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ABSTRACT 

In this paper I present a review of implicit surface techniques 
along with a summary of current problems and possible so­
lutions. Implicit surface models can be made to blend and 
change their shape. Such properties as this make these mod­
els very useful for animation. I describe various interactive 
modelling and animation techniques such as the use of meta­
morphosis and warping. Implicit surfaces have been used to 
represent natural phenomena such as biological shapes and in 
this paper a new technique is presented for simulating glow­
ing objects. Finally some thoughts are given to the future 
direction of implicit surface research. 

KEYWORDS: modelling, implicit surfaces, skeletons, ani­
mation. 

INTRODUCTION 

Jim Blinn introduced the idea of modelling with iso-surfaces 
as a side effect of a visualization of electron density fields . 
[I] . Such models have various desirable properties including 
the ability to blend with their close neighbours. These mod­
els have been given a variety of names in particular: Blobby 
Molecules (Blinn), Soft Objects (Wyvill) [18] and MetaBalls 
(Nishimura) [12]. Jules Bloomenthal pointed out that these 
models could be grouped under the more general heading of 
implicit surfaces, defined as the point set: F ( P) = 0 [2] . In 
this paper I have concentrated on implicit surfaces built from 
skeletons. A skeleton is composed of a number of skeletal 
elements. A scalar field is defined around a skeletal element. 
The shape and a variety of properties of a skeletal element are 
discussed below. Implicit surface modelling techniques are 
now beginning to penetrate the animation industry. Several 
examples in commercial animation exist including at least 
one commercial system (the MetaEditor - Meta Corporation) 
an interactive editor which uses metaballs . In this paper I 
have outlined the major trends and techniques using skele­
tal implicit surfaces, various problems of the technique and 
areas of future research are also discussed. Following this 
introduction the paper is organised as follows; section one 
deals with modelling techniques, section two with rendering 
and section three with animation. In each section a brief 
overview of the subject is presented followed by details of 

areas where active research is ongoing. 

SKELETAL IMPLICIT SURFACE MODELS 
The basic idea is that a model can be built from a primitive 
skeleton by combining elements such as points, lines, poly­
gons, circles and splines. A surface representing a blended 
offset from the skeletal elements, is calculated and visualized. 
The skeletal elements are linked hierarchically. At each frame 
an implicit surface encloses the skeleton using the techniques 
described in [4]. In general, any three dimensional object can 
be a part of the skeleton, as long as it is possible to deter­
mine the distance from a given point in space to the object. 
Skeletons are useful for several reasons: 

• Skeletons provide intuitive representation for many nat­
ural objects. 

• Skeletons themselves are easily manipulated and dis­
played. 

• Skeletons provide a more concise representation than 
parametric surfaces. 

• As in Constructive Solid Geometry (CSG), complex 
shapes can be modeled with few elements. But un­
like CSG it is much easier to add new primitive types. 
(CSG requires O( n 2) intersection algorithms for n prim­
itive types, implicit surfaces require O(n) distance al­
gorithms). 

The skeleton is surrounded by a scalar field Ftotal(P ) (equa­
tion I). The intensity of the field being the highest on the 
skeleton, and decreasing with distance from the skeleton. 
The function Ft otal(P) relates the field value (intensity) to 
distance from the skeleton has an impact on the shape of the 
surface, and determines how separate surfaces blend together 
(see [8]). The surface is defined by the set of points in space 
for which the intensity of the field has some chosen constant 
value (or iso-value thus the name iso-suiface) . Fields from 
the individual elements of the skeleton are added to find the 
potential at some chosen point. (Values can be negative or 
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positive). The value at some point in space is calculated as 
follows: 

i=n 

Ftotal(P) = L C;Fi(ri) (I) 

i=1 

where P is a point in space 

Ftotal (P) is the value of the field at P 

n is the number of skeletal elements 

Ci is a scalar value (used for positive or negative elements) 

Fj is the blending function of the ith element 

rj is the distance from P to the nearest point Qi on the ith 

element. 

The evaluation of Ftotal(P) has two steps. The first step in­
volves finding the nearest point Qi on the skeletal element to 
the given query point P and calculating the distance between 
them. This procedure depends on the geometry of the skeletal 
element and can be very simple (trivial in the case of a point 
skeleton), or quite complex in the case of spline curves and 
patches, when an iterative or numerical method is necessary. 
The second step involves evaluation of the blending func­
tion which may be modified by noise or other perturbation 
function as described in [8] . The warping described below 
is separate from these modification functions. The surface is 
controlled by applying local or global transformations, such 
as scaling, translation, and rotation, to the elements of the 
skeleton, and by changing the blending functions. 

MODELLING PROBLEMS 

Figure 1: Unblending Primitives (Courtesy Andrew Guy Uni­
versi ty of Calgary 

to taking the sum of the implicit values. For example given 
two primitives, A and B, for some point P the values could 
be combined thus : Viotal = (VA + VB)/(Vl + V~) The 
bulge is reduced using this technique, although not elimi­
nated. Another source of further research is the unwanted 
blending problem. A good example is a human hand. The 
fingers blend at their roots but not along their length. This 
has been partially solved in the Meta-Editor by introducing 
the concept of a primitive which has an asymmetric effect 
011 the surrounding field . Another approach is to find the 
implicit value by taking the maximum of the contributions 
of the surrounding primitives. This technique was first in­
troduced by Thad Bier see [17]. This produces no blending 
between primitives. Blending can thus be designated between 
groups of primitives in a graph like structure [16]. Figure I 
demonstrates this technique, as can be seen, collision detec­
tion between the fingers has not been applied, blending is 
minimised but after polygonization the fingers are interpene­
trating in places. 

Before good interactive design tools can be built, solutions RENDERING 
need to be found to a number of outstanding problems. Firstly, Skeletal Implicit surfaces are defined by black box/unctions 
the method is not localised sufficiently. Moving a skeletal el- which given a point provide a value and in the case of points 
ement (or primitive) has a global effect on the field. Some on the surface, a surface normal. These surfaces can be vi­
progress towards buildinga hierarchical scheme, where prim- sualized by ray tracing , finding the ray surface intersection 
itives may be subdivided and their children have limited effect by one of a number of numerical techniques. A good survey 
has been made ([7]) but as yet, the design tools do not have of these techniques is given in [17]. A popular method of 
the intuitive feel of Forsey's hierarchical parametric surface rendering implicit surfaces is to first convert the surface to 
editor ([5]). A second problem is known as the bulging prob- a polygonal approximation . A survey of methods of doing 
lem. fields from neighbouring skeletal elements are summed this polygonization is detailed in (11]. In an interactive en­
and produce a bulge where their combined values are equal to vironment, the surface must be visualized as fast as possible, 
the iso-value. Jules Bloomenthal and Ken Shoemake offered to keep up with changes to a model entered interactively by 
a solution to this problem ([3]), however their convolution the user. An additional advantage of the polygonization ap­
surface technique is relatively slow and involves a lengthy proach is the availability of a full 3-D approximation of the 
pre-processing step at a discrete resolution. Another possi- implicit surface which allows for fast viewing from arbitrary 
bility would be to use some other technique as an alternative directions . 
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Most currently existing techniques for the polygonization 
of implicit surfaces are based on data structures that allow 
spatial indexing: either a voxel-based structure ([2]) or the 
hash-table structure of ([ 18]) may be used. Some inherent 
disadvantages of these data structures exist. Firstly, the data 
structure comprises a partitioning of the space rather than a 
tesselation of the surfaces to be polygonized. Especially in 
the case of animation (e.g. in the computer animation "The 
great train rubbery", [15]), this is likely to cause geometric 
artifacts that are fixed with respect to space, thus moving in 
an incoherent way over every moving surface. 

Second, there is an apparent mismatch between the number 
of triangles that is generated by these algori thms and the com­
plexity of the surface that is approximated: even relatively 
smooth and flat segments of an implicit surface usually result 
in large amounts of facets . Bloomental ([2]) uses an adaptive 
version of the spatial indexing data structures, an octree in 
order to reduce the amount of polygons produced in tesse­
lating an implicit surface. This indeed reduces the amount 
of polygons generated, but full advantage of large cells can 
only be taken if the flat regions of the surface happen to fall 
entirely within the appropriate octants. The algorithm proves 
in practice to be considerably slower than the uniform voxel 
algorithm of [18], and is very complicated to implement. 

SHRlNKWRAP 

A new, fast, adaptive algorithm called; Shrink Wrap, was 
offered by [13] . This algorithm took the following approach. 
First, when constructing an adaptive tesselation for a curved 
surface, the most obvious parameter to use as an indicator for 
the local tesselation-resolution is the local curvature of the 
surface. In many cases, a measure for this local curvature (the 
Gaussian curvature), can be computed analytically. This is 
also true for implicit (or equi-potential) surfaces in the case of 
l/r-type potentials. When tesselating the surface, however, 
i.e. approximating the surface by a discrete set of samples 
plus some connecting topology, the interpretation ofthe value 
of this curvature in the sampled points is not at all clear. 
For instance, the surface may be highly curved between two 
adjacent sample vertices, but if it happens to be flat in these 
vertices we won ' t know and the tesselation is likely to miss 
this curved feature. In this algorithm the tesselation consists 
of a mesh of triangles, but the error analysis takes place on the 
edges of the triangles (the chords) rather than on the triangles 
themselves. Chords are considered as approximations of 
segments of curves in the implicit surface. 

The following criteria lead to a definition of an acceptable 
surface. O', .c and Lmax are real-valued parameters that are 
used to characterize the algorithm. 
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Figure 2: chord criteria 

Figure 3: triangle subdivision 

• the surface is given by f(r) = 0 where rE R3 ; 

. 3 R3 R3 R3 • a chord IS a tuple (a , b, na, nb) E R x x x 
where f(a) = f(b) = 0 and na = \l f(a) and nb = 
\l f(b); 

• the surface is called acceptable iff for every chord on the 
surface L(na, nb) :S ,ala - bl where L(p, q) is the angle 
between p and q; 

• a chord is called acceptable iff L( n a, n b) :S 0' and la -
bl :S Lmax; 

• a triangle, consisting of three chords is acceptable iff all 
three chords are acceptable. 

The parameter .c is essentially the Lipschitz parameter of the 
surface to be tessalated. The Lipschitz criterion bounds the 
variation of the derivative of a function between neighbour 
points in the domain of that function . The Lipschitz criterion 
has been used in 1989 by Kalra and Barr ([9]) to compute 
ray-intersections with implicit surfaces with a guaranteed ac­
curacy. Before that date, B. von Herzen ([14]) studied its 
application in computer graphics. 

The algorithm attempts to create a tesselation which consists 
of acceptable triangles. The simplest closed polygon mesh 
is a tetrahedron, consisting of 4 vertices, 4 triangles and 6 
chords. If one or more chords are unacceptable, they have to 
be split. Figure 3 shows a splitting scheme which iIIustrates 
how a triangle can be subdi vided into smaller triangles. In a 

one of the chords is subdivided; in c three chords are subdi­
vided and in b, one of the two possible ways of subdividing 
two chords. This subdivision scheme can be used to assign 
surface coordinates to all newly created vertices to be the av­
erage of the surface coordinates in the two extreme vertices 
of the split edge. The new midpoint is then forced onto the 
surface by an iterative method. (see [13]). 
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One of the problems is that if the surface is too convoluted, 
the iterative algorithm mentioned above will not be able to 
converge onto the surface. However we observe that equi­
potential surfaces 

3 '" Pi {r E R I L..; Ir _ Ril = Vo} , 

with Vo < 1 have a shape which is less involved, whereas 
equi-potential surfaces with Vo > 1 are more involved. An 
extreme case of the first example is Vo = 0, which produces 
a sphere with an infinitely large radius. We take advantage 
of this observation and start with a tetrahedron which is com­
pared to a surface with a low value of Vo. The triangles are 
then split according to the acceptability criteria and the re­
sulting mesh then compared with a surface where the value 
Vo is increased. Thus we have an iterative process which 
creates gradually more involved surfaces. (See Plate I) . 

P=Ro+(R.!·(M,,-Ro»R.! 
(points a", taken as vectors from the world origin) 

(Rd Unit Vector in the Ray Direction) 

(M" - Modeling Primitive Origin) 

(Ro - Ray Origin) 

Figure 4: Finding the nearest distance from a ray to an implici t 
surface primitive 

The Breakfast Algorithm be calculated and used to obtain the brightness of the glow as 
The above process does not solve all the problems. As the follows: 
values of Vo are increased the surface can break off into sep­
arate parts . The above algorithm cannot cope with holes (as 
in a toroidal model) or separate manifolds. The Breakfast 

G>. = m>. V i (2) 

Algorithm partially solves the problem by using the voxel al- where 
gorithm of [18] to identify separate surfaces and then applies 
Shrinkwrap to each of these. Voxels are classified as inside, 
all vertices have an implicit value> the iso-value, outside, all 
vertices have an implicit value < the iso-value, or containing 
in which at least one vertex is the opposite sign. A search 
algorithm is applied to produce groups of voxels that have 
neighbours in the containing category. These groups of vox­
els are polygonized and form the starting mesh for applying 
the Shrinkwrap Algorithm. At first sight it seems that the 
Breakfast Algorithm combines the best of both the previous 
approaches. · However toroidal objects are still a problem and 
the number of manifold surfaces emerging from the first pass 
is dependent on the size of the voxels. Further experiments 
have to be done to establish the efficiency of these algorithms. 

RAY TRACING GLOWING OBJECTS 
Making an object glow is a useful effect in computer anima­
tion . This can be done relatively easily with implicit surface 
models. A glow should be seen surrounding an object and 
fade to zero at some distance away. A value for the bright­
ness of the glow can be obtained as a function of the field in 
which the model is defined. This has been implemented as 
a part of a ray tracer. The nearest distance between each ray 
to each primitive ellipsoid is calculated. The point on the ray 
is shown as P in figure 4. One way to calculate the glow is 
to take the value of P corresponding to the shortest of these 
di stances and pass it to equation I . The implicit value, v , can 

Vi = 
if v < 0 
if v > 0.5 
otherwise 

(3) 

and m>. f rO , 1) are scalars controlling the intensity of indepen­
dent wavelengths. 

There is a problem with this procedure consider two neigh­
bouring rays, Ra and Rb . The nearest primitive to Ra may 
be different from the nearest primitive to Rb, thus returning 
two different points with correspondingly different implicit 
values. Thus causing a discontinuity in the glow. An obvi­
ous method around this problem would be to find the closest 
distance for each primitive and sum the implicit values con­
tributed by each primitive for each ray. Since each primitive 
contributes a value between 0 and 1, the sum can be nor­
malized by simply dividing by the number of primitives. 
This procedure causes the glow to be very dense near to areas 
where there are lots of primitives grouped together, but far too 
sparse in areas where there are few primitives. For example 
plate 3 shows a dinosaur model next to its glowing coun­
terpart. The tail section received no-glow by this method. 
To achieve the even glow in plate 3 the points along the ray 
representing the closest point to each primitive are selected 
as above. The implicit values are calculated as before but 

~
" "''''J . 
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Figure 5: Cubic Blending Function Fcub(r) 
17r4 22r' 
9" R4 - 9" R' + 1 

only the N highest values are used for the glow calulation. 
It has been found empirically for our models that N = 3 
is a reasonable number to choose. With N <3, discontinu­
ities appear, with N >3, no glow is seen where there are few 
primitives. 

Plate 4 shows two rows of merging sphere primitives. The top 
row has been ray traced and a texture applied. The bottom row 
is the same set of textured primitives with a glow added. The 
advantage of using implicit surface models is that the glow 
can be calculated directly from the field as shown above. The 
shape of the glow follows the zero contour. Values of the 
field greater than zero are brighter than the background. It is 
also possible to change the shape of the glow, by altering the 
blending function used in the expression for Ftotal(P) . For 
the dinosaurs we use the cubic from [18] see 5. The glow 
field can be increased by using a function that falls to zero 
more slowly than the blending function for the train model 
itself. 

ANIMATION 
Various animation techniques have been devised to make 
use of the blending and other properties of implicit surface 
models. For example: 

• Path Following 

• Negative Primitives 

• Metamorphosis 

• Collision Detection 

• Warping 
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Figure 6: P is warped to Q. The original sphere is warped to 
an ellipsoid. 

The first three of these techniques are detailed in [17] and the 
4th in [6] 

A useful tool in our system is the ability to distort the shape of 
a surface, by warping space around it. A warp is a continuous 
function, W , from ~3 into ~3. In the following section 
we suggest some specific warp functions that are useful for 
producing some unusual animations. 

The warped surface is defined from equation (1) above: 

i=n 

Ft ot al(P) = L c;F;(r;) 
;=1 

ri = f ;(P) = dist(w;(P) , Qi) 

where Wi( P) is the position of the point P in warped space. 
In fact each skeletal element may reside in a different warped 
space. So when evaluating the contribution from the ith 

skeletal element, P is first warped to the appropriate position 
before evaluating the distance function. 

As a first example, we study a warp function Wi(P), which 
warps a point P to a point Q along a given vector v; it may 
be given by the vector equation : 

Wi(P) = P - v(v.p) 

where pis P - SO,i. 

So ,; is the origin of the ith skeleton 

A V 

V = TIVif 

To understand how this affects the iso-surface consider P to 
be a point some distance from the surface of a sphere, such 
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that the point is warped in the direction of the center of the 
sphere, to a position Q which is on the iso-surface. The value 
returned for P by the implicit function is the value that would 
have been returned for Q if warping were not in effect. In 
this case that value is the iso-value. Thus P becomes a point 
on the surface and the sphere is warped to an ellipsoid. (See 
Figure 6) 

Many kinds of warp are possible, by simply writing a function 
that transforms a point from ordinary space into warped space. 
Each skeletal element contributes in a local way to the warped 
space, since each has its own local warp function associated 
with it. John Lasseter notes [10] the importance of squash 
and stretch in traditional animation. The example he gives 
is of a ball traveling along a parabolic path and bouncing. 
The shape of the ball distorts into an ellipsoid to give the 
feeling of speed, when it bounces the distortion changes so 
that the long axis of the ellipse is parallel to the ground, in 
other words a squash effect. 

To simulate the distortion of the ball to the ellipsoid, the usual 
computer graphics approach would be to use a scale operation 
over time. Since the scale is in the direction of the velocity 
vector v, two rotations are necessary, to first align the object 
with one of the major axes, then to rotate back again. With 
a complex 3D object consisting of many skeletal elements, 
shape distortion using a scaling operation may not be exactly 
what the animator requires. For instance on the impact plane, 
the ball should flatten out and the distortion is different from 
the deformation when the ball is further away, an effect which 
cannot be achieved with linear transformations. By exagger­
ating the non-linearity the ball could appear to be made of 
putty. Such a non-linear operation can easily be achieved by 
a warp operation, as shown in the example below. Plate 2 
shows some frames selected from an animation showing the 
putty like ball bouncing. This is implemented in the warp 
function in the following manner: 

Let P be a point in space at which the implicit function is to 
be evaluated. For simplicity, assume the collision plane to be 
the plane.y = O. 

Here 

w(P) = { P - (3i;(v.p) - p 1/5 
(P.x, 00, P. z) 

p = P - 50 

50 = the origin of the skeleton 

p 1 = (P.x , 0, P. z ) 

if P.y > 0 
otherwise 

h(t) = A decreasing differentiable function (e.g.a cubic poly­
nomial) such that: 

h(t) 

(3 

5 

for t :S 0 { ~ for t > 1 

clamp(l - 2.0/ ) 

a parameter, typically around 0.5 

The interpretation of the terms is as follows: 

(P.x, 00, P.z) 
guarantees that no part of the object protrudes below the 
collision plane. 

-p 1/5 
accounts for spreading out the lower part of the object 
(squashing). The vector p 1 is paral1el to the collision plane 
indicating that squashing should be a horizontally directed 
effect. The factor I assures that squashing increases near the 
collision plane. No squash is applied if the center of the ob­
jects is higher than Yo or if P is higher than Yo. The parameter 
5 controls the amount of squashing. 

- (3i;(v.p) 
is a modified version of the simple linear velocity warping as 
discussed in section 4. The factor (3 is introduced to quench 
the velocity warping near the impact point, to avoid discon­
tinuities in the warp function. 
Indeed: at the point of impact, v undergoes a discontinuous 
change, 
(v .x, v. y , v.z) --+ (v .x , - v.y, v .z ). This would cause a dis­
continuous warp function if it was not compensated. The 
factor 2.0 in the expression for (3 has been found experimen­
tally to be a reasonable value. The function clamp( .. ) clamps 
its argument value between 0 and I . 

This approach initially aligns the warp vector with the veloc­
ity vector of the ball in the bouncing ball example. When 
the impact occurs the ball wil1 start to deform in a non- lin­
ear oblate fashion according to the -p 1 15 term. At the 
same time the linear prolate deformation (due to - (3i; (.p» 
subsides. Our implicit surface models can be a collection 
of skeletal elements, rather than a single spherical element, 
such as the ball. Thus we can easily apply this non-linear 
warp to a complex shape. In Plate 2 some frames are shown 
from an animation which applies this method to a bouncing 
ball (one soft primitive 5 = 0 .25). The ball is distorted into 
an ellipsoid (Plate 2a) whose long axis grows as the vertical 
velocity increases (Plate 2b). On impact the ball warps (Plate 
2c/d) into a bulging shape. As the ball bounces it regains 

.~ .. ~ ......... ... :;" .. 
/~~. 
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its ellipsoid shape and as its vertical velocity decreases the 
ball remains stretched along the horizontal axis by an amount 
corresponding to its horizontal velocity. The technique easily 
extends to skeletons consisting of many primitives. In Plate 
2, the same method is shown to work for Nelson, the jumping 
bear (consisting of 25 soft primitives). The slug in Plate 2 is 
in fact a warp applied to three ellipsoid primitives. Warping 
can be applied in space or time and may be non-linear, for 
example, a warp can be applied: 

• To the space in which a model exists, then move the 
model. 

• To the space over time, the model will change with time. 

We have tried several different types of warp and the ous­
tanding problem is to present warping to the animator with 
a consistent user interface, so that custom warps may be de­
signed. 

CONCLUSIONS 
In this paper some techniques for modelling, rendering and 
animating implicit surfaces have been presented. Attention 
has been focused on previously unpublished techniques such 
as glowing objects and the breakfast algorithm. Skeletal Im­
plicit Surface techniques have proved useful for designing 
models but still await widespread use in the design commu­
nity. Before this can happen, better interactive tools need to 
be built for the designer and animator. 
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