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Abstract 
This paper describes a framework for exploring 

intelligent camera controls in a 3D virtual environment. 
It presents a methodology for designing the underlying 
camera controls based on an analysis of what tasks are 
to be required in a specific environment. Once an un
derlying camera framework is built, a variety of inter
faces can be connected to the framework. A virtual 
museum is used as a prototypical virtual environment 
for this work. This paper identifies some of the tasks 
that need to be performed in a virtual museum; presents 
a paradigm for encapsulating those tasks into camera 
modules; and describes in detail the underlying 
mechanisms that make up the camera module for 
navigating through the environment. 

Keywords: Virtual Environments, Camera Control, 
Path Planning, Task Level Interfaces. 

1. Introduction 
Current interest in so-called immersive interfaces 

and large-scale virtual worlds serves to highlight the 
difficulties of orientation and navigation in synthetic 
environments, including abstract "data spaces" and 
"hypermedia" as well as more familiar modeled exterior 
and interior spaces . As Ware and Osborne point out, 
this is equivalent to manipulating a viewpoint - a 
synthetic camera - in and through the environment (I), 
and a number of recent articles have discussed the 
camera control problem in detail Cl, 2, 3, 4). 

Nearly all of this work, however, has focused on 
techniques for directly manipulating the camera. In our 
view, this is the source of much of the difficulty . Direct 
control of the six degrees of freedom (DOFs) of the 
camera (or more, if field of view is included) is often 
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problematic and forces the human VE participant to at
tend to the interface and its "control knobs" in addition 
to - or instead of - the goals and constraints of the 
task at hand. If the intention of the human VE partici
pant is, e.g., to observe some object X, then allowing 
him or her to simply tell the system, "Show me object 
)(" is a more direct and productive interface. This is an 
instance of task level interaction. In earlier work we 
characterized the levels of abstraction at which one can 
interact with virtual objects and processes, and we 
described the varying "access panels" one obtains (5). 
Here we will describe a system for specifying behaviors 
for virtual cameras in terms of task level goals and 
constraints. As in our earlier work on camera control (6, 
7), we make task level control available as well as 
enabling various direct manipulation metaphors. 

We share the view of many in the user interface 
community that one of the first steps in interface design 
should be a task analysis of the application (e.g., (8, 
9». While this may be a difficult exercise in and of 
itself, it allows us to identify with reasonable confi
dence the objects and operations we should provide at 
the interface, and to specify the necessary software 
abstractions. While it is impossible to completely 
describe human behavior at the visual interface for all 
applications, our analysis, and suggests that the generic 
visual operations we need to support involve: 

• orientation - i.e., visual comparison of ego-
centric and exocentric coordinate frames ; 

• navigation from point to point; 

• exploration of unknown areas; and 

• presentation to external observers. 

Here we will describe one of the applications we 
have chosen in which to implement these ideas, one 
which we feel is a visually rich domain - that of an art 
museum. The museum contains both two- and three
dimensional objects spatially arranged in many different 
rooms. We chose the museum application because it is a 
kind of spatial information space within which we can 
formulate a task level description fairly easily. Based on 
the chosen task domain, we interviewed several 
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architects, museum designers, and interactive exhibit 
designers to find out for what basic tasks they might 
want assistance. This formed the basis for the task anal
ysis that underlies the framework for the virtual 
museum system. 

In the next section, we discuss related work. In 
Sections 3 and 4 we describe the basic design of the 
virtual museum, including the camera modules we use 
to encapsulate various behaviors for the synthetic 
camera. Finally, in Section 5, we present the path
planning algorithms we have developed which enable 
an intelligent camera to actively assist and guide the 
human participant as he or she explores the virtual 
museum. 

2. Related Work 
Our current research draws mainly from two 

areas: computer graphic work on camera specification 
in 3D environments, and robotics research on pathplan
ning. 

Miller et al (10) created a virtual museum as a 
multimedia database. They used video segments to 
create the feeling of choosing a path through a museum 
and selecting objects within the museum. Since video 
clips were used, only preexisting paths through the 
museum could be selected, although the use of video 
did permit real-time display of a high quality virtual 
environment on general-purpose hardware. Our 
emphasis, however, is on performing mUltiple tasks in a 
synthetic, three-dimensional environment. 

Ware and Osborne (I) described several different 
metaphors for exploring 3D environments including 
"scene in hand," "eyeball in hand," and "flying vehicle 
control" metaphors. All of these use a 6 DOF input 
device to control the camera position in the 
virtual environment. They discovered that flying 
vehicle control was more useful when dealing with 
enclosed spaces, and the "scene in hand" metaphor was 
useful in looking at a single object. Any of these 
metaphors can be easily implemented in our system. 

Mackinlay et al (4) describe techniques 
for scaling camera motion when moving through virtual 
spaces, so that, for example, users can always maintain 
precise control of the camera when approaching objects 
of interest. Again, it is possible to implement these 
techniques using our camera modules. 

Brooks (11, 12) discusses several methods for 
using instrumented mechanical devices such as 
stationary bicycles and treadmills to enable human YE 
participants to move through virtual worlds using 
natural body motions and gestures. Work at Chapel 
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Hill, has, of course, focused for some time on the 
architectural "walkthrough," and one can argue that 
such direct manipulation devices make good sense for 
this application. While the same may be said for the 
virtual museum, it is easy to think of circumstances -
such as reviewing a list of paintings - in which it is 
not appropriate to require the human participant to 
physically walk or ride a bicycle. That is, at times, one 
may wish to interact with topological or temporal ab
stractions, rather than the spatial. Nevertheless, our 
camera modules will accept data from arbitrary input 
devices as appropriate. 

Blinn (13) suggested several modes of camera 
specification based on a description of what should be 
placed in the frame than than just describing where the 
camera should be and where it should be looking. 

Phi lips et al suggest some methods for automatic 
viewing control (3). They primarily use the "camera in 
hand" metaphor for viewing human figures in the 
Jack™ system, and provide automatic features for 
maintaining smooth visual transitions and avoiding 
viewing obstructions. They do not deal with the prob
lems of navigation, exploration or presentation. 

Karp and Feiner describe a system for generating 
automatic presentations, but they do not consider inter
acti ve control of the camera (14). 

Gleicher and Witkin (26) describe a system for 
controlling the movement of a camera based on the 
screen-space projection of an object, but their system 
works primarily for manipulation tasks . 

Our own prior work attempted to establish a pro
cedural framework for controlling cameras (6). 
Problems in constructing generalizable procedures led 
to the current, constraint-based framework described 
here. Although this paper does not concentrate on 
methods for satisfying multiple constraints on the 
camera position, this is an important part of the overall 
camera framework we outline here. For a more com
plete reference, see (15). 

The problem of finding a collision free path 
through a complicated environment has been examined 
a great deal in the context of robot motion planning. 
There have been several attempts at incorporat
ing pathplanning systems into a graphical environment, 
or using the special capabilities of graphics hardware to 
assist in path planning (16). In general, the problem can 
be thought of as either vector-based approaches or 
bitmap approaches, somewhat akin to hidden surface 
removal in computer graphics. The vector based 
approaches involve decomposing the problem into an 
equivalent graph searching problem by 
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constructing visibility graphs or connected regions (17, 
18). The bitmap approaches involve discretizing space 
into regular occupied or free cells and traveling through 
bitmap from one adjacent cell to the next (16, 19,20). 

SchrOder and Zeltzer implemented an algorithm 
introduced by Lozano-Perez (17) in a virtual environ
ment system called BOLIO (21, 22). A visibility graph 
was constructed based on the projection of all the 
objects in the environment onto the floor plane. The 
actor's position and the destination position were then 
connected to the visibility graph and the A * algorithm 
was run to search the visibility graph. The 
entire algorithm needed to be rerun whenever an object 
was moved. The visibility graph method tends to 
produce paths that graze objects as closely as possible 
as well as paths with straight lines connected to 
other straight lines which may be an unnatural way to 
move a camera. The algorithm also does not take 
advantage of the graphics hardware capabilities present 
in a graphics workstation . The path planning scheme 
described in this paper uses a room-to-room visibility 
graph to first determine the overall path for the camera, 
but then uses other more appropriate techniques for 
negotiating each room. 

The local path planning technique used here is 
somewhat based on (20)in which the scene is rendered 
from an overhead view and a bitmap is constructed with 
each pixel representing either free space or an obstacle. 
This bitmap was then turned into a configuration space 
by growing each obstacle region by the size of the 
moving object for several different orientations. In our 
system, we assume a spherical size for the camera 
so the configuration space does not need to be concern 
with rotation. A numerical function was propagated 
through the bitmap from a destination location to the 
current location and an appropriate path through 
the configuration space was found by following the 
downward gradient of the numerical function. Their 
goal was not for camera motion planning or even for 
graphics animations, but to use a graphic workstation 
to assist in robot motion planning. Their paths were not 
necessarily suitable for camera movements due to the 
distance metric which they chose to propagate through 
the configurations space. They propagated the 
numerical function only until it reached a given 
starting point. In contrast, our algorithm is designed to 
be used in a building environment, precomputing as 
much as possible, and is specifically tailored to 
controlling a camera in a natural fashion . 

3. System Design 

The overall structure of the Virtual Museum 
system is based on a framework for specifying and 
controlling the placement and movement of virtual 
cameras. This framework is proposed as a formal 
specification for many different types of camera control 
(15). The central notion of this framework is that 
camera placement and movement is usually done for 
particular reasons, and that those reasons can 
be expressed formally as a number of constraints on the 
camera parameters. We identity these constraints based 
on analysis of the tasks required in the museum. The 
entire framework involves a network of camera 
modules which encapsulate user control, constraints, 
and branching conditions between modules. The work 
presented here does not cover the entire framework, but 
concentrates on the components of individual camera 
modules, some of the types of constraints for the 
camera, and different interfaces that can be built to the 
system. A more complete description of the entire 
framework is available in (15) . 

Our concept of a camera module is similar to the 
concept of a shot in cinematography. A shot represents 
the portion of time between the starting and stopping of 
filming a particular scene. Therefore a shot represents 
continuity of all the camera parameters over that period 
of time. The unit of a single camera module requires an 
additional level of continuity, that of continuity of 
control of the camera. This requirement is added 
because of the ability in computer graphics 
to identically match the camera parameters on either 
side of a cut, blurring the distinction of what makes up 
two separate shots. Imagine that the camera is initially 
pointing at character A and following him as he moves 
around the environment. The camera then pans to char
acter B and follows her for a period of time. Finally the 
camera pans back to character A. In cinematic terms, 
this would be a single shot since there was continuity in 
the camera parameters over the entire period. In our 
terms, this would be broken down into four separate 
modules . The first module's task is to follow character 
A. The second module's task would be to pan from A 
to B in a specified amount of time. The third module's 
task would be to follow B. And finally the last modules 
task would be to pan back from B to A. The notion of 
breaking this cinematic shot into 4 modules does not 
specify implementation, but rather a formal description 
of the goals or constraints on the camera for each 
period of time. 

Most of the modules that are present in the 
virtual museum are fairly straightforward and could be 
implemented in many different fashions. It is only the 
most complicated modules, - e .g. those that handle 
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moving along a computer generated constructed path -
that show the utility of the framework since they com
bine complex movements with multiple 
other constraints. 

Interlace Widgets 

Figure 1: Overall Virtual Museum System 

The overall system for the Virtual Museum is 
shown in figure I . The W3D system is an extension to 
the 3D virtual environment software testbed developed 
at MIT (23). The Virtual Museum system is structured 
this way to emphasize the division between the virtual 
environment database, the camera framework, and the 
interface that provides access to both. The system con
tains the following elements. 

• A general interpreter that can run pre
specified scripts or manage user input . The 
interpreter is an important part in developing the 
entire runtime system. Currently the interpreter used is 
TCL with the interface widgets created with TK (24). 
Many commands have been embedded in the system 
including the ability to do dynamic simulation, visibility 
calculations, finite element simulation, 
matrix computations, and various database inquiries. By 
using an embedded interpreter we can do rapid proto
typing of a virtual environment without sacrificing too 
much performance since a great deal of the system can 
still be written in a low level language like C. 
The addition of TK provides convenient creation of 
interface widgets and interprocess communication. This 
is especially important because some processes might 
need to perform computation intensive parts of 
the algorithms; they can be offloaded onto separate 
machines. 

• A built in renderer. This subsystem can use 
either the hardware of a graphics workstation (currently 
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SGIs and HPs are supported), or software to create a 
high quality antialiased image. 

An object database for a particular 
environment. In this case, the database is the virtual 
museum which has precalculated colors based 
on radiosity computations which the W3D system sup
ports . The database also contains information about the 
placement and descriptions of all artwork within the 
museum. 

• Camera modules. These will be described in 
detail in the following section. Essentially, they encap
sulate the behavior of the camera for different styles of 
interaction. They are prespecified by the user 
and associated with various interface widgets. Several 
widgets can be connected to several camera modules. 
The currently active camera module handles all user 
inputs and attempts to satisfy all the constraints con
tained within the module, in order to compute 
camera parameters which will be passed to the renderer 
when creating the final image. Currently, only one 
camera module is active at anyone time, though if there 
were multiple viewports, each of them could be 
assigned a unique camera. 

The diagram also shows that there are 7 different 
types of interface widgets that can be used to control the 
camera within the museum. These different widgets 
illustrate different styles of interaction based on the task 
level goals of the user. 

4. Camera Modules 

As shown in figure 2, the generic module will 
contain the following components: 

Generic Camera Module 

Constraint List 

000 

Figure 2: Generic camera module containing a controller, 
an initializer, a constraint list, and local state 

• the local state vector. This must always 
contain the camera pO SitIOn, camera view 
normal , camera "up" vector, and field of view. State 
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can also contain values for the camera parameter 
derivatives, a value for time, or other local information 
specific to the operation of that module . While 
the module is active, the state's camera parameters 
are output to the renderer. 

• initializer. This is a routine that is run upon ac
tivation of a module. Typical initial conditions are to set 
up the camera state based on a previous module's state. 

• controller. This component translates user 
inputs either directly into the camera state or into con
straints, there can be at most one controller per module. 

• constraints to be satisfied during the time 
period that the module is active. Some examples of 
constraints are as follows: 

• maintain the camera's up vector to align with 
world up . 

• maintain height relative to the floor 

• maintain the camera's gaze (i .e. view normal) 
toward a specified object 

• maintain the camera's position on a collision
free path through world. 

In this system, a constraint can be viewed simply 
as a black box that produces values for some OOFs of 
the camera. The constraint solver combines these con
straints to come up with the final camera parameters for 
a particular module. Some constraints are desired 
values for a degree of freedom, for example, 
specifying the up vector for the camera or the height of 
the camera. Some involve calculations that might 
produce multiple OOFs, such as adjusting the view 
normal of the camera to look at a particular object. 
Some, like the path planning constraint, are quite com
plicated, and construct a path through the environment 
based on an initial and final position. This allows the 
user to see objects within the museum based on some 
spatial context or sequence. At anyone time step, the 
path planning constraint still produces only 2 OOFs for 
the camera: the x & y position in world space. 

In the virtual museum system, modules are acti
vated by selecting the corresponding interface widget. 
The selected widget also passes information to 
the controller of the module. 

Here is a description of what occurs when the 
user clicks on the map view widget. First, the 
corresponding map view module is activated, which 
means that this module's state will be used during 
rendering. The initializer for this module retrieves the 
camera state from the previous module. This allows the 
user to control the camera using a single set of controls, 
while making it possible to further adjust the position 
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further the map view. This module's controller maps the 
(x,y) position of the user's mouse click directly into the 
current state of the camera. 

The view saver module either retrieves the cur
rent view and saves it as part of the local state, or 
retrieves a saved view from the local state information 
and sets the camera parameters based on that. 

The joystick module's controller maps the x & y 
location of the viewer's mouse click into motion 
through the environment. There is one constraint in the 
joystick module that prevents movement through a wall. 
Essentially, the constraint draws a line between the 
old position of the camera and the new position of the 
camera. If this line does not intersect with any walls in 
the environment, then that position is placed into the 
camera's state. If, however, the line does intersect with 
a wall, then the old state is kept without any changes. 

The painting list is connected to several different 
modules. One module's controller (the paint module) 
responds to a double click of the middle mouse button 
and sets its state based on the painting's position in the 
environment. In addition, a constraint is added to the 
OOF controller module that constrains the camera to 
point toward the specified painting. When double click
ing with the left button, not only is this constraint added 
to the DOF controller module, but source information 
and destination information is added to the local state of 
the path module. The source information is based on 
the current state of the camera, the destination is based 
on the position of the painting in the environment. The 
path module contains a constraint which uses this local 
information to construct a collision free path 
through the environment from the initial state to the 
specified final position. 

Schematic view of Path Module 

time widget paint list widget 

constraint list 

888 

1 
Figure 4: Schematic view of the "path" camera module 
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The path module is the most complicated 
module (see figure 4). It contains a constraint that 
calculates a path from a start position to a destination 
position (set when clicking on the painting list). It uses 
the local state's time (modified by the time widget) to 
indicate the current position of the camera in the (x,y) 
plane. The time widget can either set a particular time, 
or continuously update time in order to move forwards 
or backwards along the path. The path camera module 
uses several additional constraints in calculating the 
final camera parameters. The height is constrained to 
be a desired height off the ground (which is adjustable 
through the height constraint). The camera's up vector 
is constrained to always point in the same direction as 
the world up vector. The gaze direction is adjusted to 
look at the destination object when it is visible, or to 
look straight ahead (based on the current derivatives of 
the camera parameters) when the destination object is 
not visible. Furthermore, the gaze direction is con
strained to change at a rate no greater than a specified 
maximum pan velocity. 

If instead of a single painting, multiple paintings 
have been selected, the path module's path planning 
co nstrai nt generates a guided tour through all the 
selected paintings. The immediate destination is 
kept track of by the controller and placed in the local 
state's desti nation slot. All the other constraints act in 
the same manner as before. 

S. Pathplanning 
The most complicated constraint in the current 

framework is used to achieve automatic nav igation 
through the environment. The following section 
describes this process in detail. 

The pathplanning process is decomposed into 
several subalgorithms, many of which can be precom
puted in order to speed calculation as much as possible. 
First, a general description of the overall process is 
given, then more deta iled descriptions of each 
subalgorithm follow. 

The problem of traveling from one point in the 
museum to another point is first decomposed into 
finding which doors to travel through. A node to node 
connectivity graph is pre-computed based on the 
accessibility between adjacent rooms in the environ
ment. Accessibility can either be indicated by hand, or 
by an automatic process which uses a rendered image of 
the building floor, clipped at door level , and a simple 
visibility test between points on either side of a door. 
This visibility graph can be updated based on special 

195 

accessibility requirements (such as handicapped access 
between rooms). 

Traversing the graph is done by a well known 
graph searching technique called A * (25). The A * 
process, described in section 5.1, produces a list of 
"straight-line" node-node paths. Paths then need to be 
computed between each node to avoid obstacles within 
each room. 

The process of finding the path from a doorway 
to any point within a room, or finding the path from any 
point in the room to the doorway is discussed in section 
5.2. This algorithm is optimized for finding paths that 
originate or terminate at a doorway, so another 
algorithm must be used to navigate from one point to 
another point within a room. This second algorithm, 
described in section 5.3, can also deal with a partially 
dynamic environment as opposed to the strictly static 
environment discussed in the first algorithm. Finally, a 
method for generating a guided tour through the 
environment is discussed in the last part of section 5.4. 

S.l A* 
The A * algorithm is based on (25). It is guaran

teed to return a path of minimum cost whenever that 
path exists and to indicate failure when that path does 
not exist. 

As discussed in Robot Motion Planning (20), the 
A * algorithm iteratively explores the node-graph by 
following paths that originate at a particular node. At 
the beginning of each iteration, there are some nodes 
that have already been visited, and some that are as yet 
unvisited. For each node that has already been visited, 
only the path with minimum cost to that node is 
memorized. Eventually the destination node is reached 
(if that node is reachable), and the minimum cost path 
can be reconstructed. Since the A * is such a common 
algorithm, readers are referred either to Hart et al or 
LaTombe for a description of the implementation . 

Figure 5: Room connectivity graph for the museum with a 
path found by A * 
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5.2 Room to Room Planning 
Once the A * algorithm has produced a list of 

node to node connectivities, each of the rooms must be 
negotiated from one doorway to the next in turn . The 
method we use is somewhat similar to that of (19) 
except for the following: we use a different distant 
metric more suited to natural motion, we pre-compute 
and store a navigation function from each door for a 
room, and we fit the results using a spline for a final 
representation of the path. 

To avoid obstacles within the room, we plan a 
path based on a two dimensional projection of the 
obstacles in the room onto the plane of the floor. Much 
of the following work can be done in a preprocessing 
stage so that the actual computation of a path through a 
room is extremely rapid. The 20 projection of the room 
can be rendered using the hardware rendering of a 
graphic workstation at whatever resolution is 
appropriate for the path planning. Subsequently a global 
numerical navigation function (19) is calculated in a 
wavefront expansion from each of the doorways . A 
separate navigation map is stored for each doorway into 
a room. To demonstrate, a Manhattan (L I) distance 
metric is used for the following example, the manhattan 
distance metric implies that only the 4 cells surrounding 
a cell to the N, S, E and Ware considered neighbors. 

Figure 6: Navigation function calculated with a manhattan 
metric (LI) starting from the O. One path planned from 
the upper right by following the gradient downwards. 

Once the navigation function is computed for a 
room, it is possible to travel to anywhere within the 
room by simply following the gradient of the distance 
fu nction from the goal point back to the origin of the 
navigation fu nction. There are a few problems that exist 
in using the algorithm as is: 

• the paths generated by the algorithm tend to 
graze objects as closely as possible which is unaccept
able for camera motion . To fix this, the objects are 
increased in size by a fixed amount in all directions. 
This prevents the navigation function from passing too 
close to any object in the environment. 

• the paths generated from using a Manhattan 
metric produce paths that are unacceptably aligned to 

the major axes. By using a different distance metric, we 
were able to generate paths that made movement along 
more axes possible. See figure 7. 

Figure 7: 3 distance metrics and resulting paths. LI 
allows 4 distinct directions of movement. L2 allows 8, L3 
allows 16. We used L4 which allows 32 directions. 

• the paths produced are discretized into the 
space of the rendered image and must be converted into 
conti nuous paths in the space of the room. We can 
transform the points into the proper space using an 
affine transformation, and then fit a spline curve to the 
points using a least squares curve fitting method to find 
the best path. The control points are chosen to be as 
evenly spaced as possible while minimizing the differ
ence between the spline and the sample points . We can 
also apply additional tangency constraints at the starting 
and ending points to make sure that the path goes 
through doorways in a perpendicular fashion. 

Figure 8: An eventual path from left middle, to middle 
bottom through 5 rooms of the museum. The navigation 
function that was used for each room is pictured. Usually 
the navigation is chosen for a room is the one generated 
that leads to the exit door of that room. In the final room, 
the algorithm is run backwards and calculates a path from 
the destination location to the entry room. The resultant 
path is reversed and combined with the other paths. 
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5.3 Travel within a Room 
Path planning using the global navigation 

function as described in section 5.2 is extremely 
convenient because all the computation intensive work 
can be performed in a preprocessing stage (all the 
renderings of the scene, and the propagation of the 
distance function along the image, for each doorway). 
The final path planning process is extremely rapid on a 
typical workstation (less than .5 secs on an R3000 SGI). 
There are however 2 drawbacks to this algorithm: 

• it does not deal with planning a path from one 
point within a room to another point within the room. 
Because the navigation function is calculated from the 
doorways of a room, we can conveniently find a path 
from any point in the room to a doorway, or from a 
doorway to any point in the room. But we can not 
easily find a path between two points in a room except 
via a doorway. 

• it does not deal with dynamically changing 
environments. The entire, computation intensive parts 
of the algorithm must be rerun whenever an obstacle in 
the environment moves. 

To address the problems described above, an 
alternate path planning algorithm loosely based on (19) 
can be used . More computation needs to be done for 
this algorithm so it is only used when necessary . 

Again, as much preprocessing as possible is 
performed to make the algorithm as interactive as 
possible. As before, the static part of a scene is 
projected onto a 2D plane by graphics hardware. 
Wavefront expansion is used to propagate a penalty 
distance function outwards from each object. The 
wavefront expansion is stopped as soon as the wave 
meets another wave coming from some other object (or 
from another place on the same object). We can use a 
manhattan (Ll) distance metric , but we keep track of 
the origin pixel of each wavefront. For each pixel, we 
can then calculate the Euclidean distance to the nearest 
object. This preprocess generates a distance map which 
can be turned into a repulsive gradient field by using a 
function like aldn where d is the distance, a and n are 
constants that can be chosen for the task. An absolute 
cutoff value beyond which repulsion effects are ignored 
can be used if desired. 

At runtime, an attractive potential is created to 
the goal destination (using a function of the form c*dn 

where d is the distance and c and n are chosen for the 
task) and this is summed with the repulsive potential. 
Any moving obstacles can also generate a repulsive 
potential. The sum of the potentials produces the 
overall gradient. 
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Figure 9: A precalculated repulsive potential is added to a 
run· time attractive potential to produce the final 
navigation function on the right. This is used to guide a 
breadth first search through potential space to find the 
resultant path. 

Simple gradient following tends to get trapped 
into local minima. Instead of always following the 
gradient, the gradient information in the discrete grid is 
used as a breadth first guide in a search of the entire 
grid space. When the algorithm heads into a local 
minima, the algorithm essentially backs out of the 
minima on its way to finding the appropriate path to the 
goal. Again, the algorithm produces discretized paths 
which must then be fit by splines to produce a 
continuous path. 

5.4 Tour Planning 
Finally , we developed an algorithm to generate 

the shortest path that will view all the artwork that is 
specified by the user. In a similar fashion to the point to 
point navigation, the tour planner divides the problem 
up in several stages. First, the algorithm locates all the 
rooms that are slated to be visited. Then, an exhaustive 
search is made of all the paths that connect each room. 
This is an exponential time algorithm, but since there is 
a relatively low branching factor for each room (as well 
as a fairly small number of rooms), the algorithm is sti ll 
rapid enough to be used interactively. After the rooms 
have been ordered, the paintings within each room need 
to be ordered based on the entry and exit doors (visit the 
painting first which is closest to the door from which 
the room is entered, and visit the painting last next to 
the exit door) . At this point we have a li st of paintings 
that will be visited in the order specified . The 
algorithms discussed in ' the previous three sections can 
be used to plan paths between each of the paintings and 
the results can be combined into the global tour. 

6. Summary 
We have presented an overall framework for 

exploring camera controls in a 3D virtual environment. 
Special constraints based on an analysis of task 
requirements can be designed and combined with a host 
of other constraints for camera placement. Interfaces 
can be connected to the system to explore human 
factors issues while maintaining a consistent underlying 
structure. We feel that it is important to separate the 
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underlying framework which can incorporate task level 
requirements from the user interface. 

Future work can be in several different 
directions . More efficient path planning algorithms can 
be substituted into the camera module framework as 
they are implemented. In particular, algorithms to deal 
with totally dynamic environments would be useful. 
One common task in many virtual environments is the 
presentation of the information to a third party observer. 
While the path planning constraint goes toward 
convenient automatic presentation, a number of other 
considerations must be made, including the difficult 
problem of editing a single move into several, smaller 
cuts. We are incorporating a variety of constraints 
from cinematography into the camera framework and 
current work is progressing on techniques that combine 
those constraints in a meaningful fashion. 
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Figure 10: Overhead view of the Virtual Museum 

Figure 11: Four views along an automatically planned path. 
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