
165

Explicating Implicit Surfaces

Brian Wyvill

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada T2N IN4
e-mail addresses: blob@cpsc.ucalgary.ca

ABSTRACT

In this paper I present a review of implicit surface techniques
along with a summary of current problems and possible so­
lutions. Implicit surface models can be made to blend and
change their shape. Such properties as this make these mod­
els very useful for animation. I describe various interactive
modelling and animation techniques such as the use of meta­
morphosis and warping. Implicit surfaces have been used to
represent natural phenomena such as biological shapes and in
this paper a new technique is presented for simulating glow­
ing objects. Finally some thoughts are given to the future
direction of implicit surface research.

KEYWORDS: modelling, implicit surfaces, skeletons, ani­
mation.

INTRODUCTION

Jim Blinn introduced the idea of modelling with iso-surfaces
as a side effect of a visualization of electron density fields .
[I] . Such models have various desirable properties including
the ability to blend with their close neighbours. These mod­
els have been given a variety of names in particular: Blobby
Molecules (Blinn), Soft Objects (Wyvill) [18] and MetaBalls
(Nishimura) [12]. Jules Bloomenthal pointed out that these
models could be grouped under the more general heading of
implicit surfaces, defined as the point set: F (P) = 0 [2] . In
this paper I have concentrated on implicit surfaces built from
skeletons. A skeleton is composed of a number of skeletal
elements. A scalar field is defined around a skeletal element.
The shape and a variety of properties of a skeletal element are
discussed below. Implicit surface modelling techniques are
now beginning to penetrate the animation industry. Several
examples in commercial animation exist including at least
one commercial system (the MetaEditor - Meta Corporation)
an interactive editor which uses metaballs . In this paper I
have outlined the major trends and techniques using skele­
tal implicit surfaces, various problems of the technique and
areas of future research are also discussed. Following this
introduction the paper is organised as follows; section one
deals with modelling techniques, section two with rendering
and section three with animation. In each section a brief
overview of the subject is presented followed by details of

areas where active research is ongoing.

SKELETAL IMPLICIT SURFACE MODELS
The basic idea is that a model can be built from a primitive
skeleton by combining elements such as points, lines, poly­
gons, circles and splines. A surface representing a blended
offset from the skeletal elements, is calculated and visualized.
The skeletal elements are linked hierarchically. At each frame
an implicit surface encloses the skeleton using the techniques
described in [4]. In general, any three dimensional object can
be a part of the skeleton, as long as it is possible to deter­
mine the distance from a given point in space to the object.
Skeletons are useful for several reasons:

• Skeletons provide intuitive representation for many nat­
ural objects.

• Skeletons themselves are easily manipulated and dis­
played.

• Skeletons provide a more concise representation than
parametric surfaces.

• As in Constructive Solid Geometry (CSG), complex
shapes can be modeled with few elements. But un­
like CSG it is much easier to add new primitive types.
(CSG requires O(n 2) intersection algorithms for n prim­
itive types, implicit surfaces require O(n) distance al­
gorithms).

The skeleton is surrounded by a scalar field Ftotal(P) (equa­
tion I). The intensity of the field being the highest on the
skeleton, and decreasing with distance from the skeleton.
The function Ft otal(P) relates the field value (intensity) to
distance from the skeleton has an impact on the shape of the
surface, and determines how separate surfaces blend together
(see [8]). The surface is defined by the set of points in space
for which the intensity of the field has some chosen constant
value (or iso-value thus the name iso-suiface) . Fields from
the individual elements of the skeleton are added to find the
potential at some chosen point. (Values can be negative or

Graphics Interface '94

166

positive). The value at some point in space is calculated as
follows:

i=n

Ftotal(P) = L C;Fi(ri) (I)

i=1

where P is a point in space

Ftotal (P) is the value of the field at P

n is the number of skeletal elements

Ci is a scalar value (used for positive or negative elements)

Fj is the blending function of the ith element

rj is the distance from P to the nearest point Qi on the ith

element.

The evaluation of Ftotal(P) has two steps. The first step in­
volves finding the nearest point Qi on the skeletal element to
the given query point P and calculating the distance between
them. This procedure depends on the geometry of the skeletal
element and can be very simple (trivial in the case of a point
skeleton), or quite complex in the case of spline curves and
patches, when an iterative or numerical method is necessary.
The second step involves evaluation of the blending func­
tion which may be modified by noise or other perturbation
function as described in [8] . The warping described below
is separate from these modification functions. The surface is
controlled by applying local or global transformations, such
as scaling, translation, and rotation, to the elements of the
skeleton, and by changing the blending functions.

MODELLING PROBLEMS

Figure 1: Unblending Primitives (Courtesy Andrew Guy Uni­
versi ty of Calgary

to taking the sum of the implicit values. For example given
two primitives, A and B, for some point P the values could
be combined thus : Viotal = (VA + VB)/(Vl + V~) The
bulge is reduced using this technique, although not elimi­
nated. Another source of further research is the unwanted
blending problem. A good example is a human hand. The
fingers blend at their roots but not along their length. This
has been partially solved in the Meta-Editor by introducing
the concept of a primitive which has an asymmetric effect
011 the surrounding field . Another approach is to find the
implicit value by taking the maximum of the contributions
of the surrounding primitives. This technique was first in­
troduced by Thad Bier see [17]. This produces no blending
between primitives. Blending can thus be designated between
groups of primitives in a graph like structure [16]. Figure I
demonstrates this technique, as can be seen, collision detec­
tion between the fingers has not been applied, blending is
minimised but after polygonization the fingers are interpene­
trating in places.

Before good interactive design tools can be built, solutions RENDERING
need to be found to a number of outstanding problems. Firstly, Skeletal Implicit surfaces are defined by black box/unctions
the method is not localised sufficiently. Moving a skeletal el- which given a point provide a value and in the case of points
ement (or primitive) has a global effect on the field. Some on the surface, a surface normal. These surfaces can be vi­
progress towards buildinga hierarchical scheme, where prim- sualized by ray tracing , finding the ray surface intersection
itives may be subdivided and their children have limited effect by one of a number of numerical techniques. A good survey
has been made ([7]) but as yet, the design tools do not have of these techniques is given in [17]. A popular method of
the intuitive feel of Forsey's hierarchical parametric surface rendering implicit surfaces is to first convert the surface to
editor ([5]). A second problem is known as the bulging prob- a polygonal approximation . A survey of methods of doing
lem. fields from neighbouring skeletal elements are summed this polygonization is detailed in (11]. In an interactive en­
and produce a bulge where their combined values are equal to vironment, the surface must be visualized as fast as possible,
the iso-value. Jules Bloomenthal and Ken Shoemake offered to keep up with changes to a model entered interactively by
a solution to this problem ([3]), however their convolution the user. An additional advantage of the polygonization ap­
surface technique is relatively slow and involves a lengthy proach is the availability of a full 3-D approximation of the
pre-processing step at a discrete resolution. Another possi- implicit surface which allows for fast viewing from arbitrary
bility would be to use some other technique as an alternative directions .

Graphics Interface '94

Most currently existing techniques for the polygonization
of implicit surfaces are based on data structures that allow
spatial indexing: either a voxel-based structure ([2]) or the
hash-table structure of ([18]) may be used. Some inherent
disadvantages of these data structures exist. Firstly, the data
structure comprises a partitioning of the space rather than a
tesselation of the surfaces to be polygonized. Especially in
the case of animation (e.g. in the computer animation "The
great train rubbery", [15]), this is likely to cause geometric
artifacts that are fixed with respect to space, thus moving in
an incoherent way over every moving surface.

Second, there is an apparent mismatch between the number
of triangles that is generated by these algori thms and the com­
plexity of the surface that is approximated: even relatively
smooth and flat segments of an implicit surface usually result
in large amounts of facets . Bloomental ([2]) uses an adaptive
version of the spatial indexing data structures, an octree in
order to reduce the amount of polygons produced in tesse­
lating an implicit surface. This indeed reduces the amount
of polygons generated, but full advantage of large cells can
only be taken if the flat regions of the surface happen to fall
entirely within the appropriate octants. The algorithm proves
in practice to be considerably slower than the uniform voxel
algorithm of [18], and is very complicated to implement.

SHRlNKWRAP

A new, fast, adaptive algorithm called; Shrink Wrap, was
offered by [13] . This algorithm took the following approach.
First, when constructing an adaptive tesselation for a curved
surface, the most obvious parameter to use as an indicator for
the local tesselation-resolution is the local curvature of the
surface. In many cases, a measure for this local curvature (the
Gaussian curvature), can be computed analytically. This is
also true for implicit (or equi-potential) surfaces in the case of
l/r-type potentials. When tesselating the surface, however,
i.e. approximating the surface by a discrete set of samples
plus some connecting topology, the interpretation ofthe value
of this curvature in the sampled points is not at all clear.
For instance, the surface may be highly curved between two
adjacent sample vertices, but if it happens to be flat in these
vertices we won ' t know and the tesselation is likely to miss
this curved feature. In this algorithm the tesselation consists
of a mesh of triangles, but the error analysis takes place on the
edges of the triangles (the chords) rather than on the triangles
themselves. Chords are considered as approximations of
segments of curves in the implicit surface.

The following criteria lead to a definition of an acceptable
surface. O', .c and Lmax are real-valued parameters that are
used to characterize the algorithm.

167

Figure 2: chord criteria

Figure 3: triangle subdivision

• the surface is given by f(r) = 0 where rE R3 ;

. 3 R3 R3 R3 • a chord IS a tuple (a , b, na, nb) E R x x x
where f(a) = f(b) = 0 and na = \l f(a) and nb =
\l f(b);

• the surface is called acceptable iff for every chord on the
surface L(na, nb) :S ,ala - bl where L(p, q) is the angle
between p and q;

• a chord is called acceptable iff L(n a, n b) :S 0' and la -
bl :S Lmax;

• a triangle, consisting of three chords is acceptable iff all
three chords are acceptable.

The parameter .c is essentially the Lipschitz parameter of the
surface to be tessalated. The Lipschitz criterion bounds the
variation of the derivative of a function between neighbour
points in the domain of that function . The Lipschitz criterion
has been used in 1989 by Kalra and Barr ([9]) to compute
ray-intersections with implicit surfaces with a guaranteed ac­
curacy. Before that date, B. von Herzen ([14]) studied its
application in computer graphics.

The algorithm attempts to create a tesselation which consists
of acceptable triangles. The simplest closed polygon mesh
is a tetrahedron, consisting of 4 vertices, 4 triangles and 6
chords. If one or more chords are unacceptable, they have to
be split. Figure 3 shows a splitting scheme which iIIustrates
how a triangle can be subdi vided into smaller triangles. In a

one of the chords is subdivided; in c three chords are subdi­
vided and in b, one of the two possible ways of subdividing
two chords. This subdivision scheme can be used to assign
surface coordinates to all newly created vertices to be the av­
erage of the surface coordinates in the two extreme vertices
of the split edge. The new midpoint is then forced onto the
surface by an iterative method. (see [13]).

Graphics Interface '94

168

One of the problems is that if the surface is too convoluted,
the iterative algorithm mentioned above will not be able to
converge onto the surface. However we observe that equi­
potential surfaces

3 '" Pi {r E R I L..; Ir _ Ril = Vo} ,

with Vo < 1 have a shape which is less involved, whereas
equi-potential surfaces with Vo > 1 are more involved. An
extreme case of the first example is Vo = 0, which produces
a sphere with an infinitely large radius. We take advantage
of this observation and start with a tetrahedron which is com­
pared to a surface with a low value of Vo. The triangles are
then split according to the acceptability criteria and the re­
sulting mesh then compared with a surface where the value
Vo is increased. Thus we have an iterative process which
creates gradually more involved surfaces. (See Plate I) .

P=Ro+(R.!·(M,,-Ro»R.!
(points a", taken as vectors from the world origin)

(Rd Unit Vector in the Ray Direction)

(M" - Modeling Primitive Origin)

(Ro - Ray Origin)

Figure 4: Finding the nearest distance from a ray to an implici t
surface primitive

The Breakfast Algorithm be calculated and used to obtain the brightness of the glow as
The above process does not solve all the problems. As the follows:
values of Vo are increased the surface can break off into sep­
arate parts . The above algorithm cannot cope with holes (as
in a toroidal model) or separate manifolds. The Breakfast

G>. = m>. V i (2)

Algorithm partially solves the problem by using the voxel al- where
gorithm of [18] to identify separate surfaces and then applies
Shrinkwrap to each of these. Voxels are classified as inside,
all vertices have an implicit value> the iso-value, outside, all
vertices have an implicit value < the iso-value, or containing
in which at least one vertex is the opposite sign. A search
algorithm is applied to produce groups of voxels that have
neighbours in the containing category. These groups of vox­
els are polygonized and form the starting mesh for applying
the Shrinkwrap Algorithm. At first sight it seems that the
Breakfast Algorithm combines the best of both the previous
approaches. · However toroidal objects are still a problem and
the number of manifold surfaces emerging from the first pass
is dependent on the size of the voxels. Further experiments
have to be done to establish the efficiency of these algorithms.

RAY TRACING GLOWING OBJECTS
Making an object glow is a useful effect in computer anima­
tion . This can be done relatively easily with implicit surface
models. A glow should be seen surrounding an object and
fade to zero at some distance away. A value for the bright­
ness of the glow can be obtained as a function of the field in
which the model is defined. This has been implemented as
a part of a ray tracer. The nearest distance between each ray
to each primitive ellipsoid is calculated. The point on the ray
is shown as P in figure 4. One way to calculate the glow is
to take the value of P corresponding to the shortest of these
di stances and pass it to equation I . The implicit value, v , can

Vi =
if v < 0
if v > 0.5
otherwise

(3)

and m>. f rO , 1) are scalars controlling the intensity of indepen­
dent wavelengths.

There is a problem with this procedure consider two neigh­
bouring rays, Ra and Rb . The nearest primitive to Ra may
be different from the nearest primitive to Rb, thus returning
two different points with correspondingly different implicit
values. Thus causing a discontinuity in the glow. An obvi­
ous method around this problem would be to find the closest
distance for each primitive and sum the implicit values con­
tributed by each primitive for each ray. Since each primitive
contributes a value between 0 and 1, the sum can be nor­
malized by simply dividing by the number of primitives.
This procedure causes the glow to be very dense near to areas
where there are lots of primitives grouped together, but far too
sparse in areas where there are few primitives. For example
plate 3 shows a dinosaur model next to its glowing coun­
terpart. The tail section received no-glow by this method.
To achieve the even glow in plate 3 the points along the ray
representing the closest point to each primitive are selected
as above. The implicit values are calculated as before but

~
" "''''J .

'~'~'" .. " . . . :.. .•
:.- Graphics Interface '94

o.s

r id 0+------------.---------===---1
o 0 12 ,

Figure 5: Cubic Blending Function Fcub(r)
17r4 22r'
9" R4 - 9" R' + 1

only the N highest values are used for the glow calulation.
It has been found empirically for our models that N = 3
is a reasonable number to choose. With N <3, discontinu­
ities appear, with N >3, no glow is seen where there are few
primitives.

Plate 4 shows two rows of merging sphere primitives. The top
row has been ray traced and a texture applied. The bottom row
is the same set of textured primitives with a glow added. The
advantage of using implicit surface models is that the glow
can be calculated directly from the field as shown above. The
shape of the glow follows the zero contour. Values of the
field greater than zero are brighter than the background. It is
also possible to change the shape of the glow, by altering the
blending function used in the expression for Ftotal(P) . For
the dinosaurs we use the cubic from [18] see 5. The glow
field can be increased by using a function that falls to zero
more slowly than the blending function for the train model
itself.

ANIMATION
Various animation techniques have been devised to make
use of the blending and other properties of implicit surface
models. For example:

• Path Following

• Negative Primitives

• Metamorphosis

• Collision Detection

• Warping

169

Figure 6: P is warped to Q. The original sphere is warped to
an ellipsoid.

The first three of these techniques are detailed in [17] and the
4th in [6]

A useful tool in our system is the ability to distort the shape of
a surface, by warping space around it. A warp is a continuous
function, W , from ~3 into ~3. In the following section
we suggest some specific warp functions that are useful for
producing some unusual animations.

The warped surface is defined from equation (1) above:

i=n

Ft ot al(P) = L c;F;(r;)
;=1

ri = f ;(P) = dist(w;(P) , Qi)

where Wi(P) is the position of the point P in warped space.
In fact each skeletal element may reside in a different warped
space. So when evaluating the contribution from the ith

skeletal element, P is first warped to the appropriate position
before evaluating the distance function.

As a first example, we study a warp function Wi(P), which
warps a point P to a point Q along a given vector v; it may
be given by the vector equation :

Wi(P) = P - v(v.p)

where pis P - SO,i.

So ,; is the origin of the ith skeleton

A V

V = TIVif

To understand how this affects the iso-surface consider P to
be a point some distance from the surface of a sphere, such

Graphics Interface '94

170

that the point is warped in the direction of the center of the
sphere, to a position Q which is on the iso-surface. The value
returned for P by the implicit function is the value that would
have been returned for Q if warping were not in effect. In
this case that value is the iso-value. Thus P becomes a point
on the surface and the sphere is warped to an ellipsoid. (See
Figure 6)

Many kinds of warp are possible, by simply writing a function
that transforms a point from ordinary space into warped space.
Each skeletal element contributes in a local way to the warped
space, since each has its own local warp function associated
with it. John Lasseter notes [10] the importance of squash
and stretch in traditional animation. The example he gives
is of a ball traveling along a parabolic path and bouncing.
The shape of the ball distorts into an ellipsoid to give the
feeling of speed, when it bounces the distortion changes so
that the long axis of the ellipse is parallel to the ground, in
other words a squash effect.

To simulate the distortion of the ball to the ellipsoid, the usual
computer graphics approach would be to use a scale operation
over time. Since the scale is in the direction of the velocity
vector v, two rotations are necessary, to first align the object
with one of the major axes, then to rotate back again. With
a complex 3D object consisting of many skeletal elements,
shape distortion using a scaling operation may not be exactly
what the animator requires. For instance on the impact plane,
the ball should flatten out and the distortion is different from
the deformation when the ball is further away, an effect which
cannot be achieved with linear transformations. By exagger­
ating the non-linearity the ball could appear to be made of
putty. Such a non-linear operation can easily be achieved by
a warp operation, as shown in the example below. Plate 2
shows some frames selected from an animation showing the
putty like ball bouncing. This is implemented in the warp
function in the following manner:

Let P be a point in space at which the implicit function is to
be evaluated. For simplicity, assume the collision plane to be
the plane.y = O.

Here

w(P) = { P - (3i;(v.p) - p 1/5
(P.x, 00, P. z)

p = P - 50

50 = the origin of the skeleton

p 1 = (P.x , 0, P. z)

if P.y > 0
otherwise

h(t) = A decreasing differentiable function (e.g.a cubic poly­
nomial) such that:

h(t)

(3

5

for t :S 0 { ~ for t > 1

clamp(l - 2.0/)

a parameter, typically around 0.5

The interpretation of the terms is as follows:

(P.x, 00, P.z)
guarantees that no part of the object protrudes below the
collision plane.

-p 1/5
accounts for spreading out the lower part of the object
(squashing). The vector p 1 is paral1el to the collision plane
indicating that squashing should be a horizontally directed
effect. The factor I assures that squashing increases near the
collision plane. No squash is applied if the center of the ob­
jects is higher than Yo or if P is higher than Yo. The parameter
5 controls the amount of squashing.

- (3i;(v.p)
is a modified version of the simple linear velocity warping as
discussed in section 4. The factor (3 is introduced to quench
the velocity warping near the impact point, to avoid discon­
tinuities in the warp function.
Indeed: at the point of impact, v undergoes a discontinuous
change,
(v .x, v. y , v.z) --+ (v .x , - v.y, v .z). This would cause a dis­
continuous warp function if it was not compensated. The
factor 2.0 in the expression for (3 has been found experimen­
tally to be a reasonable value. The function clamp(..) clamps
its argument value between 0 and I .

This approach initially aligns the warp vector with the veloc­
ity vector of the ball in the bouncing ball example. When
the impact occurs the ball wil1 start to deform in a non- lin­
ear oblate fashion according to the -p 1 15 term. At the
same time the linear prolate deformation (due to - (3i; (.p»
subsides. Our implicit surface models can be a collection
of skeletal elements, rather than a single spherical element,
such as the ball. Thus we can easily apply this non-linear
warp to a complex shape. In Plate 2 some frames are shown
from an animation which applies this method to a bouncing
ball (one soft primitive 5 = 0 .25). The ball is distorted into
an ellipsoid (Plate 2a) whose long axis grows as the vertical
velocity increases (Plate 2b). On impact the ball warps (Plate
2c/d) into a bulging shape. As the ball bounces it regains

.~ .. ~ :;" ..
/~~.

:.- Graphics Interface '94

its ellipsoid shape and as its vertical velocity decreases the
ball remains stretched along the horizontal axis by an amount
corresponding to its horizontal velocity. The technique easily
extends to skeletons consisting of many primitives. In Plate
2, the same method is shown to work for Nelson, the jumping
bear (consisting of 25 soft primitives). The slug in Plate 2 is
in fact a warp applied to three ellipsoid primitives. Warping
can be applied in space or time and may be non-linear, for
example, a warp can be applied:

• To the space in which a model exists, then move the
model.

• To the space over time, the model will change with time.

We have tried several different types of warp and the ous­
tanding problem is to present warping to the animator with
a consistent user interface, so that custom warps may be de­
signed.

CONCLUSIONS
In this paper some techniques for modelling, rendering and
animating implicit surfaces have been presented. Attention
has been focused on previously unpublished techniques such
as glowing objects and the breakfast algorithm. Skeletal Im­
plicit Surface techniques have proved useful for designing
models but still await widespread use in the design commu­
nity. Before this can happen, better interactive tools need to
be built for the designer and animator.

ACKNOWLEDGMENTS
I would like to thank the many students who have contributed
so greatly to this research. I would also like to thank Jules
Bloomenthal for his encouragement and ideas over the years
and to Kees van Overveld, who is my co-worker in developing
the Shrinkwrap and Breakfast algorithms. I am particularly in
debt to my brother, friend and colleague, Geoff Wyvill, who
started the whole thing off by solving a problem in scientific
visualization, the solution to which turned out to be so useful
for building models.

This work is partially supported by the Natural Sciences and
Engineering Research Council of Canada in the form of a
research grant and equipment grants.

References

[1] James Blinn. A Generalization of Algebraic Surface
Drawing. ACM Transactions on Graphics , 1 :235, 1982.

171

[2] Jules Bloomenthal. Polygonisation of Implicit Sur­
faces. Computer Aided Geometric Design, 4(5):341-
355, 1988.

[3] Jules Bloomenthal and Ken Shoemake. Convolution
Surfaces. volume 25, pages 251-256, August 1991.

[4] Jules Bloomenthal and Brian Wyvill. Interactive Tech­
niques for Implicit Modeling. Computer Graphics,
24(2):109-116,1990.

[5] David R. Forsey and Richard H.Bartels. Hierarchical
B-spline refinement. Computer Graphics (Proc. SIG­
GRAPH 88), 22(4):205-212, August 1988 .

[6] Marie-Paule Gascuel. An Implicit Formulation for Pre­
cise Contact Modeling Between Flexible SOlids. Com­
puter Graphics (Proc. SIGGRAPH 93), pages 313-320,
August 1993.

[7] Andrew Guy and Brian Wyvill Overveld. Hierarchi­
cal Subdivision For Implicit Surfaces. Technical re­
port, University of Calgary, Dept. of Computer Science,
1994.

[8] Z. Kacic-Alesic and B. Wyvill. Controlled Blend­
ing of Procedural Implicit Surfaces. Technical Report
90/415/39, University of Calgary, Dept. of Computer
Science, 1990.

[9] D. Kalra and A. Barr. Guaranteed Ray Intersections
with Implicit Functions. Computer Graphics (Proc.
SIGGRAPH 89),23(3):297-306, July 1989.

[10] John Lasseter. Principles of Traditional Animation Ap­
plied to 3D Computer Animation. Computer Graphics
(Proc. SIGGRAPH 87),21(4):35-44, July 1987.

[Il] Paul Ning and Jules Bloomenthal. An evaluation of
implicit surface tilers. IEEE Computer Graphics and
Applications, 13(6):33-41, November 1993.

[12] H. Nishimura, A. Hirai , T. Kawai, T. Kawata, I .Shi­
rakawa, and K. Omura. Object Modelling by Distri­
bution Function and a Method of Image Generation.
Journal of papers given at the Electronics Communica­
tion Conference '85, J68-D(4), 1985. In Japanese.

[13] Kees van Overveld and Brian Wyvill. Potentials, Poly­
gons and Penguins. An efficient adaptive algorithm
for triangulating an equi-potential surface. Proc. 5th
Annual Western Computer Graphics Symposium (SKI­
GRAPH 93),1992.

[14] B. von Herzen. Application of Surface Networks to
Sampling Problems in Computer Graphics. PhD thesis,
CalTech, Dept. of Computer Science, 1988.

~
-.•.... "

... ~·.··· . · ... i:,
" .',

:.' Graphics Interface '94

172

[15] Brian Wyvill. The Great Train Rubbery. SIGGRAPH 88
Electronic Theatre and Video Review, Issue 26, 1988.

[16] Brian Wyvill. Warping Implicit Surface for Animation
Effects. Proc. Western Computer Graphics Symposium
(SKIGRAPH 92), pages 55- 63,1992.

[17] Brian Wyvill, Jules Bloomenthal, Geoff Wyvill, Jim
Blinn, John Hart, Chandrajit Bajaj, and Thad Bier.
Course Notes. SIGGRAPH '93, Course #25, Model­
ing and Animating with Implicit Surfaces, 1993.

[18] Geoff Wyvill, Craig McPheeters, and Brian Wyvill.
Data Structure for Soft Objects. The Visual Computer,
2(4):227- 234, February 1986.

Penguin lmoge a.urtcsy or Koes van Overvdd

Graphics Interface '94

s. 6.

Nelson the J wnplng Bear

f.'QUlts from che:
boundng bull Wtimation

173

Graphics Interface '94

