Split slide Select Paste

Figure 4: The basic gestures used in Tivoli .

the types of iconic gestures used.

Problems with the marking menu approach
Overlap Suppose we strictly applied the marking

menu design to these gestures . Essentially, a marking
menu displays the various ways a user could move the
pen to issue a command. Figure 5 shows the result of
applying this approach to some of the gestures in
Figure 4. When a user presses the pen at a location,
the system displays the various ways a user could
move the pen by displaying example gestures. As
Figure 5 shows, gestures overlap and can cause
confusion. Part of the problem is that iconic gestures
are not suitable for displaying in this manner. Menu
gestures , however, are suitable because of their
directional and segmented nature. Only the first
segment of the zig-zag gesture needs to be displayed.
The remaining segments of the gesture can be
incrementally displayed as the menu is traversed.

Not enough information Another problem with a
display like Figure 5 is that it gives little contextual
information. For example, the important thing about
the "Select" gesture is that it should encircle objects
and the shape of the circle can vary. This type of
information is not shown in Figure 5.

The meaning of several iconic gestures in Tivoli
is determined not only by the shape of the gesture but
also by the context in which the gesture is made. For
example, a straight line over a bullet-point moves an
item in a bullet-point list, while a straight line in a

Type·in point

,."Q
Paste

Figure 5: Overlap causes confusion when using the
marking menu approach to reveal other types of
gestures . Here we display the commands available
when starting a gesture from a clear spot in the
drawing region of Tivoli .

Graphics Interface '94

margin scrolls the drawing area. These types of
inconsistencies can potentially confuse the user. To
avoid these problems, we wanted to provide context
sensitive information about which gestures a user can
make over what objects. Informally, we wanted a user
to be able to answer the question: "what gestures can I
draw on this object or location?". Since marking
menus are sensitive to context (Le., the contents of a
menu may vary depending on where it is popped up),
we hoped that some similar mechanism could be
designed for iconic gestures in Tivoli.

In general, many characteristics may affect the
meaning of a gesture: the shape of a gesture, the
direction it is drawn in, the location of features and the
dynamics of drawing. These characteristics need to be
revealed.

Solutions
Crib-sheets Interactive crib-sheets reveal gestures

without the overlap problem. When the user requires
help , a crib-sheet can be popped up which shows the
available gestures and what they mean. The user can
then dismiss the crib-sheet and make a gesture. Other
systems have used mechanism that are similar to crib­
sheets (Robertson, et ai, 1991) (Microsoft's Windows
for Pen Computing). Crib-sheets can be as succinct as
a simple list of named gestures or as elaborate as
multi-page explanations of the gestures in great detail.
However, since crib-sheets are for reminding and
guidance, they are usually succinct.

Figure 6 shows the crib-sheet technique we
designed for TivolL The design works as follows .
Similar to a marking menu, if one doesn't know what
gestures can be applied to a certain object or location
on the screen, one presses-and-waits over the object

Figure 6: Revealing iconic gestures in Tivoli : The
user has selected the word "Tea" by circling it. To
reveal what functions can be applied to the selection ,
the user presses-and-waits within the selection loop. A
crib-sheet pops up indicating the context ("In a
selection") and the available functions and their
associated gestures.

87

for more information, rather than drawing a gesture.
At this point, rather than a menu popping up as in the
marking menu case, a crib-sheet is displayed. The
crib-sheet displays the names of the functions that are
applicable to the object or location, and example
gestures. If this is enough information, a user can
draw one of the gestures in the crib-sheet (or take any
other action) and the crib-sheet automatically
disappears . If the pen is released without drawing a
gesture, the crib-sheet remains displayed until the next
occurrence of a pen press followed by a pen release or
a press-and-wait event.

This design has several important features which
distinguish it from a pop-up menu. First, the system
displays the crib-sheet some distance away from the
pen tip so that the crib-sheet does not occlude the
context. This leaves room for a user to draw a gesture.
Second, a user must draw a gesture to invoke a
command. For example, a user cannot select the
delete button to perform a deletion. The user must
draw a delete gesture to perform a deletion. Finally,
the significance of the location of the pen tip is
displayed at the top of the crib-sheet (Le., in Figure 6
"In a selection" is displayed at the top of the crib­
sheet). This is useful for revealing the meaning of
different locations and objects on the screen.

This design obeys the principles of revelation,
guidance, and rehearsal. The crib-sheet provides
revelation, and a user can use the examples as
guidance when drawing. Rehearsal is enforced
because a user must draw a gesture to invoke a
command rather than pressing on a crib-sheet item.

Animated, annotated demonstrations While the
crib-sheet does reveal contextual information about
gestures, it still lacks certain types of information. For
example, one static example of a gesture relays little
information about variations and features of a gesture.
Ideally a demonstration of the gesture in context
should be provided, similar to what one receives when
an expert user demonstrates a command.

The examples in the crib-sheet could be animated
to show how to draw a gesture, variations on a gesture,
and the various features of a gesture. However, crib­
sheets illustrate gestures outside of the context of the
material that the user is working on, and this can make
it difficult to see how the gesture applies to the
context.

To solve this problem we extended the function of
the crib-sheet by adding animations of gestures which
take place in context. If the crib-sheet does not
provide sufficient information, a demonstration of a
gesture can be triggered by pressing the "demo" button
on the crib-sheet. The demonstration of the gesture
begins at the location originally pressed. The
demonstration is an animation of the drawing of the
gesture which is accompanied by text describing the
special features of the gesture (see Figure 7).

Graphics Interface '94

88

There are several important aspects to this design:
• Gestures are shown in context. The animation

of the gesture is full size, and emanates from the exact
location originally pressed on by the user.

• Variations in gestures are shown by multiple
animations. Usually, two examples are enough.

• Information about features or semantics of a
gesture is provided by annotations. (e.g. , in Figure 7
"A pigtail deletes the selected objects .").

• Animation can be controlled. A long series of
animations takes quite a bit of time and this can be

tedious for the user. By pressing a button in the crib­
sheet, individual animations of the gestures can be
started or stopped. Pressing the "Dismiss" button will
stop the animation and removes the crib-sheet. The
animation will freeze if a user begins drawing a
gesture (so a user can trace the animated gesture). As
in the case of the crib-sheet by itself, the moment a
user completes a gesture, the crib-sheet is removed
and the animation terminates.

• The user is not required to make a gesture from
the crib-sheet. The user is free to perform any other
gesture or command while the animation is running.

Figure 7: A demonstration of a particular function can be attained by pressing its icon. In (1) the user presses
on the delete icon for more information . This triggers an animated demonstration of the gesture with text
annotation to explain its features. This is shown in (2) , (3) and (4). In (5), the user traces along the example
gesture to invoke the function . When the pen is lifted, the action for the gesture is carried out, and the crib­
sheet and animation disappear (shown in (6)).

:~:,
/~:

... ~:.~ Graphics Interface '94

Implementation
Our crib-sheet/animation is implemented so it is

easy for an interface programmer to use. To produce
crib-sheets and animations Tivoli interacts with a
software module called the animator. The animator
accesses a Gesture Animation Database (GAD). The
GAD contains descriptions of examples of gestures
grouped by context. When the user presses-and-waits,
Tivoli calls the animator with a description of the
current context (e.g. "In a selection"). The animator
then selects the gestures to be animated based on
context, constructs and displays the crib-sheet, and
animates the gestures at the user's request.

GAD is constructed by first hand-drawing the
gesture examples and annotations in Tivoli, then
placing these into GAD. Annotations are then labeled
by where and when they should occur in the animation
cycle (e.g., "start" and "end"). A gesture is a sequence
of x and y coordinates which is animated by
incrementally displaying the gesture. When animating
a gesture the animator uses the same drawing
dynamics as the original hand-drawing. In this way,
dynamics of drawing can be revealed and the speed of
an animation can be controlled by the constructor of
the examples. The pacing of the animation of text
annotations is determined by length of text: after an
annotation is displayed the animator pauses for an
amount of time that is proportional to the length of the
text before continuing with the rest of the animation.
This gives a user time to read the annotation and then
watch the rest of the animation.

A key feature to this design is that extra examples
of the same gesture can be placed in GAD and tagged
for special purposes. If an example is tagged as
"variation" , the animator animates this example along
with the original example of the gesture. In this way,
variations on a gesture can be shown to the user.
Examples gestures are also used for the crib-sheet
buttons.

Multiple examples of gestures also allow the
animation of gestures in constrained spaces. For
example, assume that a user invokes the animator near
the bottom of the drawing area, and that one of the
possible gestures at that point is a pigtail (delete). At
the bottom of the drawing area, there is no room to
draw a pigtail downwards, but there is room to draw it
upwards. Thus, the animator only uses examples that
will fit in the location. Thus, GAD should be set up
with several examples of each gesture, so that the
animator can find an example for any location. We
found as little as four different examples were
sufficient.

Usage experiences
The crib-sheet/animator has been used informally

by several researchers at Xerox PARe. We were ab~e
to provide several examples of every gesture used ill

89

Tivoli in the GAD. Initially, we found that users did
not notice the crib-sheet pop up on the left side of the
display. This was because users were so close to ~he
large display that the crib-sheet popped up outsIde
their visual focus . We then added an animation of the
crib-sheet expanding from the point at which press­
and-wait occurred. This helped users notice the
display of the crib-sheet.

Users were also able to make use of the crib­
sheet/animator after a brief demo. We found that users
explored the interface by pressing-and-waiting at
different spots to see what functions where available.
We also observed users tracing the animated gestures.
The most common error involved a user pressing-and­
waiting with the command button pressed, then
releasing the button while watching the animation.
The user would then trace the animated gesture
without the command button being pressed (Tivoli
requires a command button on the pen to be pressed
for the system to interpret marks as gestures not as
drawing or hand-writing). Not having the command
button pressed would result in the mark being drawn
but not interpreted. We feel this type of error may
disappear when a user gets into the habit of hold~g
down the command button to issue a command. It IS
also possible to have the system recognize this error
and advise the user to press the command button.

FUTURE WORK
An obvious next step for future research is formal

user testing of our designs. First, there are many
details that user might trip over: are the menus and
buttons labeled meaningfully? Are the press-and-wait
time thresholds correct? We believe the next step in
user testing would be to evaluate some of these details
and refine the content of the animations.

One problem with our current implementation is
that, although animations do appear in context, they do
not "work with" the context. For example, the
animation of a loop being drawn to select objects
sometimes doesn't enclose any objects. The problem
is the animator has no knowledge about the Tivoli
objects underlying the animation. A more advanced
version would extend the notion of parameterized
gestures to allow them to utilize and manipulate Tivoli
objects in the current working context. This would
require a much more sophisticated architecture s~~ar
to architecture for parameterizable, context senSItIve
animated help for direct manipulation interfaces
(Sukaviriya & Foley, 1990).

SUMMARY & CONCLUSIONS
Gestures have many advantages but they also

have the disadvantage of not being revealing. To
reveal gestures some sort of interactive mechanism
must be used. We presented the design principles of
revelation, guidance and rehearsal which promote the
integration of the interactive mechanism and gestures.

Graphics Interface '94

90

The notion is that the interactive mechanism is
intended for the novice while the gestures are intended
for experts. The integration of the two is intended to
support the learning transition from novice to expert.

We presented two designs that follow these design
principles. Marking menus integrate radial menus and
zig-zag gestures. The crib-sheet/animator represents
the application of the design principles to any type of
gesture. The fact that the crib-sheet animator is a
workable design proves that the design principles are
generalizable to iconic gestures.

Designing a mechanism to reveal iconic gestures
brings to light many issues concerning the revelation
of gestures. First, revelation can occur at various
levels of detail. The crib-sheet is the first level: a
quick glance at the icon for a gesture may be sufficient
for the user. An animation is the second level: it
requires more time but provides more information and
explanation. Our design essentially supports a
hierarchy of information where there is a time versus
amount of information tradeoff.

A hierarchic view of information can also be
applied to the way in which gestures themselves are
revealed. For some gestures , it is sufficient just to
show a static picture of the gesture. For other gestures
an annotated animation is needed before they can be
understood. Besides an animation, some gestures need
to show variations. Finally some gestures, like menu
marks, are best revealed incrementally. Depending on
the characteristics of a gesture, there are different
ways of explaining the gesture. This implies our
revelation schemes must support these different forms
of explanation. Marking menus, crib-sheets, and
animations are instances of different forms of
explanation. A complete taxonomy of forms of
explanation is future research.

While user testing is needed to refine our design,
we feel that this design supports the desired type of
information flow. Users can interactively obtain
information on gestures and this information is
intended to interactively teach them how to use these
gestures like an expert. No pen-based system that we
know of supports this type of paradigm.

ACKNOWLEDGMENTS
We thank the members of the Input Research

Group at the University of Toronto, especially Gary
Hardock for his user testing, and George Fitzmaurice
and Beverly Harrison for their comments on thesis
drafts of this research. A portion of this work was
performed in the Dynamic Graphics Project laboratory
at the University of Toronto . We gratefully
acknowledge the financial support for the laboratory
provided by the Natural Sciences and Engineering
Research Council of Canada, Digital Equipment
Corporation, and Apple Computer .

REFERENCES
Buxton, W. (1990) The "Natural" Language of
Interaction: A Perspective on Nonverbal Dialogues. In
Laurel, B. (Ed.)The Art of Human-Computer Interface
Design, 405-416, Reading Massachusetts: Addison
Wesley.

Callahan, J., Hopkins, D., Weiser, M. &
Shneiderman, B. (1988) An empirical comparison of
pie vs. linear menus. Proceedings of CHI '88, 95-
100

Carroll, 1. M, (1985) What's in a name? New York:
Freeman.

Gould, J. D., & Salaun, J. (1987) Behavioral
Experiments in Handmarks. Proceedings of the CHI +
GI '91 Conference on Human Factors in Computing
Systems and Graphics Interface, 175-181, New York:
ACM.

Kurtenbach, G. (1993) The design and evaluation of
marking menus . Ph.D thesis, University of Toronto

Norman, D. A. & Draper, S. W. (1986) User
centered system design: New perspectives on human­
computer interaction. Hillsdale, NJ: Erlbaum
Associates.

Pederson, E. R., McCall, K., Moran, T. P., & Halasz,
F. G. (1993) Tivoli: An Electronic Whiteboard for
Informal Workgroup Meetings. to appear in
Proceedings of the CHI '93 Conference on Human
Factors in Computing Systems , New York: ACM.

Robertson, G. G., Henderson, Jr. A. D. , & Card S. K.,
(1991) Buttons as First Class Objects on an X
Desktop. Proceedings of UIST '91 Conference, 35-44,
New York: ACM.

Shneiderman, B . (1987) Designing the User
Interface : Strategies for Effective Human Computer
Interaction. Reading Massachusetts: Addison-Wesley.

Sukaviriya, P. & Foley, J. D. (1990) Coupling a UI
framework with automatic generation of context­
sensitive animated help. Proceedings of the ACM
Symposium on User Interface Software and
Technology '88 , 152-166, New York: ACM.

Wiseman, N.E., Lemke, H.U. & Hiles, J.O. (1969)
PIXIE: A New Approach to Graphical Man-machine
Communication, Proceedings of 1969 CAD
Conference Southhampton, IEEE Conference
Publication 51, 463

Wolf, C. G. (1986) Can People Use Gesture
Commands? ACM SIGCHI Bulletin , 18,73-74, Also
IBM Research report RC 11867.

... ~.~ . . ' .. '.>:;:,.
/~-

:.- Graphics Interface '94

