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Abstract 
We present a scheme for efficient ly evaluating bi

variate quadratic simplex splines in the context of 
the new B-spline scheme developed by Dahmen, Mic
chelli and Seidel [DMS92] . An algorithm is pre
sented, which is based on the careful reuse of the 
partial results that arise when recursively evaluat
ing simplex splines. The method is compared with 
previous methods. A test implementation written in 
"C" is found to execute 2.3 times faster than another 
recent implementation not employing this algorithm. 
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1 Introduction 

Surface modelling has been an important activity in 
CAGD for many years. The most successful sur
face modelling schemes to date are curve techniques 
that have been extended in order to represent sur
faces, namely the Tensor Product B-spline and Ten
sor Prod~tct B ezier methods [BBB87, Far93] . 

Unfortunately, these extended techniques are not 
without flaws . Since the surface patches that emerge 
from ~hese schemes are essentially rectangular, it is 
difficult to model more complex shapes. Triangu
lar B ezier patches [Far93] , on the other hand , can 
be used to represent more general surface patches. 
This method can be used to define surfaces over ar
bitrarily shaped (polygonal) domains. However, au
tomatic maintenance of continuity properties is not. 
possible under this representation. 

Simplex spline methods [DM82, Hi:i182 , DMS92] 
overcome these difficulties by being able t.o repre
sent arbitrarily shaped domains, while automatically 
maintaining continui ty properties between different 

sections of a surface. The problem that these meth
ods exhibit is that they are computationally more 
expensive. 

This paper addresses the computational expense 
of evaluating B-spline surfaces built with the help of 
simplex splines . We present an algorithm that accel
erates the evaluation of quadratic simplex spline sur
faces, by keeping track of partial results and reusing 
them later during evaluation when possible. 

The first part of the paper describes the mathe
mat ics involved, and explains our method. Section 2 
reviews the definition of simplex splines and that 
of the DMS Spline scheme [DMS92, Sei91]. In Sec
tion 3, we highlight previous methods for the evalu
ation of simplex splines, explain our new method in 
detail, and discuss its advantages and disadvantages 
with respect to earlier methods. 

The second part of the paper discusses implemen
tation of the algorithm in theory and in practice. 
Section 4 outlines the number of operations involved 
in each step of the algorithm, comparing them to a 
more naive evaluation algorithm. In Section 5, the 
actual CPU usage of this algorithm is compared with 
that of a recent implementation that does not use 
our method. Finally, we present our conclusions and 
suggestions for further work in Section 6. 

2 Review 
B-splines 

of Bivariate 

We begin by recalling the definition of the bivariate 
simplex spline and its recurrence [Mic79], then we 
examine the DMS Spline scheme of [DMS92] in a 
bivariate quadratic sett ing. A good introduction to 
D lIS Splines can be found in [Sei91]. 
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2.1 Simplex Splines 

Let V = {to , ... , tn+2 }, a collection of knots , and 
u, an arbitrary point, be taken from 1R2. Then we 
define the simplex spline M(ufV) as follows : For V = 
{to , t1, t2}, 

M( It t t) = X[tll ,t l,t2)(U) 
1£ 0 , 1 , 2 21.6. ( to , t 1 , t2) I ' 

where X[tll,tlhl = { ~ if 1£ E [to , t) , t 2) 
otherwise 

(1) 

is the characteristic function on the half-open convex 
hull [to , t], t2) 1. 

For V = {to, ... , tn+2}, n > 0, select three points 
W = {tio' t il , ti2} from V , such that W is affinely 
independent . Then 

2 

M(ltfV) = L Aj(uIW)M(ufV\{tiJ) (2) 
j=O 

where Aj (1£1 W) are the barycentric coordinates of u 
with respect to the points of W. Although W is 
almost completely arbitrary, M( ufV) is well-defined . 

Simplex splines possess a number of properties 
useful for geometric modelling: 

• Piecewise Polynomial: Simplex splines are 
piecewise polynomials of degree n. 

• Locality : For points u outside the convex hull 
of V , M(ufV) = O. 

• Non-negativity : M (ufV) :::: o. 

• Smoothness: For vertices ti E V in general po
sition, M (ufV) exhibits Cn- 1 continuity. 

2.2 The DMS Spline Scheme 

The DMS Spline scheme described in [DMS92l makes 
use of selected simplex splines over a triangulation in 
order to form smooth piecewise polynomial surfaces. 

Let T = {.6.(I) = [t ill' til ' ti2l11 = (io , i 1 , i 2 ) E 
I c zt} be an arbitrary triangulation of 1R2 or some 
bounded domain D C 1R2. Then given two domain 
triangles I , J C I , we have that .6.(I)n.6.(J) is ei
ther empty, or is a common vertex or edge of .6.(1) 
and .6.(J ). 

1 A point u is in the half-open convex hull of {to , t l , t2} , if 
there exists E > ° such that the set {u+s1]+t( I s , t > 0 , s+t < 
E} lies entirely within the convex hull of those points , where ( 
is the horizontal unit vector in JR.2 and 1] a vector with positive 
slope . 

183 

To each vertex ti is assigned a sequence of ver
tices ti, l, ' .. ,ti,n, called its knot cloud, with t"o = 
ti. They are assigned such that if domain trian
gle .6. = .6.(1) has vertices to,t1,t2, then each set 
{to ,i , tl,j, t2 ,d is affinely independent for all i,j,k = 
0, . .. , n. Each vertex ti,l will generally be referred 
to as a knot. 

From these knots , we build simplex splines 
M(uIV6 k) for each domain triangle .6. , and multi-

1. ,], 

index i , j, k, where i + j + k = n , and 

v; ~ le = {to 0 , ... , to i , t 1 0 , .. . , t 1 j, t2 0, ... , t2 k} 
, , ' " " , (3) 

for i,j,k:::: O. 
The normalized B-splines are then defined as 

N ,'j,k(U) = d~j,k M(ulV;~,k) ' with d~j,k > 0 being 
twice the area of .6.( to ,i, t1 ,j, t2,k)' They form a global 
partition of unity. 

A surface F of degree n over the triangulation T 
with knot net K = {ti,l li E Z, I = 0, ... ,n} is then 
defined as 

F(u) = L L c~j,kNi'j,k(U), (4) 
6 ETi+j+k=n 

where c6 k E 1R3 individually are the control points, 
t,) , 

and collectively form the control net of the surface 
F. 

B-spline surfaces satisfy the following properties: 

• Affine Invariance: In order to transform the en
tire surface affinely (rotation , translation , scal
ing, etc ... ), we need only transform its control 
points. 

• Convex Hull Property : F(u) lies within the con
vex hull of the control points. 

• Local Control: Altering the position of C~j,k 
only affects the parts of the surface defined over 
.6. and immediately surrounding triangles. 

• Piecewise Polynomial Representation: All 
piecewise polynomia ls of degree n over the tri
angulation T can be represented this way, giving 
us a large set of functions with which to model 
surfaces . 

3 The Evaluation Algorithm 

A number of methods for evaluating simplex splines 
based on the recurrence formula (2) are found in the 
literature. We begin with a review of them and then 
present our method in detail. 
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3.1 Previous Methods 

T he recurrence formula provides a means for evalu
ating individual simplex splines at a point u in the 
t riangulated domain . Each simplex spline can be 
expressed as a sum of three simplex splines of lower 
degree, themselves defined over fewer knots. Each of 
these, in turn , can also be recursively evaluated unt il 
we finally arrive at piecewise const ant functions over 
groups of three knots. 

At each stage of the recursion, we are free to 
choose any three knots t i, tj and t k of the set of knots 
to, . . . , tn of M (u lto, .. . , tn +2) in order to form the 
recursion when t he t riangle formed by t i. t j and tl.: 

is not degenerate. 
One import.ant. quest. ion is which three knot.s we 

should choose a t. each stage of the recursion . This 
question is compounded when we consider various 
spline spaces, where the basis functions for a spline 
space are constructed from simplex splines t. ha t share 
many knots [DM82, H6182, DMS92] . 

Because the basis functions in each of these 
splines spaces share so many knots with each other , 
the recurrence formula (2) encourages the conviction 
that many partial result.s could be reused, given a 
clever choice of knots for recursion. This observat.ion 
has the potent ial of speeding up a recursive evalua
tion scheme. 

The naive approach does not consider part.ial re
sult reuse: For some suitable choice of knots, all sub
splines are completely re-evaluated at each stage of 
the recursion, regardless of whether or not t. hese val
ues have already been computed. 

Grandine [Gra8?] discusses the reuse of partial 
result in connection with the spline space described 
in [DM82, H6182]. He charac t.erizes which splines 
of lower degree cont ribute t.o more t.han one spline 
of higher degree. Unfor tunately, Grandine discov
ered that t he bookkeeping costs involved in storing 
and retrieving already computed results were higher 
than simply recomputillg them. Grandine attribu tes 
this to the difficulty in "naming" par t. ial resul t.s
essentially, a sub-spline is identified by the many 
knots over which it is defined. 

Gmelig Meyling [GM86] also discusses the reuse 
of partial results in connection with the same spline 
space, for the quadratic bivaria te case. The algo
rithm defined there only performs one st.ep of t.he 
recursion , evaluat ing the linear simplex splines di
rectly rather than by using t. he recurrence. T his 
method t.akes not.e of which part ial results can be 
reused, and does so when possible. Gmelig Meyling 
also exploits the exist.ence of a region within a do-

Figure 1: Filling a fi ve-sided hole. 

main t riangle where a special form of the recurrence 
may be used. This special recurrence only uses sub
splines that are evalua ted more than once. 

3.2 A New Method 

Here we examine t.he possibility of reusing partial 
results for the quadratic bivariate splines defi ned in 
Section 2.2. In order to simplify the upcoming dis
cussion, we will consider only a single domain tri
angle b. = b. (1', s, t), with knot clouds {1'0, 1'1, 1'd , 
{ so, SI , S2 } , and {to , t l , t2 } ' 

Part of our goal will be to assign multi-indices 
t.o each simplex spline that we use. These multi
indices guide the selection of knots during recursive 
evaluation. 

Let us first define Mi,j,k(U) == M(u IVi,j,i.;}; for 
example, M 2 ,o,o(v.) = M (lll1'o, 1'1,1'2, so, to). Thus we 
have N;,),d u ) = d;,j ,I.:Mi,j,l.: (u), 

After hav ing int roduced indices that ident ify our 
simplex splines, it. becomes t.empting to rewrite 
Equa t.ion 2 in terms of index reduct ion, t.ha t is, in 
the form 

M . ,.(1£) ',J,' )'o(u IWi, j,dMi-l,j,du) + (5) 

),du IWi ,j,dM i ,j -l ,I.:(U) + 
), 2 (u l Wi ,j,l.: )1\1i,j,l.:-l (u) 

where W"j,k = {l 'i ,j,h Si,j,/";' t i,j,d C Vi ,j ,l.:' If we 
assume for t.he moment that sets Vi ,j, k and W i,j,l.: 
can be appropriately defined , then it. is clear which 
part ial resul ts can be reused. In fact , this leads to 
the pattern of reuse shown in Figures 2 and 3. 

When i . j and k are positive, this formula does 
indeed hold t rue; every set Vi,j, k is well-defined and 
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Wi ,j ,k = { Ti , Sj, td· Nevertheless, negative indices 
appear very quickly; consider the recursive evalua
tion of M 2,0 ,0 by this definition. Thus, we are left 
with the problem of defining, in a consistent fashion , 
t he sets Vi ,j ,k and W i, j ,k when one or more of i , j 
and k are not positive. 

Vv"e will concern ourselves with the definition of 
appropriate sets Vi ,j,k . Once these have been deter
mined , the sets W i,j,k can be found using the equa
tions: 

{ Ti ,j,d 

{s . k} 1.,) , 

{t i ,j, k } 

Vi, j, k \ V i-],j,k , 

V i,j ,k \ Vi ,j- I, k , 

Vi ,j,k \ Vi ,j,k-I . 

We start by extending our notation for collections 
V ;',j,k (Equation 3) to include indices with value -l. 
If an index is equal to -1 , then no knots from the cor
responding knot cloud appear in the collection Vi ,) ,k ' 

For example, V 2 ,0 ,- 1 = {TO, 1'1 , 1'2, So }. Although this 
is an arbitrary choice, it is a natural extention of our 
notation and allows us to consistently use Equa tion 5 
to recurse from quadra tic to linear simplex splines. 

In order to recurse from linear to piecewise con
stant splines , we must now define Vi,j,k for i + j + k = 
o and i,j, k >= -2. The specific cases we need to 
consider in order to complete our recursion scheme 
are (up to a permutation of the indices) V o,o,o, V 1,-1,0 

V 2, - I ,- I , V1,1, -2 a nd V2 ,-2 ,0. Of these, Vo,o ,o , V 1 ,-1 ,0 

V 2,- I ,-1 have already been defined , leaving V 1,1,-2 

and V2 ,-2,0. 

1 V1,1, - 2 1 This set must be defined in order to evalu

ate the linear simplex spline M 1,1,-1 (see Figure 3). 
.1111,1,- 1 has the knot set V 1,1,-1 = { TO, 1'1 , So , s d . 

The sets V O,I ,-1 and V 1,0,- ] are formed by delet
ing from VI ,I ,_ I the knots 1' ] and S I , respectively. 
In order that W I ,I ,_ I be properly defined , V I ,] ,-2 

must either be the set { T I , so,s d or {ro,T ] ,sd. We 
choose to "steal" a knot from the cloud correspond
ing to the index "previous" 2 to the negative index, 
t hat is, we will drop So from V] , ] ,_ ] , giving V1,1,-2 = 
{ TO , 1' ] , S I} . 

1 V2 ,-2,0 1 Simila rly to the previous case, we find tha t 

V 2,- 2,0 is constrained to be eit her the set {TO, 1'2, to} 
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i, j , k W i,j,k Vi ,j ,k 

2 0 0 T2,SO,tO 1'0 ,1' ] ,1'2, SO, t o 

0 2 0 TO ,S2, t O TO,SO,S],S2, to 

0 0 2 TO, SO, t 2 TO , SO, t o,t I , t 2 

0 1 1 TO, S ] , t] TO , SO,S I ,tO, t] 

1 0 1 T ] , SO,t ] 1'0 , 1' ] , SO , to , t ] 

1 1 0 T] ,S], t o 1'0 , 1'] , SO, S ] , t o 

Table 1: The sets W i,j,k and Vi ,j,k for the quadratic 
simplex splines . 

i,j, k W i,j ,k Vi,j,k 

0 2 -1 TO, S2 , So TO, So , S ] , S2 

-1 2 0 So, S2, t o sO,S],S2, t O 

1 1 -1 TI , S ] ,SO TO, T ] , SO , S ] 

0 1 0 TO, S] , t o TO ,SO,S ] , t o 

-1 1 1 t o,s ] , t] SO,S I , tO , t] 

2 0 -1 T2,SO, TO 1'0,1' ] , 1'2, So 

1 0 0 TJ , So , t o 1'0 , 1' ] , So, t o 

0 0 1 TO , So , t] TO , So, to , t] 

- 1 0 2 t o , So, t 2 so, t O, t] , t 2 

2 -1 0 1'2, TO, to 1'0,1'1, 1'2, to 

1 -1 1 1' ] ,1'0, tl TO , 1'] , t o, t I 

0 - 1 2 TO, t o, t 2 TO, to , t l , t 2 

Table 2: T he sets W i,j ,k and Vi,j,k for the linear sim
plex splines. 

The knot sets for all other piecewise constant 
M i,j ,k'S can be defined analogously. For example, 
V- 2 ,2,0 = { SI, S2, t o } · Tables 1,2 and 3 give the con
tents of the various W i,j,k and Vi ,j,k sets . 

We have succeeded in defining M i,j ,k for i + j + k 
from 0 to 2. In order to evalua te the basis functions 
Ni ,j,k a t a point u , we first compute the piecewise 
constant simplex splines at tha t point (Equation 1). 
Those results a re used to compute the linear simplex 
splines, which in turn are combined to evaluate the 
quadra tic simplex splines. This tabula tion of par
t ial results and later reuse is a form of the famili a r 
dynamic programming paradigm [AHU74, pages 67-
69]. 

or { T I , T2 , t O} . Both choices are consistent: We 
choose to define V 2,-2 ,0 as { T ] , 1'2, t o } . 3.3 Discussion 

2T here are two equiva lent ways of defining "previous". Let 
r <l s rep resent ' r is prev ious t.o s'. T hen t he two formulat ions 
are,. <l s <l t <l rand r <l t <l s <l r . We arb i trarily choose to 
use t he first fo rmulation . 

It is worth discussing some of the advantages and dis
advantages of t his method in comparison wi t h other 
schemes: 

~
"'''' < . 

~
.: .: .... '~\. 

,.' " 
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M M 
0,2,-1 -1 ,2 ,0 

~M/ 
0,2,0 

M " k I,j , linear spline 

M M t M 

M " k I,}, quadratic spline 

1,1,-1 0,1,0 - 1,1,1 

~M ~M / 
1,1,0 0, 1,1 

M Mt Mt M 
2,0 ,-1 1,0 ,0 0,0,1 -1 ,0,2 

~M~M~M/ 
2, 0,0 1,0,1 0,0,2 

t t t 
M 

2,-1,0 
M 

1,-1 ,1 
M 

0,-1 ,2 

Figure 2: Constructing quadratic simplex splines from linear ones, reusing part ial results wh enever possible. 

i ,j, k Vi ,j,k i, j , k Vi ,j,k 

0 2 -2 1'0, 8 ], 82 -1 0 1 8 0 , to , t] 

-1 2 -1 8 0 ,8 ] ,82 -2 0 2 80 , t] , t 2 

-2 2 0 8 ] ,82, t o 2 -1 - 1 1'0, 1'] ,1'2 

1 1 - 2 1"0 , 1'], 8 ] 1 -1 0 1"0, 1'] , t o 

0 1 -1 1'0 ,80 ,8 ] 0 - 1 1 "/'0 , to , t] 

-1 1 0 80,81, t o -1 -1 2 to , t] , t 2 

-2 1 1 80,8 1 , tl 2 -2 0 1" [ ,1'2, t o 

2 0 -2 1" ] ,1"2,80 1 -2 1 1' ] , to , t) 

1 0 - 1 1"0, 1"[ ,80 0 -2 2 1"0, t l , t 2 

0 0 0 1'0 ,80, t o 

Table 3: The sets Vi ,j,k for the piecewise constant 
simplex splines 

Determin ism 

Grandine and Gmelig Meyling spend considerable ef
fort selecting knots at each level of the recurrence. 
Their choice of knots depends on the location of 
the parameter point 11, within the parameter domain . 
Our scheme, which fixes the choice of knots, evalu
ates the recurrence without the penalty of run-time 
knot selection , This has the disadvantage that the 
barycentric coeffi cients computed can be negative, 
which could lead to a loss of precision , 

Grandine's difficulty with the storage and re
t rieval of sub-calcula tions is ameliora ted by our 
method , because our partial results can always be 
identified by their mul ti-index. 

This scheme also provides a way for part ial resul ts 

. . .-

to be shared between adjacent triangles, Ma ny lower 
order simplex splines evaluated by this technique use 
knots from only two of the three knot clouds avail
able for consideration . These knot clouds are shared 
by neighbouring domain triangles. 

If the vertices of neighbouring tria ngles are ori
ented in opposite directions , then the "previous" re
lationship described above will be preserved for their 
common vertices, and some partial results used in 
evaluating simplex splines in one tria ngle can be 
reused in neighbouring ones, Note, however , that 
it is generally not possible to consistently orient a 
triangulation globally such that neighbouring trian
gles have opposite orienta tions. 

Knot Placement 

Our method is designed to compute the normalized 
B-splines where knots are in general position. Note 
that the new method breaks down in cases where sev
eral knots become collinear , because some of the sets 
W i,J, k or the knot. sets V = {t o ,t] , t 2} used in eval
uating the piecewise constant simplex splines may 
not be affinely independent . Thus, a more compli
cat.ed evaluat ion scheme must be employed if knot 
lllultiplicities are used, 

Generalizing to H igher D egree Splines 

The success of this indexing scheme seems to rely on 
the fact that bivaria te quadratics a re being calcu
latpd, The choice of having an index of -1 repre ent 

~ 
.... " . ..". 

"'~" ""': ' 
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M 0,2,-2 ~1,2,-1 M_2,2,O 

~M ~M / Mi,i,k 
0,2,-1 -1,2,0 

piecewise 
constant spline 

t t M~k 
M M M M 

linear spline 

1,1,-2 0,1,-1 -1,1,0 -2,1,1 

~M~M~M/ 
1, 1,-1 0,1,0 -1.1 , 1 

M Mt Mt Mt M 
2,0,-2 1,0,-1 0,0,0 -1,0,1 -2,0,2 

~M~M~M~M/ 
2,0,-1 1,0,0 0,0,1 - 1,0,2 

Mt Mt Mt Mt 
2,-1,- 1 1,-1,0 0,-1 ,1 -1,-1 ,2 

~M~M~M/ 
2,-1,0 1,- 1, 1 0,-1,2 

Mt Mt Mt 
2,-2,0 1,-2,1 0,-2,2 

Figure 3: Constructing linear simplex splines from piecewise constant ones, reusing part ial results whenever 
possible. 

the absence of any knots from a particular knot cloud 
leads to a consistent indexing scheme for quadratic 
surfaces. It is unclear , however, that this choice 
forms an appropriate starting point for surfaces of 
greater degree . Without such a starting point , one 
must develop a much larger set of arbitrary rules in 
order to define, for example, the sets V3 ,- 2,- 1 and 
V1 ,-3,2, which arise in the case of a cubic surface. 

Other Enhancements 

Gmelig Meyling makes use of the existance of a re
gion wi thin each domain triangle where a faster eval
uation algorithm can be employed to evalua te the 
basis functions of the [DM82, Hbl82j scheme. The 
DMS Spline scheme exhibi ts a similar region , where 
a variant of the "de Boor" algorithm can be used to 
evaluate the surface . 

4 Computation Costs 

We wish to describe the number of opera
tions involved ill computing a linear combination 
L i+j+k=2 Ci,j,k N i ,j ,d u) using the technique outlined 
above, over a single domain triangle. We defer to 
Section 5 discussion of the CP U usage of an actual 
im plementation . 

Here is an accounting of the operations required 
by this method: 

• Computing the area of each piecewise constant 
knot set requires the evaluation of a determi
nant. This must be done for each of the 19 piece
wise constant splines , but need only be done 
when the knot locations are established , and not 
each time a point is evaluated . 

• The characteristic function x[) must be cal
culated for each of the 19 piecewise constant 
splines, which is essent ially the computa tion of 
a set of barycentric coordinates3 . 

• For each of the 12 linear and 6 quadra tic splines, 
the algorithm calculates a set of barycent ric co
ordinates for u. 

• For each of the 6. normalized B-splines, a nor
malization factor is calcula ted (one determi
nant ). These normalizing factors are fixed for 
a given set of knots , and can be pre-calcula ted . 

Therefore, once pre-calculation is done, (6 + 12 + 
19 = ) 37 sets of barycentric coordinates are calcu
lated for each evaluated point 1L . If a normal vector 
at F(u) is also desired , this can be found with an 
additional two barycentric coordinates calcula tions, 
since t he derivative evaluation formula for simplex 

3For a point u ly ing direct ly on t he bounda ry of t he t r iangle 
~ , more work needs to be done to determine if u is wi t hi n the 
ha lf-open convex hull. 
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Figure 4: A chess piece composed of over 250 patches 
with control net. 

splines makes use of the same partial results as the 
recursion scheme [FS93]. 

In contrast to this are the results for the naive 
approach. The naive approach calculat.es a set of 
barycentric coordinates for each of t.he 6 quadrat.ic 
splines, a set of barycentric coordinates for each of 
the 18 linear sub-splines defined by recursion , and 
the x[) function for each of the 54 subsequent piece
wise constant sub-splines, for a total of 78. 

5 Numerical Results 

Now we compare the actual CPU usage of an im
plementation in "COl of this a lgorithm, as com
pared with the evaluation algorithm implemen t.ed in 
[Fon92, FS93], over a single domain triangle. 

The computer system used for measurement was 
the IRIX 4.0.5H operating sys tem, running on a Sil-

Algorithm 30056 one 
points point 

Fong 10.41 s 346 J.LS 
New 4.47s 149 J.LS 

Table 4: CPU usage for both algorithms. 

icon Graphics Indigo XS24-4000. 
104 points from an equally spaced triangular grid 

(lying completely within the domain triangle) were 
evaluated by both algorithms, repeated so that a to
t.al of 30056 point evaluations were performed, and 
CPU usage was measured. This was repeated 10 
times, and the average taken. The results given in 
Table 4 show that the new method is roughly 2.3 
times faster than t.he previous implementation. 

6 Conclusions 
Work 

and Further 

We have presented an algorithm for efficiently evalu
at ing quadratic bivariate B-splines, whose knots are 
in general position, by careful reuse of partial results 
during calculation. It compares favourably with pre
vious techiques in terms of number of operations per
formed per evaluation. Moreover, when compared 
in implementat ion against another technique, this 
method ran roughly 2.3 times faster. 

There are a number of a reas discussed where fur
t.her investigation is warranted . One is the investiga
t.ion into whether there exists some extension of this 
technique that will work in the evaluation of higher 
degree splines. Another is the search for a means 
of altering this t.echnique so that it will work with 
the more general knot configurations permitted un
der the DMS Spline scheme. A fin al direction would 
be to establish exactly which partial results for B
splines defined over one triangular domain could be 
reused by overlapping B-splines defined over neigh
bouring triangles . 
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