
112

Putting Metaphors to Work

John M. Carroll and Mary Beth Rosson
Department of Computer Science

Virginia Tech (VPI&SU)
Blacksburg, Virginia 24061-0106

U.S.A.

e-mail: carroll@cs.vt.edu
rosson@cs. vt.edu

Telephone: 1-703-231-6931

Abstract
Metaphor has proven to be one of the richest and most
robust ideas in the design of computer applications and
user interfaces. The basic idea is very simple: present
functionality in such a way that the user can access and
apply specific prior knowledge while learning and using
a novel tool. But the practical and theoretical ramifica
tions of this idea both in the brief history of human
computer interaction and in its current prospects are
quite considerable. In this paper, we first summarize a
view of the relevant history. We then develop the
notion that metaphors should be conceived of as bound
to contexts of use: The recognition and interpretation
of metaphors typically depends upon the establishment
of a meaningful task context. We think there is a need
to focus consideration of metaphors on the scenarios of
use from which they arise. We suggest that this
reconception of metaphors as bound to scenarios of use
converges with recent developments in scenario-based
specification and object-oriented design, and that it
provides new opportunities for putting metaphors to
work in the specification, design and implementation of
systems.

Keywords: Interface Metaphors, User Interface Architec
ture, Object-oriented Analysis and Design, Scenario
based Design

1. Metaphors, Yesterday and Today

A major theme in the emergence of human-computer
interaction is a steady movement toward more direct
incorporation of contexts of use into the objects of
analysis and design. Metaphor has both contributed to
this evolution and been redefined by it. In the late
1970s, most considerations of ease-of-use and ease-of
learning focused on low-level actions (e.g., keystroke
counting and formal properties of command languages).
The design and analysis of metaphor in this period
helped to refocus the field on semantic relationships
among interface objects and actions (Carroll & Thomas,

1982, Smith, Irby, Kimball, Verplank & Harslem,
1982).

Throughout the 1980s, the analysis of interface
metaphors was one of the key arenas in which classi
cally structuralist models of human cognition were in
creasingly rejected as a foundation for human-computer
interaction in favor of analyses that took seriously the
goals, prior knowledge, and activity contexts of the
people who use computer systems and applications
(e.g., Carroll & Mack, 1985; Carroll, Mack & Kellogg,
1988). For example, the cognitive science analysis of
metaphors as quasi-formal "structure mappings," so ap
pealing in laboratory demonstrations, was not capable
of analyzing the fact that people actively construct and
creatively use metaphors through a process of interac
tion and discovery. This process - the part the purely
structural analysis idealized away - proved to be the
most interesting part of what was going on.

Today, metaphors are pervasive in human-computer
interaction; they are, for example, a major theme of the
FRIEND21 Project (Nonogaki & Ueda, 1991).
Metaphor is so thoroughly integrated into analysis and
design work on applications and user interfaces that the
topic as such can be hard to discern. To a great extent,
metaphor is human-computer interaction. The
challenge today, we believe, is to drive the analysis of
metaphor even more aggressively toward the incorpora
tion of contexts of use, and to develop software architec
tures and development environments that support
metaphor-based design.

In its first two decades, human-computer interaction has
gotten a lot out of metaphor. It should continue to find
new ways to put metaphors to work.

2. Metaphors inhabit tasks

Metaphors can be engaged (that is, recognized or con
structed by users) purely by a user interface's look-and-

Graphics Interface '94

feel: to wit, if something looks like a trashbin, if one
discards files by dragging them to it, then one should
think of it as a trashbin. However, more typically
metaphors are evoked in the context of a task a person
is trying to accomplish, that is, by relatively
substantial goals and activities. A gedanken experiment
can convey what we have in mind. There are many
properties of a desktop system that suggest its central
metaphor: The various applications and data present
themselves with suggestive icons (e.g., electronic mail
as a little mailbox). The icons may be moved about by
direct manipulation techniques; they can be "dragged" to
the trashbin and "dropped" into it. The various applica
tions can be interleaved and integrated to work through a
task scenario; for example, one can start up the
electronic mail application to create a message, check
some figures in a spreadsheet, import a memo
attachment from a notebook, and then send the mail.

Which of these properties is most critical to the desktop
metaphor? The picture icons can be replaced with la
beled boxes, and dragging can be replaced with source
and-destination clicking - both with little consequence.
What seems to matter more is that a variety of func
tions and data are spatially presented and simultaneously
accessible, that they can be seen, accessed, and used to
gether as necessary to complete a task. Thus, systems
without multitasking capabilities or systems that can
only display applications fullscreen (thus destroying the
spatial task context for the user) cannot support a seri
ous desktop metaphor.

Examples like this lead us to conclude that metaphors
depend on the activity contexts in which they occur.
The various desktop objects must behave consistently at
the task level; for example, all of them share data in the
same way, "opening" always means the same thing, and
so forth . At the lower level of physical actions, they
may, and sometimes must, have idiosyncratic behaviors
(the trashbin has different behaviors than other folders
with respect to the files it contains; it appears fatter
when it contains something).

Activity contexts underpin some of the most interesting
and important properties of metaphors that have been
discussed over the years. Without a use context, there
can be no composite metaphors: sets of metaphors
must exist together in a meaningful context in order to
interact. For example, a piece of mail one is examining
in an in-box evokes a document metaphor. The folder
organizing prior correspondence with the sender of that
mail engages a file-tree metaphor. But the two
comprise a composite metaphor for handling mail only
in the context of a mail-handling task (e.g., the
recipient wishes to reply to the piece of mail and in
doing so to remind himself or herself of prior mail
correspondence with the sender).

113

Task contexts delimit the extent to which composite
metaphors are analyzed. Thus, as one opens the folder
of prior correspondence, peruses past mail, and then
returns to the mailer to finish editing a response, one
also incidentally learns something about the composite
metaphor. But the user probably only analyzes the
metaphor to the extent he or she needs to for this task.
The person probably does not ponder the data structure
implications of a list of documents each with an
embedded file hierarchy. To the extent that the available
functionality matches what one wants to do, one may
not even be aware of the metaphor as a metaphor.

A way of seeing how dependent metaphor compositions
are on task contexts is to observe that when com
positions span task boundaries, their mutual contradic
tions may not be noticed. Carroll and Lasher (described
in Carroll et aI, 1988) studied a person using a pro
grammable calculator who referred to one input
metaphor to understand error correction (namely, the
notion that each new entry was inscribed into a log that
could subsequently be edited) and another to understand
the availability of calculations in routine, non-error
situations (namely, the notion that each new entry was
instantly assimilated into a cumulating result). The
two metaphors had obvious mutual contradictions as
comprehensive models for the device , but this
apparently was not a problem in actual use.

Task contexts support and guide the recognition and
resolution of cases for which a metaphor target mis
matches aspects of the metaphor source. In the mail
system example, the possibility of having your own
folder for past correspondence appear" in" a new piece of
mail mismatches the source domains of physical mail
and physical folders. However, in the task context of
answering mail, the mismatch may provide relevant and
useful functionality that may help carry out a task and
thereby make sense of the mismatch in a way that ex
pands the concept of mail and file support. We suggest
that the problems with "dynamic" metaphor
mismatches, reported recently by Hirose (1992), might
be understood as cases in which a metaphor is not ade
quately bound to a task context. However, we have not
studied these reports enough to draw conclusions.

3. Metaphors specify tasks

The conceptual analysis of metaphors as bound to task
contexts can support design work by helping to broaden
the consideration of metaphor from the level of look
and-feel to the level of user goals and activities. This
kind of "conceptual" application is currently the most
common and most successful use of metaphors in de
sign (e.g., Carroll et ai, 1988, Madsen, 1994). Recent
work has begun to develop "computational " applica
tions of metaphor, that is, to bridge directly from the

Graphics Interface '94

.--~~~~~-------- - -

114

conceptual analysis of metaphor to software architec
tures and tools that organize and support the design and
development of applications and user interfaces.

A simple example is a structure-mapping system devel
oped by Blumenthal (1990) that reasons about a
description of an application, a description of a real
world metaphor source, and a set of relations mapping
the latter to the former. The system tries to maximize
the number of mapped relations by evaluating relations
not included in the design specification it is given, and
by creating new application entities to correspond to
given real-world entities.

The system incorporates a limited notion of task
context in constructing mappings. For example, in
evaluating a Rolodex metaphor for a data manager, the
face-up Rolodex card (that is, the one above the spindle)
was mapped to both the currently viewed data record (in
Browse Mode) and the record template (in Add Record
Mode). However, only in the Browse Mode mapping did
the system map size and location attributes: the
currently viewed data record has a size and location, but
the record template does not.

Other work gives task context a more central role. Bass,
Kazman and Little (1992) described a "conceptual
architecture" in which metaphors are the central
computational objects of the user interface. Bass et al.
differentiate between three levels for describing
applications: abstract tasks, metaphors, and physical
tasks. Abstract tasks are a succinct characterization of
the user's problem domain: the potential user inter
actions, the data structures and relations underlying
those interactions. For example, the user of a mail sys
tem will want to view pieces of mail. Metaphors in
stantiate concepts from the abstract task level in con
crete and familiar terms. For example, the user's mail is
held in an in-box, which can be scanned, and its items
opened for viewing. The in-box is an example of the
"list" metaphor; viewing is a function of the "buffer"
metaphor. Physical tasks implement metaphors within
specific device contexts, that is, as specific sequences of
user actions and system responses. For example,
showing the in-box list might be achieved by double
clicking on the mailbox icon. Thus, metaphors bridge
between the abstract functional specification of the
application and the low-level user actions that
implement that specification.

A key aspect of Bass et al.'s architecture is the corre
spondance they create between metaphors and abstract
data types that have real-world analogs. Thus, the in
box is a list, a concrete and familiar type of entity, that
can also be formally specified as an abstract data type.
Bass et al. use metaphors to modularize the specifica
tion of user interface functionality. They stipulate that

metaphor functions can operate on only one data type.
Thus, viewing a piece of mail can be defined as a func
tion of the buffer metaphor, and scanning the headers of
mail received can be defined as a function of the (in-box)
list metaphor, but finding a piece of mail can only be
defined at the abstract task level because it incorporates
both scanning a list and loading a buffer.

There are many open questions about Bass et al.'s ap
proach. For example, it is not clear what is lost from
the conceptual notion of metaphor when it is equated
computationally with abstract data type. Bass et al.
emphasize lists, trees, buffers and queues as examples of
metaphors. But it is notable that in their view the
desktop metaphor itself cannot be analyzed as integral at
the metaphor level. And other familiar metaphors, like
rehearsal (Gould & Finzer, 1984), cannot be analyzed at
all. Furthermore, even if this architecture produces a
good system decomposition with respect to
specification, it is not clear what its impact would be
on system implementation. However, modulo these
issues Bass et al. have raised a simple and bold
framework for unifying the substantial tradition of con
ceptually-oriented work on metaphor with the up-to
now independent tradition of work on software
architectures.

4. Metaphors design tasks

The concept of metaphor plays a central role in many
object-oriented design methodologies, though this has
only occasionally been clearly acknowledged (Rosson &
Alpert, 1990). The object-oriented paradigm conceives
of computation as message-sending interactions among
highly encapsulated software objects. Thus, Object-ori
ented design (OOD) methods focus on identifying key
design objects and their "responsibilities" in these mes
sage-sending collaborations. In this "intelligent object"
design paradigm software objects "know" about the
tasks they will participate in (Rosson & Alpert, 1990).
For example, a piece of mail knows how to format and
send itself, and to what folder(s) it is related and how.

Objects in the 00 paradigm are designed to be
intelligent about the tasks they particpate in; the need to
analyze such task-based responsibilities has prompted
development of a variety of scenario-based OOD
methods. In these methods, scenarios are analyzed to
create a problem domain model of objects and re
sponsibilities - this model is the starting point for the
software design (e.g., Wirfs-Brock, Wilkerson &
Wiener, 1990). For example, a weather display and
simulation system might have as part of its starting
representation a scenario in which someone wishes to
explore what it would be like if a hurricane formed in
the Gulf of Mexico and moved up the east coast of
North America while there was a wintertime high

Graphics Interface '94

pressure system over southern New England.

The problem domain model will contain objects like
cold fronts, warm fronts, high and low pressure
systems, and the storm system. This model is refined
as the designer identifies appropriate abstractions among
the objects and recognizes cross-scenario constraints
among their attributes and relations. The designer may
realize that a velocity should be modeled as a distinct
object, or may recognize that warm and cold fronts share
various sorts of behavior, for example, the tendency to
move eastward.

The entities of the task domain are being used as
metaphors, but not just conceptual metaphors. They
are design objects. Physical characteristics and
behaviors of weather objects (e.g., that cold fronts move
in certain patterns, that their collisions with warm
fronts cause particular changes to their structure, that
the velocity of a storm system is influenced by factors
such as topography and air pressure) are analyzed and
encapsulated within appropriate design objects as
responsibilities. In the resulting software, these
computational entities will maintain those
characteristics and enact those behaviors.

The emphasis on problem domain simulation as a first
approximation OOD strategy is founded on the belief
that physical structure in the world provides a good first
approximation to a computational model that is
modular and robust to change (Meyer, 1988). However,
the approach is also implicitly oriented toward the
design goal of supporting metaphoric understanding and
discovery on the part of users: The design objects
emerge from models of the extant problem situation,
and are reinterpreted and refined as part of the software
design process. The final design will reflect the initial
metaphors derived from the problem domain model, but
will also reflect the sharpened abstractions that have
emerged. One benefit of developing software metaphors
like this is to build a foundation for users who later will
traverse these same paths of reinterpretation as they
construct and use their own metaphors for using and
understanding the application.

S. Metaphors implement tasks

The OOD methods we have described incorporate
metaphoric views of problem domain entities as a
vehicle for articulating a domain model. If development
of the design occurs within an object-oriented language
and environment, however, the contribution of these
problem metaphors can extend beyond design into
implementation.

Rosson and Carroll's (1993) Scenario Browser tool
supports this more extended contribution of problem

115

metaphors. It coordinates the development of textual
sketches of events and interactions comprising a
scenario with the development of Smalltalk/V® code
(Digitalk, 1989) implementing these scenarios in a
persistent-object workspace. The Scenario Browser also
coordinates the text and workspace views with various
rationale views in which the designer records arguments
for various design decisions. Thus, as a developer
designs and implements the objects underlying a set of
scenarios, his or her reasoning may be captured for later
use by other designers (for example, as the metaphors
are evolved or reused in other scenarios) or by users.

5.1 Developing scenarios. Development of an
application in the Scenario Browser is an iterative
process of scenario elaboration, analysis and evolution.
For the weather simulation example, a designer might
begin by sketching out a variety of high-level learning
tasks. The Scenario Browser provides a typology of six
general usage situations that encourage broad coverage
of potential user concerns; the situations reflect our
efforts to generalize over scenario sets we have
developed for a variety of applications (Carroll &
Rosson, 1992). The situations include orienting (e.g.,
wondering about the kinds of things the simulation
could be used for), searching (looking for some
particular expected feature such as a "run animation"
button), opportunism (choosing to explore further some
aspect of the system, such as browsing a set of example
simulations) , procedures (carrying out a basic task like
creating the hurricane simulation described above),
making sense (trying to understand why the system
behaved in some way, perhaps wondering why a newly
created animation does not terminate but keeps cycling
through over and over), and tuning (figuring out how to
improve on one's current usage patterns, e.g., reusing a
piece of one simulation in another).

The initial scenarios sketched in the Scenario Browser
typically do not include details of user interactions. Our
design approach encourages designers to first model the
problem domain as a coherent set of basic tasks, and
then to develop an appropriate user interface to this
problem model (Goldberg, 1990). From the perspective
of usability, this approach focuses early design attention
more on usefulness than on ease of learning or ease of
use. It also reflects our belief that a key ingredient of
designing usable applications is the development of a
meaningful problem domain model. Note that from the
perspective of metaphoric thought, this means that the
initial metaphor capture will focus on what a problem
entity contributes to a task, not on the details of how it
does this.

5.2 Psychological design rationale. So m e
designers may work exclusively with textual scenarios
in reasoning about and elaborating a system's

~
" ... •

"'~': """'\'
::0. Graphics Interface '94

116

functionality. However the Scenario Browser
encourages designers to make their reasoning more
explicit by analyzing the "claims" associated with
particular use scenarios. A claim encodes a bit of
psychological design rationale - it consists of an
artifact feature and its anticipated positive and negative
consequences for a situation of use. For example,
allowing users to run a developing weather simulation
at any point encourages early and continued testing of
their ideas, but may slow down their work, and may in
fact discourage more systematic planning. The design
method embodied in the Scenario Browser assumes that
designers will work with such claims as the design
progresses, capitalizing on positive consequences as
much as possible while mitigating negative
consequences.

An important source of psychological design rationale
is a designer's reasoning about problem metaphors. In
the hurricane scenario, putting a cold front object "in
control" of its trajectory (e.g., it is responsible for
finding out about the topography it is moving over and
taking appropriate action, rather than making
topographic features responsible for notifying fronts
that move over them) makes the front more active as a
metaphor than the land it travels over. While this may
map well to our initial intuitions about weather objects,
the designer might want to record this bit of rationale
for continued evaluation as the design evolves.

5.3 Interleaving analysis, design and
implementation. A key aspect of the Scenario
Browser environment is that the specificaton of tasks is
intertwined with the design and implementation of the
software supporting the tasks. As soon as one or more
basic tasks has been sketched out, the designer begins to
build an object-oriented software "solution" for the
scenarios. The software development activity is also
scenario-based, in that it consists of the identification,
instantiation, elaboration, and evolution of Smalltalk
objects needed to implement individual use scenarios.
This direct contribution of problem scenarios to
implementation as well as analysis and design
differentiates our work on the Scenario Browser from
other scenario-based OOD methods (e.g., Jacobson,
Christersson, Jonsson & Overgaard, 1992; Wirfs-Brock
et aI., 1990). The early and continuing interplay
between the elaboration of use scenarios (as
specifications of a system's functionality) and the
implementation of these scenarios (as a representation
of the software supporting the specified functionality)
reflects our general belief that a design process that
interleaves analysis, design and implementation is more
likely to result in useful and useful systems.

Implementation of a scenario takes place within a
persistent-object workspace associated with the scenario.

The designer creates instances of existing Small talk
classes (e.g., a particular weather object might be
implemented initially as a Dictionary of attribute-value
relations), creates and tests out messages needed to carry
out the scenario (e.g., accessing the value of a
characteristic like velocity, developing a response to a
contact:withForce: message received from a
hurricane object), and sets up the relationships among
objects needed to enable their collaboration (e.g.,
deciding whether the hurricane object and the cold front
should "point" to one another, or communicate
indirectly through some other object).

The objects developed for a particular scenario can be
manipulated both symbolically via Smalltalk
expressions in the workspace and more directly via an
"object map", a graph of the important objects
contributing to the scenario (the designer decides which
objects should be incorporated in this graph, but the
graph itself is created by analyzing the chosen objects
and their connections). Figure 1 depicts a graph of
objects that might have been developed at some
intermediate point in developing the hurricane scenario.

~indS~ ~fMe;:>
_Jl~

C@urricanV
~ ~imulati~

~atherObj~ .--..--
C§:oldFr55 ~
.~ ~uili~

~-W-in-d-S-peed-~ ~

Figure 1. The nodes in the graph represent instances
of Smalltalk classes that might have been developed to
implement the hurricane scenario. Arcs represent
instance variable connections (e.g ., the arc from
aHurricane to the object gulf Mexico indicates
that the latter is the value of an instance variable -
perhaps location - of the former). The Scenario
Browser allows designers to manipulate such object
object connections directly.

The object map is useful for working out what objects
are needed to implement a scenario and how they should
be connected. The actual code implementing these
objects (i.e., the class definitions, the methods that are
evaluated in response to messages passed among them)

Graphics Interface '94

is created and maintained in a code browser. This
browser is a Bittitalk Browser (Rosson, Carroll &
Bellamy, 1990), a filtered view of the large Smalltalk!V
class hierarchy that provides access to only the classes
currently being used to implement a scenario's objects.

Designers using the Scenario Browser are offered a
concrete problem situation within which to work out
initial software abstractions. The concreteness of the
situation aids in the identification of objects; perhaps
more importantly, it provides a context for analyzing
the interaction of these objects, which is a prerequisite
for distributing object responsibilities and setting up the
lines of communication necessary for objects to carry
out their individual responsibilities (Wirfs-Brock et aI.,
1990). Furthermore, the specific scenarios set up very
concrete situations in which to engage the intelligent
object metaphor, taking different problem objects'
"points of view" (Robertson, Carroll , Mack, Rosson,
Alpert & Koenemann-Belliveau, 1994) to analyze
alternative distributions of responsibilities and lines of
control. The filtered Bittialk Browser contributes to
this focus on a concrete situation, by presenting to the
designer only the abstractions operational in the
situation under development.

5.4 Software rationale. Just as a scenario
specification can be analyzed for the claims it makes
about an artifact's consequences for users , a scenario
implementation can be analyzed for the claims it makes
about the software's consequences for its users - the
developers and maintainers of the software. Here again,
the contributions of metaphor might be noted, in that
the adoption of a particular problem metaphor might
have ramifications for developers as well as users (e.g.,
making the Smalltalk abstraction for cold fronts more
"active" might make it easier to extend in interesting
ways as the application is used and enhanced).

Although we are only now beginning to experiment
with application development in the Scenario Browser,
we expect that the parallel development of tasks and
their implementation will have a number of advantages.
Designer-user communication is likely to be facilitated,
as software design effort will always be directed at a
particular scenario (or set of scenarios), providing a
concrete task-oriented context for discussion about
design alternatives. To the extent that the object
oriented solutions embed good models of the problem
domain, this communication should be facilitated even
more (Bruegge, Blythe, Jackson & Shufelt, 1992).
Indeed, the reification of problem metaphors as software
abstractions mjght serve an important role in extending
users' initial understanding of what the system can
provide.

Because reasoning about software alternatives begins

117

early, before task specification has been completed,
continual feed-forward from tasks to implementation, as
well as feedback from implementation to tasks is
enabled. In many cases, these interactions will be of a
constraining nature - a task sets requirements for the
software (e.g., that certain obvious weather objects like
fronts and hurricanes should be respected in the software
model), or the software constrains the details of a task
(e.g., that some abstraction must serve in a
"controlling" role). The advantage of our approach in
these cases is that such constraints can be recognized
early and their effects on the developing design can be
analyzed and explored immediately within the context of
the tasks they affect. Of more interest are cases in
which a task raises new and unforeseen opportunities for
its implementation , or vice versa (e.g. , creating an
active metaphor for a cold front may lead to new ideas
for weather interactions that model situations not
possible in the real world) . System development often
ignores the potential for mutual inspiration of task and
software design; our hope is that environments like the
Scenario Browser will make such interchange
commonplace.

There are several similarities between the style of deign
supported by the Scenario Browser and the style of de
sign envisioned in Bass et al .'s conceptual architecture.
Scenarios in the Scenario Browser are abstract tasks, but
are perhaps less abstract (or at least more annotated)
than what Bass et al. have in mind. The object model
view of a scenario in the Scenario Browser is similar to
Bass et al.'s view of the metaphor level as an analysis
of tasks into abstract data types. Consistent with object
oriented design, the Scenario Browser takes a less
constrained view of what can serve as an abstraction
(i.e., a "class" in object-oriented design, which
encapsulates both data and behavior). And the Scenario
Browser encourages a more detailed implementation at
this level; it would be typical to specify not only what
the metaphors are (i .e ., as classes with sample
instances), but also their design interactions (lines of
communication established through component and
shared objects). Our experiments with the Scenario
Browser have focussed on the design of tasks rather than
a task's user interface, but Bass et al.'s view of the
physical task level as implementation of metaphors is
compatible with use of the Scenario Browser for user
interface development.

6. Discussion

The observation that user interface and application
metaphors are bound to task contexts entails that
metaphors should be designed and developed as elements
of designed tasks. Thus, it comprises another argument
for the centrality of scenario-based design methods in
human-computer interaction (Carroll & Rosson, 1990,

~
.••... ~

"'~':""' \'
: .. . ' Graphics Interface '94

118

1992). More broadly, as we announced at the beginning
of this paper, the observation that metaphors are bound
to scenarios of use corroborates a larger movement in
design theory toward more direct incorporation of
contexts of use into the objects of analysis and design.

The conception and role of metaphor in human
computer interaction have come a long way from the
structure-mapping notions of simple, static isomor
phisms. It is standard now to seriously address the
processes through which humans construct metaphors,
the concerns they manage and the insights they experi
ence, and the task contexts to which metaphors are
bound. But perhaps best of all, this richer and more
dynamic conceptual view of metaphor can be put to
work in new ways, embodied in software architectures
and development environments.

7. Acknowledgements

This paper is a further development of "Binding
metaphors to scenarios of use" which appeared in the
Proceedings of the FRIEND21 1994 International
Symposium on Next Generation Human Interface
(Tokyo, February 2-4).

8. References

Bass, L., Kazman, R. & Little, R. (1992). Toward a
software engineering model of human-computer interac
tion. In Engineering for Human-Computer Interaction,
Proceedings of the IFIP TC2IWG2.7 Working Confer
ence, Amsterdam: North Holland, pp. 131-153.

Blumenthal, B. (1990). Strategies for automatically in
forporating metaphoric attributes in interface designs.
Proceedings of U1ST: The Third Annual Symposium
on User Interface Software and Technology (Snowbird,
Utah, 3-5 October), pp. 66-75

Bruegge, B., Blythe, 1., Jackson, J., & Shufelt, J .
(1992). Object-oriented system modeling with OMT.
In Proceedings of OOPSLA'92: Object-oriented
Programming Systems, Languages and Applications.
(Vancouver, British Columbia, October). New York:
ACM Press, pp. 359-376.

Carroll, J.M. & Thomas, J.C. (1982). Metaphor and
the cognitive representation of computing systems .
IEEE Transactions on Systems, Man, and Cybernetics,
SMC, 12, 107-116.

Carroll , J.M. & Mack, R.L. (1985) . Metaphor, com
puting systems, and active learning. International Jour
nal of Man-Machine Studies, 22, 39-57.

Carroll, J .M., Mack, R.L. & Kellogg, W.A. (1988).

Interface metaphors and user interface design. In M. He
lander (ed.), The handbook of human-computer interac
tion. Amsterdam: North-Holland, pp. 67-85.

Carroll, J.M. & Rosson, M.B. (1990). Human com
puter interaction scenarios as a design representation. In
Proceedings of HICSS-23: Hawaii International Confer
ence on System Sciences, IEEE Computer Society
Press, Los Alamitos, Ca., pp. 555-561.

Carroll, J.M. & Rosson, M.B. (1992). Getting around
the task-artifact cycle: How to make claims and design
by scenario. ACM Transactions on Information Sys
tems, 10, 181-212.

Digitalk. (1989) . Smalltalk V PM. Los Angeles:
Digitalk, Inc.

Hirose. M. (1992). Strategy for managing metaphor
mismatches. CH1'92 : Posters and Short Talks, page 6.

Jacobson, I. , Christersson, M., Jonsson, P., &
Overgaard, G. (1992) . Obje ct-oriented software
engineering: A use case driven approach. Reading, MA:
Addison-W esley.

Madsen, K.H. (1994). A guide to metaphorical design.
Communication of the ACM, in press.

Goldberg, A. (1990). Information models, views, and
controllers. Dr. Dobb's Journal, 166, 54-61.

Gould, L. & Finzer, W. (1984) . Programming by
rehearsal. Xerox Palo Alto Research Center SCL-84-1 .
Palo Alto , CA.

Meyer , B. (1988). Object-oriented software
construction. Englewood Cliffs, NJ: Prentice-Hall.

Nonogaki, H. & Ueda, H. (1991). FRIEND21 Project:
A construction of 21st century human interface. Pro
ceedings ofCH1'91 . New York: ACM, pp. 407-414.

Robertson, S.P., Carroll, J .M., Mack, R.M ., Rosson ,
M.B., Alpert, S.R. & Koenemann-Belliveau, J.
(1994). ODE: The Object Design Exploratorium. IBM
Research Report . RC 19279. Yorktown Heights, NY.

Rosson, M.B. & Alpert, S.R. (1990). The cognitive
consequences of object-oriented design. Human-Com
puter Interaction. 5. 345-379.

Rosson, M.B. & Carroll , J .M. (1993). Extending the
task-artifact framework. In H.R. Hartson & D. Hix
(Eds.), Advances in Human-Computer Interaction . 4.
Norwood, NJ: Ablex, pp. 31-57.

~
-. .'

'~':' ~'-, '- . -.,-
: .. . ' Graphics Interface '94

Rosson, M.B., Carroll, LM. & Bellamy, R.K.E.
(1991). Smalltalk scaffolding: A case study of
minimalist instruction Proceedings of CH1'90. New
York: ACM, pp. 423-430.

Smith, D.C., Irby, C., Kimball, R., Verplank, B., and

:;;jl~~L

119

Harslem, E. (1982, April) . Designing the Star user in
terface. Byte, 7(4),242-282.

Wirfs-Brock, R., Wilkerson, B. & Wiener, L. (1990).
Designing object-oriented software. Prentice Hall, En
glewood-Cliffs, New Jersey.

/~~ : . . \
:.' .' Graphics Interface '94

