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Abstract 
SPAM (Simulation Platform for Animating Mo­

tion) is a simulation software system designed to 
address synchronization issues pertaining to both 
animation and simulation . SPAM provides appli­
cation programs with the manipulation, configura­
tion, and synchronization tools needed when sim­
ulations are combined to create animations. It is 
designed to be used as the glue between applica­
tions that supply lists of the parameters to animate 
and the call back procedures to invoke when a user 
wishes to modify the parameters directly. SPAM 
does not impose a particular model of simulation, 
accommodating keyframing , physical simulation, or 
a variety of other models, providing they can be ab­
stracted into a set of externally modifiable variables. 

In SPAM we recognize that the important part 
of simulation is not the state of the system at each 
time step, but rather the change in states between 
steps. Thus SPAM uses an interval representation 
of time, explicitly representing the intervals over 
which change occurs. 

In a complex animation or simulation, multiple 
actions will access the same resource at the same 
time. SPAM defines a strategy for recognizing such 
conflicts that increases the use and re-use of se­
quences. 

Resume 
SPAM est un systeme de simulation cn~e pour 

adresser les problemes de synchronisation presents 
dans les systemes d'animation et de simulation . 
SPAM apporte aux logiciels des outils pour effectuer 
les taches de manipulation, configuration, et syn­
chronisation qui sont necessaires quand differents 
modeles de simulation sont combines pour produire 
une animation. SPAM est conr;u pour servir de lien 

entre plusieurs constituants qui apportent chaque­
un une liste de parametres controlables. On peut se 
serveir de n'importe quel modele , soit le "keyfram­
ing," la simulation physique, ou d 'autres methodes, 
tant qu'elles puissent exporter des variables a mod­
ifier . 

SPAM temoigne du fait que l'aspect imporant de 
la simulation n'est pas l'etat du systeme a chaque 
demarcation temporale mais plut6t les changements 
entre les moments demarques. Par consequent 
SPAM se sert d'une notation d'intervale tempo­
rale , ce qui permet unre representation explicite de 
l'intervale dans laquelle le systeme change. 

Dans une scene complexe, plusieures actions 
accedent a une resource en meme temps. SPAM 
incorpore une strategie pour reconnaitre ces COI1-

flits et encourager la re-utilisation de sequences. La 
resolutions des conflits peut etre soit automatique 
ou par l 'intervention de l 'utilizateur. 

Keywords: Animation, simulation, data flow , 
keyframing, parametric animation, intervals. 

1 Introduction 

Animation is the art of manipulating 
the invisible interstices that lie between frames. 

- Norman McLaren 

Computer animation systems aid the traditional 
process of animation by providing keyframing, edit­
ing, sequencing, previewing, and mathematical 
models from the realm of simulation : procedu­
ral models, dynamics, kinematic and dynamic con­
straints, and inverse kinematics, to name a few . The 
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task of integrating all of these approaches must ad­
dress the problems associated with the interactions 
between simulators and their differing notions of 
time. Animation systems tend to be stand-alone 
monoliths, and although open animation systems 
have appeared that allow third-party software de­
velopers to extend the capabilities of the stock prod­
uct , this approach is not useful in the highly hetero­
geneous and changing environment of an academic 
research laboratory. A research lab can generally 
neither afford the cost of the software, nor the staff 
required to create and maintain all of the packages 
and conversion utilities. 

Much of the difficulty involved in using different 
models of animation and simulation arises in com­
bining them. Simulation systems evolve from a set 
of initial conditions: the state at any point in the 
future is unknown and requires considerable com­
putation and data, the details of both frequently 
unknown in advance. In contrast, animators often 
work towards a final state with a preconceived path. 
This demands much more control over the animated 
elements, and usually includes completely specify­
ing all the motions of all objects . Numerical in­
tegration, especially adaptive methods that use a 
variable time increment, is particularly diffi cult to 
im plement correct ly in this context. Mixing t rad i­
tional an imation with simu lations requires consid­
erable thought about how the interactions of the 
methods should be handled. Ad hoc solutions will 
work given enough refinement of the individual an­
imations, but a more general solution to the prob­
lems is required. 

SPAM provides applications with animation , se­
quencing, synchronization , scripting, and coordina­
tion capabilities in a manner similar to the way that 
user interface toolkits such as Motif and Open Win­
dows provide applications with window manage­
ment services. The application supplies the fun c­
tions and parameters to be controlled, and SPAM 
coordinates the animation and grouping of those pa­
rameters through a combination of its own separate 
user interface and any pre-existing application inter­
face. The interfaces between SPAM and application 
code are called actuators, and defin e an abstract 
data type that embodies the particular set of sys­
tem parameters to control , along with the callbacks 
or routines used to set or read these values. 

The specification of an animation from a graphi­
cal interface is converted into a graph representation 
that is subsequently evaluated to update the state 
of the system for each time interval. Evaluation is 

performed in much the same way as in a traditional 
dataflow system [dyer90] but SPAM explicitly mod­
els time and has the added capabilities to handle 
discrete events , to synchronize actions , and to de­
tect loops and conflicts that arise when two actions 
share a resource. 

For example, for an application that provides 
basic forward kinematics for a rticulated figures , 
SPAM provides all the capabilites of a paramet­
ric animation system [stur84 , hanr85] . To control 
the pose of, for example, a hand making a fist , 
the animator groups the degrees of freedom such 
that the degree to which the hand is open is con­
trolled through the manipulation of a single pa­
rameter. Typically the animator defines multiple 
groups, each controlled by a single parameter and 
specifying some other hand posture (e.g. touch­
ing the thumb and forefinger together). When­
ever these actions are combined in an animation 
the groups need to modify a shared resource, e.g. 
the angle of one of the finger joints. SPAM detects 
such conflicts when the animation sequence is spec­
ified and either internally resolves the conflict with 
a pre-defined (possibly interactive) tool, or allows 
the application to arbitrate using its own interface 
to the animator . 

SPAM , however, is more than a parametric ani­
mation system; it is a system for coordinating mul­
tiple models of simulation, and is designed for use 
with new or existing simulation software with a min­
imum of additional code. We define an agent as an 
obj ect encapsulating data and the simulation soft­
ware that changes the state of the data over time, 
while exchanging information to and from the sys­
tem as a whole as needed . SPAM treats simulations , 
as well as traditional animation techniques such as 
keyframing , as agents. 

Consider a situation where several agents in the 
application interact . If agent A and agent B pro­
ceed such that agent A interacts with other agents 
(requests or supplies data) at a schedule incom­
patible with the schedule of interactions of B , the 
situat ion will arise where the two agents attempt 
to modify the same resource at overl apping inter­
vals. SPAM coordinates agents that run at different 
rates or with completely different notions of time by 
t reating time as an interval and a llowing the various 
simulations to proceed at the appropriate rates and 
by providing mechanisms to resolve confli cts when 
multiple agents access the same resource. 

Many simulation and animation systems view the 
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passage of time as a steady procession forward at 
a specific rate [bartS9]. This view is limited and 
restrictive. If different simulation models are to co­
exist in an animation system, any incompatibility 
in the representation of time must be resolved and 
coordinated. If the only concept of time advance­
ment is a clock tick, it becomes difficult to integrate 
the different simulations without aliasing artifacts, 
and the situation is even worse if the integrators 
use adaptive step sizes. The cost of imposing the 
smallest step size on all the components is too high. 

2 Background 

There are many examples of treating animation as 
a form of simulation. In particular we are inter­
ested in those approaches that address the prob­
lems of dealing with multiple simulation agents and 
the conflicts generated through their interactions. 
Rozenblat and Muntz in their Tangram Animation 
System [roze91] use rule and event based animation 
control to animate the results of their queueing net­
work and Markov chain simulations. Their system 
is based on animating state changes, and as such, 
each rule is of the form of a script evaluated when 
some condition becomes true. Although useful for 
animation based upon events this approach is, in 
essence, a discrete event simulation and as such does 
not readily deal with continuous processes. They 
also do not address the problems that arise when 
when multiple rules could be selected by the same 
condition. 

Kalra and Barr [kalr92] build simulation systems 
by composing motion behaviour rules (functions 
of time, differential equations of motion, or con­
straints) using directed graphs that specify the con­
ditions that should cause the behaviour of the sys­
tem to change. These conditions, event units, and 
the associated change in the motion behaviour can 
be discontinuous and asynchronous , but the general 
principle is that the system of equations governing 
the simulation changes when an event occurs. Thus 
the state of the system can be continuous, but the 
set behaviours can be discontinuous. Since the sys­
tem of equations and the conditions for changing 
the system are under the control of a central evalua­
tor inter-object interactions (e.g. collisions) can be 
handled efficiently. However, this framework does 
not exactly specify the behaviour of the system if 
multiple events occur at the same time. It is also 
not apparent how to extend this framework to a col-
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lection of simulation engines (agents in our nomen­
clature) where the equations of motion and the as­
sociated state variables are encapsulated within the 
agents. 

Kazman takes a different approach, building a 
system based on modeling continuous dynamic sim­
ulation. HIDRA [kazm93] is structured around au­
tonomous objects, a distributed world manager, and 
a collection of servers that handle object-object in­
teractions. By centralizing certain inter-object in­
teraction such as collisions, the servers reduce the 
need for each object to independently detect in­
teractions. However, HIDRA's notion of time is 
expressed simply as clock cycles, and there is no 
structured way of dealing with the classic readers 
and writers problem that occurs when the state of 
an object is accessed by several interaction servers 
[cour71]. 

Zeleznik et al. [zele91] embody behaviours as con­
trollers that send abstract messages to various ob­
jects in the system who in turn determine how to 
react to those messages. In essence, the controllers 
are simulation engines (our agents) operating on the 
participating objects. For example, an interactive 
technique is considered a controller for an object. 
When different controllers affect the same object at 
the same time, the authors propose the use of an 
intermediary controller to mediate the use of the 
shared resource. The authors did not present a so­
lution to the difficulties that arise when controllers 
are running simulations at different rates . 

Kuhn and Muller encapsulate different simula­
tions into independent controllers (agents )[kuhn93]. 
Though they acknowledge the possibility of multi­
ple controllers affecting the state of an object during 
the same time step, they do not provide means for 
mediating such conflicts. This leaves conflict resolu­
tion in an ad hoc stat~, uncontrollable within their 
framework. Their notion of time is based on syn­
chronization of local clocks in a hierarchy of object 
group (environments) and controller pairs. Each en­
vironment ticks forward at a specific rate, invoking 
its controllers at each clock tick. The controllers are 
responsible for advancing the state of the environ­
ment to the next state, and may in turn activate 
other environments. No mechanism is provided to 
deal with a non-hierarchical control graphs. 

SPAM mediates the progression of time and coor­
dinates communication between components in an 
application. The major components of an applica­
tion are: 

~
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Figure 1: The structure of an application using 
SPAM. The simulation agents communicate to the 
animation/simulation interfaces, or directly to the 
animator by using an interface associated with an 
an actuator. 

3 The System 

SPAM VI: the user interface used to specify how 
agents interact. 

Agents: the computational elements to coordinate. 
For example, a free-form surface modeller or a sim­
ulator for rigid-body dynamics. 

Agent VI: the user interface to an agent . For ex­
ample, the interactive editor for a free-form surface 
modeller. 

SPAM: the graph of processes that coordinate the 
interaction between the agents, and its evaluator. 

A separate interface, called Gurn, builds the 
SPAM graph using calls to library routines that 
build SPAM sub-graphs that implement interpo­
lators , constraints, and synchronization operators 
such as those found in Fiume et al.[fiumS7]. The 
de.tails of Gurn and the library interface to SPAM 
are beyond the scope of this paper . 

The interface between an agent and SPAM 
(agents do not directly communicate with each 
other) is called an actuator and represents the pa­
rameter or group of parameters to animate. Thus 
for a free-form surface modeller an actuator is in­
stantiated for each modifiable degree of freedom 
available in the editor . Each agent posts its actua­
tors to SPAM and provides callback routines for ac­
cess and modification of the parameters represented 
by the actuator . If the agent has its own user in­
terface for setting a given parameter, then access 
to this interface can be included in the actuator 

definition. Information is transferred between an 
agent (via its actuators) and SPAM through an ab­
stract data type , called a steward, that encapsulates 
sources, sinks, conflict resolvers, and forecasters (all 
described below). A steward administrates all ac­
cess to an actuator from other components within 
the application. 

SPAM implements a simple process control mech­
anism supporting small atomic sequential processes 
communicating over fixed, typed, communication 
channels. The graph, reminiscent of those gener­
ated using data flow languages [dyer90], is evalu­
ated to advance the state of the system through a 
time interval. 

One evaluation of the SPAM graph advances time 
a specified amount . At the beginning of each cycle 
the system is in a particular state - the actuators 
reflect the internal state of the agents. It is the job 
of SPAM to achieve a concensus about the state 
of the system at the end of the interval. Because 
agents are allowed to run at different time steps, 
sometimes a value for an actuator at an interme­
diate time is required that has not yet been com­
puted. Stewards administrate the calculation of this 
intermediary information required by other agents. 
Once a concensus is reached , an explicit commit ac­
tion sets the internal state of all actuator-mediated 
parameters in all agents, and time advances for the 
application as a whole. 

The graph is evaluated by executing all processes 
not blocked awaiting input. These nodes broadcast 
the results of any internal computation on their out­
put channels which triggers further computation in 
connected processes . Evaluation continues until all 
active portions of the graph have been traversed 
at which point the commit occurs, all the stewards 
write values to their actuators and each agent is in­
voked to deal with the change in its internal state. 
Evaluation of the graph is explained in more detail 
in Section 4.1. 

3.1 Stewards 

SPAM is designed to mediate the interaction of mul­
tiple agents by insulating an agent from the effect 
of any other agent 's notion of how time progresses. 
The the internal state of an agent (i.e. its actua­
tor values) must be protected from , yet simultane­
ously available to, other components in the system. 
The internal state of the agent must be protected 

~
-... , 

... ~ .. . \ . . . . . 
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in those situations where constantly updating the 
agent's internal state is too costly or is inappropri­
ate, and available if intermediate (i.e . requests to 
update the actuator value before the commit) val­
ues can be safely accomodated. SPAM deals with 
this by using a steward that controls all access to 
an actuator. 

Consider a simulation with two agents - A, that 
proceeds at a fixed time step, and B that proceeds 
with a variable time step and requires a value from 
A at the beginning of each of its intervals. Forcing 
A to run with small step sizes so that it has values 
available when B requires them is inefficient, if not 
impossible . Instead some flexible strategy is needed 
to produce an appropriate value when needed. De­
pending on the nature of A the agent may produce 
an exact value, or the steward can provide an es­
timate. The stewards associated with each of A's 
actuators encapsulates this knowledge and allows 
the agent to choose the appropriate behaviour. 

The steward also deals with those situations 
where requests to set an actuator occur more fre­
quently than the agent's internal notion of time al­
lows. Dependant upon the nature of the agent, it 
may be reasonable to make these intermediate val­
ues available to the rest of the system as they writ­
ten or retain the old value until the next commit 
phase. 

3.2 Sources 

Data is introduced into the SPAM process network 
via source nodes in the control graph. Using a time 
interval as its input a source returns the value that 
represents the actuator 's value at the beginning of 
the interval. Each source is bound to the steward 
that administrates access to the actuator . In gen­
eral , the value of the actuator is accurate only for 
the beginning of the interval , not for times within it . 
As the result of the steward's operation , there may 
be cached values that include the requested interval 
or bracket it, and in such cases the steward invokes 
an interpolation or extrapolation mechanism to pro­
vide a value for the source. Such a guess is called 
a forecast, and will be examined in further detail in 
Section 4.2 . 

. ::~:. 
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3.3 Sinks and Caches 

Sink nodes are used to set the value of actuators. 
Data sent to a sink is mediated by the steward which 
caches the value according to the interval for which 
it was calculated. At the commit stage, once all 
computation in the process graph is complete for the 
given interval, this cache is dump '·d to the agent . 
The steward may pass either th~ complete list to 
the actuator, or just the final value, depending upon 
the type of steward instantiated . 

3.4 Conflict Resolution 

When multiple values for the same time interval 
arrive at a sink node the conflict is resolved us­
ing a conflict resolver which utilizes one of several 
possible strategies ranging from a simple priority 
scheme which uses the most recently written value 
or a weighted sum of all the inputs in the overlap . 
Each conflict resolver has its own set of actuators 
that control its behaviour (e.g. the weights to ap­
ply to each input) which are also controlled via the 
SPAM process graph . In the GURN user interface 
to SPAM, the choice of conflict resolver (and values 
sent to its actuators) is part of the specification for 
an animated sequence. 

Rather than always determining the final value, 
resolution of a conflict is deferred until a source re­
quests a value falling within the overlapping inter­
val. This is particularly important for computation­
ally expensive resolution strategies, such as those 
involving manual intervention by a user. 

3.5 Transformers and Synchroniza­
tion Operators 

The remaining nodes in a SPAM graph are called 
Transformers . A transformer performs an atomic 
stateless computation using its inputs, and passes 
the result to its output channel(s). A trans­
former may simply generate a constant value, per­
form interpolation, access the operating system, 
or partake in a complex calculation incorporating 
time, differential equation solvers, or constraints 
[glei90 , haeb88, kass92] . Of particular interest are 
a few transformers for manipulating time and pro­
viding flow control. 

A splitter provides a simple looping mechanism , 
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breaking down an input interval into a stream of 
fixed or variable size intervals. 

A gate clips an input time interval to the interval 
specified at its initialization and is used to ensure 
that a sub-graph is evaluated only at certain times. 
If the clipped interval is null then no output is writ­
ten. 

4 The Control Graph 

Although SPAM graphs can be very general, be­
cause they encode a particular set of operations 
and interactions , they typically have a great deal 
of structure. Degrees of freedom that do not in­
teract form non-interacting subgraphs. Degrees of 
freedom that do interact typically do so in limited 
ways, usually simple, uni-directional dependancies. 
For instance, in the case where agent A uses the 
value of an actuator in agent B , the dependancies 
are visible in the graph as a source reading B in the 
subgraph that evaluates a result for A. Of course, 
cycles can appear in the graph. How they are delt 
with is examined in greater detail in Section 4.3. 

4.1 The Structure of the Graph 

A SPAM graph consists of a starter node, with no 
inputs , connected to other transformers and sinks. 
The starter node defines the time interval over 
which to evaluate the graph . It is strobed with a 
sequence of time intervals to advance the state of 
the application over time . 

Evaluation of the graph is a straightforward 
traversal that invokes any node that has all its re­
quired inputs. Not every node is evaluated since 
some will never receive their required inputs for a 
given interval because some subsection of the graph 
is only active for a specific period of time. (Gate 
nodes are used to fence off subgraphs in this man­
ner) . 

4.2 Sources and Deferred Evaluation 

Most of the nodes in the graph are simple atomic 
operators that provide output once all their inputs 
are available. Sources are an exception to this be­
cause of the behaviour of the stewards. When the 
value for an actuator (via a source) is requested for 

the beginning of an iterval, the steward's actuator 
value corresponds to the current state in the agent, 
and this value is returned immediately. If some in­
termediate value exists in the cache, or if no current 
value is available, evaluation of the source node is 
deferred with the expectation that more informa­
tion will become available as the rest of the graph 
is evaluated. 

When all nodes in the graph are blocked awaiting 
input, any source node still deferred is evaluated . 
This causes the appropriate steward to invoke its 
conflict resolver which perform either interpolation 
or some other more sophisticated mechanism to es­
timate the current value of the source. 

4.3 Cycles 

Cycles appear in a SPAM graph as a result of inter­
steward interactions or from constraints enforced 
within an agent. The former case is easier to de­
tect and deal with because some SPAM UI in used 
in building the graph and thus can ensure that 
the graph is built properly. Cycles caused by de­
pendencies between actuators within an agent are 
much more difficult . In general SPAM cannot de­
tect these, and so they must be flagged explicitly 
when the actuators are instantiated. Strategies for 
dealing with such interactions are a topic for future 
research and may involve either invoking some gen­
eral constraint resolution method on the affected 
subgraph or returning control to the agent to deal 
with the dependecies internally. 

4.4 Building SPAM Graphs 

Because SPAM graphs can be very general, it is im­
portant to impose structure on them to make them 
easy to generate. Fortunately many common ac­
tions are expressible using simple sub-graphs that 
have a simple interface to the rest of the process 
graph. These sub-graphs are encapsulated into the 
library routines that the SPAM UI uses to construct 
the graph. 

Consider for example a sub-graph that performs a 
summation (figure 2) . Its only interaction with the 
rest of the graph is its input, its output and choice 
of the source. This sub-graph is made re-useable 
by building a library routine that instantiates this 
sub-graph given the choice of source and the interval 
over which to evaluate the summation. 
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Figure 2: A SPAM subgraph to perform a summa­
tion . The constant specifies the zero condition, th e 
or nodes pass along one of their inputs without wait­
ing for another, and the final gate assures that a 
result will only leave the sub-graph at the end of the 
interval. 

In a similar fashion , subgraphs that perform in­
terpolations, constraint enforcement , or a complex 
simulation, are collected into routines whose inter­
actions with the SPAM graph are set by parameters 
supplied at run-time. Assorted synchronization op­
erators are implemented in the same way. Fiume 
et al. detail a number of useful operators [fium87] 
that all have isomorphic representations as SPAM 
graphs. 

5 Keyframing and Dynamic 
Simulation 

Using SPAM we built a simple application combin­
ing three agents , a display engine that displays a 
double pendulum , a dynamic simulation engine that 
performs dynamics on the pendulum, and an input 
agent that uses mouse input to set the pendulum's 
joint angles and accelerations. 
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The drawing agent redraws the pendulum every 
time a new state vector is written to its actuator . 
The dynamics agent, written using SD/fast, a com­
mercial dynamic simulation package, uses a variable 
step size integrator to calculate the joint angles of 
the pendulum from one iteration to the next. The 
input agent is used to interactively control the joint 
angles and supply forces and torques applied to the 
pendulum. 

SPAM coordinates these three agents transfer­
ring values from the input agent to set the positions 
or forces on the pendulum that both the dynamics 
agent and the drawing agent must respond to. 

6 Conclusions 
Work 

and Future 

SPAM represents time as an interval, allowing ex­
plicit control of the interval over which values are 
requested during the simulation. SPAM 's simple 
data-flow like graphs, coupled with the structure 
imposed on the graphs make it easy to coordinate 
complicated agents. SPAM is sufficiently powerful 
to deal with the interaction of various simulation 
engines, be they integrators, traditional keyfram­
ing, or procedural models. 

Outstanding issues remain. When cycles are en­
countered they are flagged for the application to 
respond to, but no general strategy has been devel­
oped to structure the application's response. 

Although SPAM deals with mediating informa­
tion transfer between simulation engines, we have 
not addressed the complications arising from fun­
damental differences in representations used by dif­
ferent simulation models, as would occur if one sim­
ulation used , for example, a height field represen­
tation while another used a finite volume model. 
This problem of differing representations would re­
quire considerable support for appropriate shared 
data structures and domain-specific knowledge of 
the representational-level interactions, and is cur­
rently beyond the scope of the toolki t approach 
proffered here . 
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