
200

NSAIL: Behavioural Sailing Animation Using
Constraint-Based Reasoning

Sang Mah, Thomas W. Calvert, William Havens
Graphics and Multimedia Research Lab / Intelligent Systems Lab

School of Computing Science
Simon Fraser University

Burnaby, B.C. Canada V5A IS6

e-mail: sang@cs.sfu.ca.tom@cs.sfu.ca.havens@cs.sfu.ca
telephone: 604-291-4369

Abstract.

Behaviour is a reflection of a reasoning
process that must deal with constraints imposed by
an external environment, internal knowledge and
physical structure. This paper proposes a framework
for behavioural animation that is based on the next
generation of object-oriented, constraint-based expert
systems technology, and applies a control structure
of knowledge agents and knowledge units to
determine the behaviour of objects to be animated.
Knowledge agents are responsible for planning, plan
implementation and information extraction from the
environment. The activity of an agent is dependent
on the knowledge units ascribed to them by the
animator. The interaction between agents and
knowledge units is resolved by the reasoning engine,
and thus, influences the eventual motion displayed.
An example given is NSAIL, a pilot implementation
using the model-based ECHIDNA constraint logic
programming shell. With this approach , the motion
for a sailing scenario and other behavioural domains
can be specified at a very high level through the
characterization of the knowledge agents.

Keywords: behavioural animation, constraint-based
reasoning, knowledge-based animation, constraint
logic programming, expert systems, agents, sailing.

1.0 Introduction.

In computer animation, the description and
manipulation of an object in motion is usually based
on mathematical models or techniques . Motion is
generated by methods such as interpolation through
keyframes, inverse kinematics and dynamics [22,
25]. This is a definition of motion that resides purely
at the physical level , addressing the detailed

mechanics of the motion only. The animator is
responsible for stating exactly how the motion is to
be performed by an object to produce a desired
movement or characterization . This level of
interaction awards absolute direction of all
components to the animator, but it can also be
needlessly time-consuming and repetitive [8] and
does not promote thinking about motion in natural,
qualitative terms .

Goal-directed animation systems strive
towards user dictation of motion with natural
language commands [I, 6], and towards higher levels
of motion specification. In goal-directed animation
systems, the animator states what action the object
should perform, and the system wi 1I automatically
create the appropriate output. Goal-directed
animation systems [3, 16, 27] are based on the idea
that objects can take, or learn, assigned motor skills
and be directed to use those skills and make some
adaptation to the current state of the surroundings.
However, current systems can only deal with the
direction of a single entity at one time, and the
overall animation requires detailed instructions or
scripts.

Behavioural animation systems assign internal
knowledge to objects to reduce the amount of
direction that needs to be input by the animator.
Behaviour is defined as the response of an
individual, group or species to its environm~nt.

Behaviour can be sol!'ly reactive, a refleXIve
response to stimulus from an objec.t's environme~t, ~r
it can be an intelligent response dnven by an object s
internal desires and experience . For example, the
motion of an automobile at the mechanical level can
be expressed by the physics governin.g bodies in
motion but the physics does not explain why a car
turns ri'oht or left. The car, like many objects in the
world, is controlled by an intelligent entity whose

~
/..,

,~""" , ;" ,
," "

::". Graphics Interface '94

reasoning process must be represented. This may be
done by modelling the conditions in which to apply a
particular action, and enabling the system to
recognize when those conditions exist in the
environment being animated. In current behavioural
animation systems [15, 17, 18, 26], such conditions
are often encoded procedurally or as production rules
with an "IF <condition> THEN <action>" template
[19] . Though feasible for simple rules and knowledge
bases, production rule systems quickly fall victim to
representational and procedural inadequacies [10].
To address these inadequacies, current research in
expert systems technologies incorporates object
oriented paradigms and constraint logic
programming.

In this paper, a behavioural animation
framework is proposed which applies an object
oriented, constraint-based reasoning approach . The
framework examines the execution three major tasks :
1) planning ; 2) implementation of the plan ; and 3)
information extraction from the environment. Each
object to be animated may have agents representing
each of the tasks. Motion specification is achieved
through the definition of the knowledge profile of
objects and the description of the environment being
animated. Thus, control is at a much higher level.
This approach is explored in the implementation of
NSAIL, a pilot system for constraint-based reasoning
and animation of a sailing domain.

Animation of a sailing environment provides a
number of interesting characteristics: 1) multiple
objects with similar behaviour; 2) multiple levels of
control; 3) multiple levels of knowledge and
reasoning (i .e . planning and reactive) ; and 4)
interaction with environmental factors and with other
objects. The behaviour of a sailboat, which is
visible to people watching from shore, is defined not
only by the physical mechanics of a wind-powered
device in response to changing environmental
conditions , but also by the character of the agent(s)
controlling the physical device . Defining the
knowledge profile of these agents will impact the
resulting animation. The objective is to model not
the underlying physical layer of a sail boat, but the
knowledge and decision-making process of the
agents controlling the sailboat under different
conditions amidst other agent-controlled sailboats .

The NSAIL program is built with the object
oriented ECHIDNA constraint-based reasoning
system [10]. The application of a next generation
expert system rather than a conventional rule-based
system is interesting because it pushes the
boundaries of knowledge-based research in computer
graphics [4,7 , 11, 19, 23 , 27] further into behavioural
animation systems . Section 2.0 describes the
conceptual framework for the proposed constraint
based reasoning approach. Section 3.0 presents the

201

NSAIL program as an initial example for behavioural
animation. The final sections conclude with an
evaluation of the approach and a discussion of future
work.

2.0 The Reasoning Framework.

Ideally, a framework for an integrated
reasoning and animation system should provide
strong knowledge representation and reasoning
capabilities in a modular, expandable and reusable
framework. Rule-based systems, with large flat and
unstructured knowledge bases, have now reached
their maturity due to their inability to represent
knowledge for complex tasks, and a lack of facilities
to efficiently apply the knowledge [10] . Approaches
have been explored to resolve these deficiencies in
rule-based systems , and those used in animation
include priority assignments [6, 8] and frames [6, 20].
To provide greater representation power with model
based formal isms and wider procedural
expressiveness, the emerging generation of expert
systems have embedded constraint logic
programming (CLP) languages .

Logic programming, the combination of logic
and procedural representations of knowledge, is well
suited for modelling intelligent entities because it
can handle the key notions of intelligent programs :
nondeterminism, parallelism and pattern-directed
procedure calls [5]. Intelligent programs involve
problems that are generally solved by searching a
finite discrete space, implicitly defined by a problem
representation, for a point satisfying a set of
constraints. The generic search strategies exploit
qualitative heuristic knowledge about the problem
domain [2] . CLP languages improve the search
process by using consistency techniques to reduce
the solution space [24] . Thus, it is worthwhile to
investigate the potential of CLP languages to
represent knowledge for behavioural animation.

INTERFACE

Reasoning

System

I : : I Reasoning
I I Animation

Object/Motion
Modelling

Fi ure 1 General Framework

Graphics Interface '94

202

The overall framework of a constraint-based
reasoning animation system consists of two main
components : the reasoning component and the
display component. Each component consists of
separate modules. The main modules in the system
(see Figure 1) are: 1) the reasoning system and
knowledge bases; 2) the object motion description
module; 3) output modules for display; and 4) the
interface module which provides the linkage between
the separate modules and particularly between the
reasoning and display modules .

2.1 Knowledge Representation Structures.

In the reasoning component, the basic
knowledge representation formalism is constraint
logic programming. A constraint, in Mackworth's
terms [12], is simply a relationship. A constraint
may be implemented as a persistent bi-directional
data link that supports the flow of information back
and forth between variables, as in ECHIDNA [10] .
Pure constraints, which do not have a choice point,
reduce the solution space for a problem. Simpler
constraints are believed to contribute to faster
resolution time because each constraint successively
reduces the domain space of variables involved for
the next constraint.

The knowledge bases are organized in small
knowledge units called morsels . Each morsel relates
variables and objects to each other, and presents a
format to organize complexity. Knowledge morsels
are implemented as schemata. A schema refers to a
way of organizing information which fosters
specialization and inheritance in an object-oriented
formalism. The morsels are used by the knowledge
agents associated with an intelligent object. Varying
the combinations of morsels for an agent results in
different behavioural motion . In other words, what
the agent knows is reflected in its motion.

2.1.1 Knowledge Units or Morsels.

Knowledge morsels have associated morsel
variables which are used to relate object variables.
Each morsel operates on one or more morsel
variables which are bound to object variables. For
example, in Figure 2, OBJECT _ V ARIABLE_A is
bound to MORSEL_ V ARIABLE_A so that the morsel
constraints can be applied to the object variable .
Each object variable may be bound to multiple
morsel variables. Thus, the relationships between
object variables are stated in multiple smaller
constraint expressions defined in a set of morsels .
New relationships can be added by introducing new
morsels to the knowledge bases.

The primitive morsel schema is the basis for
three other categories of knowledge morsels : object

morsels, plan morsels and reaction morsels . Object
morsels define relationships associated with the
internal operation of the object and with
environmental factors that determine its internal
state. For example, a sailboat will have an object
morsel relating the position of the sail to the
direction of the wind. Plan morsels define the
relationships between goals and actions, and encode
the strategic knowledge for planning. These morsels
are used in the planning process to find an
appropriate set of actions to accomplish a goal (e.g.
reach a destination). Reaction morsels for plan
execution define the relationships between the object
and other static or moving objects in the domain.
Reaction morsels include "right of way" constraints
to avoid collision with other moving obstacles.

2.1.2 Knowledge Agents.

Knowledge morsels are used by knowledge
agents . As depicted in Figure 2, morsels are assigned
to agents which in turn are assigned to a particular
object. The agents represent the major tasks of the
intelligent entity controlling the physical object
under motion . There are three basic types of
knowledge agents corresponding to the three major
tasks : planning, implementation and perception.
The three agents control the behavioural motion of
an object by responding to stimuli from their
environment. Overall object behaviour is thus
influenced by the collective knowledge of these
agents. It is not necessary to have all three agents
associated with every intelligent object in the
animation environment. For example, a car with an
implementation agent but no planning agent will just
drive around aimlessly obeying traffic lights . Also
the same type of objects may have di fferent agents
to represent different personalities and abilities.

Graphics Interface '94

Each agent has two parts: a part that resides in
the reasoning component; and a part that resides in
the display interface component (see Figure 3). A
persistent communication channel is maintained
between the two sides. An agent may have greater
functionality on one side. For example, the planning
agent operates mainly on the reasoning component
side. The display component side of a planning
agent only needs to initiate the planning process with
the top-level goal specified by the user.

Fi ure 3 ent

The planning agent is responsible for the
development of a plan, a set of actions to attain a
given top-level goal. The planning process, adapting
a constraint-based approach, is given in details
elsewhere [13, 14]. Planning outputs a list of plan
nodes where each plan node is a schema identifying
a target location T, an action A and a state S . The
list of plan nodes, therefore, guides the object from
one action to another where the post-action state of
one plan node establishes the necessary conditions
for executing the next plan node.

Enviromental
Changes

Impleme ntation AClill1. State
Agent

Posilioo (Reasooing)
~-~

Application:

Implemen tation
Agent

(Animation)

Fi ure 4 The 1111 'J!el11entation A ent

The implementation agent is responsible for
executing the plan which becomes a set of
constraints for its reasoning process . The
implementation agent reacts to internal and external
events, and is equally active in both components of
the system: the reasoning component and the
application display component. The resulting
animation is the product of the execution of plans by
implementation agents. Execution of a plan
alternates between reasoning and display processes,
passing information between the two components
(see Figure 4). The implementation agent must first
find a consistent state using its reasoning side, and

203

then calculate and output new positIOns on the
display side. On the reasoning side, the agent
maintains a state that is consistent with constraints
from the plan, object morsels and reaction morsels .

The perception agent, residing mainly on the
display interface side, monitors the external
environment by maintaining a panic box, which is a
list of objects of importance in the immediate
vicinity (e.g. those that may be on a collision course
with the agent's object). The perception agent sends
the contents of the panic box to the other two agents
as input into their reasoning processes.

2.2 Knowledge Structures and Animation.

The animator, after the knowledge agents are
developed, can create an animation by changing
parameters such as the environmental factors, the
characteristics of the "set" (e.g. the number, type and
location of objects), the kinds of agents associated
with objects and the knowledge profiles of the
agents . All these parameters define relationships or
constraints on the state of an object. Each type of
object has a physical description and associated
motion units (e .g . an automobile may have
drive_forward and turn_right as motion units) . The
motion units may be represented as segmented path
structures [Figure 5] whose lengths and angles can be
linked to morsel variables as part of the reasoning
process. The knowledge agents activate morsels that
eventually identify a particular motion unit to be
performed . The animation is then automatically
deduced from the grounded state of object variables
and selected motion units. The animation interface
aims to eventually provide facilities for high-level,
interactive and intuitive control of behavioural
motion for individuals and groups.

pntl pnt2

Basie SU'uelure of a mOl ion unil palh is shown above. 11
can be used to represent an .action with a linear path in its
defaull form (ie. ang I =ang2 = 0) .

...,:-----_r_ \.... ang~

Curved
MOlion
Unil

angl = 0
ang2 = 90

angl

slruel palhinfo
{

coord3 pnll;
coord3 pn 12;
coord3 pnl3;
in! allgl;
inl a1l12;

Curved MOlion Uni!:
Changing angles and
segmenl lenglhs will
creale differelll palhs .

pnt3

Fi2ure 5 Motion Unit Structure

Graphics Interface '94

204

3.0 The NSAIL Application.

NSAIL is an animation interface for a sailing
domain. The objectives of the implementation are:
1) to test the proposed constraint-based methodology
for behavioural motion control; 2) to gain further
insight into the use of the ECHIDNA expert system
for computer animation; and 3) to create an
animation of an interesting, nontrivial environment.

The proposed constraint-based framework is
well-suited for animating a sailing domain since
there is a natural hierarchical view of motion control
for a sail boat, and the interaction between the
sail boat and dynamic environment is clearly visible.
There are established navigational objects (e.g . race
markers and channel markers) which dictate definite
relationships between themselves and the boat
heading. There are well defined, if not widely
obeyed, rules for determining the right of way when
boats approach each other. It should be noted,
however, that the sailing model for NSAIL is greatly
simplified in order to demonstrate the concepts
proposed, and does not implement the vast heuristic
knowledge in the form of personal theories regarding
sailboat performance and sailing strategy!

The NSAIL architecture consists of two
separate components: the ECHIDN A reasoning
component and the sailing application interface
which is the display component. Each sail boat
object consists of three agents for planning, reaction
and perception, which are respectively named the
tactician, the captain and the lookout. The sailing
animation occurs in two stages for each boat.
Corresponding to possible onshore strategic planning,
the first stage consists of planning for each boat. The
second stage, controlled by the implementation
agent, is the animation of the plan generated by the
planning agent. The different morsels, object,
planning and reaction morsels, are used in each
stage to apply constraints on the plan and the actions
that may be activated during the animation stage.

The NSAIL reasoning component employs the
ECHIDNA constraint-based reasoning system.
ECHIDNA is a synthesis of three technologies :
schema knowledge representation, constraint logic
programming and intelligent backtracking via
justification-type reason maintenance [9]. The
object-oriented schema provides greater descriptive
adequacy through composition and specialization
hierarchies that are isomorphic to the structure of the
domain at the task at hand. Thus, the implicit
structure of the structure can be used to improve the
efficiency of the search process.

The NSAIL boat, at the lowest level of
abstraction, is basically a boat heading and sail
angle (see Figure 6). All reasoning eventually lead
to an adjustment of the boat heading or sail angle .

All other NSAIL boat variables , and selected motion
units, are dependent on the boat heading and the
wind direction.

Main Sail
Angle

C
Boat Headin.

Fi ure 6 Main Sailboat Variables

NSAIL has four basic motion units:
sail_forward, sail3urved, starCboat and stop_boat.
The basic structure of a motion unit is represented as
a linear or curved path along which the boat sails.
The reasoning component resolves when to use a
particular motion unit , and what values the
associated angles and lengths should have. The boat
follows the resulting path during execution of the
action . The actual velocity and heading of the boat
must consider aero-hydrodynamic forces , and this is
done in NSAIL by consulting tables of experimental
data collected in wind tunnel research [13] .

POINTS OF SAIL:
Wind

A = dosed hauled 001
or bealing

[~;.; B = close reach
C = beam reach
o = broad reach
E = running or

'.' B

downwind .
C

Tru e Course (/3) is
th e allgle between

0
boat heading alld .
willd direction. E

Fi ure 7 Points 0 Sail

3.1 NSAIL Object Morsels

NSAIL has three basic object morsels : the
SAIL, TACK and POINT _OF _SAIL morsels. These
knowledge morsels define all possible configurations
for the basic NSAIL boat, and essentially relate the
boat state variables with the wind direction. The
point of sail refers to the general heading of a boat in
relation to the wind . For example, a boat's point of
sail is close-hauled if it is on a true course angle
between 30· to 50· (region A in Figure 7). Different
sailing actions are found at each point of sail. Points

~
.,. , ... "

.~ . . , ''-.::.

:. ' Graphics Interface '94

of sail are represented within the POINT _OF_SAIL
morsel which, along with other object morsels, is
used during planning and plan implementation.

The TACK morsel defines the relationship
between boat tack and true course (B). The true
course is already related to boat heading in the point
of sail morsel. A boat is on a starboard tack if 13 is
180· to 360· and a port tack if 13 is O· to 180· (see
Figure 8). On a starboard tack, the mainsail is on
the left side of the boat, and vise versa for the port
tack. The TACK morsel also relates the boat tack to
appropriate sailing actions (e.g. port beat or starboard
beat) . The SAIL morsel defines the relationship
between the point of sail and the main sail angle (J.l) .
The sail is usually adjusted according to the point of
sail for optimal wind flow and driving force.

Wind

B

Sta rboard I
Tack

A •.

P o rt
T ack Boat Heading(0) must be

(7t~ 0) or (0 ~m

Fi ure 8 Boat Tack Fi ure 9 Static Ob 'ect
L-~~~~~~~~~

3.2 NSAIL Reaction Morsels.

Reaction morsels define the relationship s
between objects in the NSAIL domain , mainly for
collision avoidance. All sail boats have morsels to
handle generic physical objects, both static and
moving, in the domain. For each object Pi in a
sailboat S's panic box (where l~ i ~n and n is the
number objects in the panic box), a reaction morsel
Rj is instantiated to relate the state variables of S
and Pi: Each Pi:may be another boat, a static object
or a land object (representing the shoreline).

The reaction morsel for a generic static object
Pi imposes a constraint on the boat heading(0) to
pass on either side of Pi. The reaction morsel
constrains the heading to be on either side of Pi. As
the position of sailboat S is updated during the
animation phase, the avoidance headings (angles 1t

and n in Figure 9) may be modified due to
unpredictable boat behaviour (i .e . it may stray off
course) . In such cases, the reaction morsel will
adjust the heading in response to existing conditions .

The RIGHT_OF_WAY morsel defines the right
of way rules between two sail boats SJ and S2 where S2

205

is in the panic box of SI. There are only three basic
possibilities when two boats approach each other
(see Figure 10). These possibilities are handled by
three basic right of way rules to avoid collision.
Boat headings and sail angles will be adjusted
according to the constraints applied by this reaction
morsel, and will persist until the boats are heading in
opposite directions or are outside each other's panic
boxes again.

Wind Wind Wind

~i~ i
. OPPOSITE

~ OVERT AKIN(.
TACKS . .

52 .' .
". ~ , to • Slarboord uld (SI)

• • has righl of way

~\)
• • Utward boot (SI . :. ,ovtr porttack(S2) .
~. /uJs righl of way. . . , . . • 51 .

b a s> \) .
SI Ovulaken boat(S2} /uJs

A B right of way. e

Figure 10 Right a/way rules/or sailing

3.3 NSAIL Animation.

In animating an NSAIL scenario, a common
top-level goal for a sail boat is to sail to a given
location in the 20 world space . This can be assigned
in the NSAIL interface and used by the planning
process to find an action to reach the target location.
The NSAIL planning process [13, 14] applies the
boat morsels and plan morsels to determine how to
reach the target location under current conditions.
For example, Figure 11 illustrates two different
strategies dependent on the wind direction. During
the implementation stage, the plan nodes , boat
morsels and reaction morsels all constrain the
adjustment of boat heading and sail angle.

Wind A

When the wind is blowing
from the nonh, planned
action is a beat operation
(upwind).

B

&.
ms~
Wind

When wind is blowing
from the south, planned
action is a run operation
(downwind).

Figure 11 Determining Action/or a Target Goal

G raphics Interface '94

206

Fi ure 12 The NSAIL lm lementation lnte ace

The NSAIL interface is intended for sail boat
creation and initialization, static object creation and
placement to define the external environment, and
wind direction control. With the current testing
version of the NSAIL interface, as shown in Figure
12, the behavioural motion of each sail boat can be
altered by changing the makeup of agents and
morsels associated with the sailboat. For example, a
sailboat without a right-of-way morsel , and therefore ,
without any knowledge of rights of way, will just sail
along blissfully ignorant of potential collisions .
Different morsels can be defined to create variations
in strategy and behaviour.

The NSAIL interface is implemented on an
Silicon Graphics Indig02 workstation using GNU
G++. ECHIDNA is available for SUNs, HP and SGI
workstations , and is also implemented in GNU G++.

4.0 Evaluation and Discussion.

The pilot NSAIL program has provided insight
into four major areas of considerations related to the
proposed constraint-based reasoning framework for
behavioural animation: implementation, knowledge
representation, support tools and the conceptual
framework itself.

Though it is clearly not yet possible to develop
a real-time interface for constraint-based animation,
the efficiency of NSAIL can be improved with
careful consideration of the ordering of constraint
application, selection of variable types and other
implementation issues related to ECHIDN A [13] . A
better mechanism is needed for handling
nonmonotonic state changes and temporal concepts.
Mechanisms are currently being explored for dealing
with non-monotonicity in ECHIDNA . Another

implementation issue is what exactly should be
represented in the reasoning component. In general,
greater ' performance may be achieved by moving
more of the computations outside of ECHIDNA using
external methods, and including the computed values
in the reasoning process.

Efficiency can also be gained in the improving
the design of the knowledge bases. For example, the
duplication of world representation in the reasoning
component and the display component is costly and
awkward. Maintaining changes in both components
adds a heavy overhead cost to performance .
Furthermore, the world representation suitable for
reasoning is not the same as the common 3D
Cartesian coordinate space used in computer

. graphics . Alternative hierarchical representations for
the world space, more appropriate for reasoning,
have been suggested [13] .

A comprehensive animation system will
include a number of different tools using a variety of
appropriate procedural and declarative techniques
that will ease the creation and modification of
behavioural motion . Support and visualization tools
for the development of knowledge units and agents
would be very helpful in constructing efficient
constraint-based reasoning applications. Graphical
constraint visualization would contribute to a better
construction environment, and better designed
knowledge bases.

The proposed object-oriented , constraint-based
framework is conceptually well-suited for
representing and animating the sailing domain, and
has the potential to be adapted in interesting ways to
other domains . The NSAIL domain has interesting
characteristics that are present in other domains : the
multiple levels of control and the collaboration
amongst agents ; the relationship between planning
and execution ; the interaction with environmental
factors and other agent-controlled objects; and the
dynamic nature of the environment. Such domains
are actively explored as part of research in artificial
intelligence, robotics , simulation and computer
animation [4, 7, 21, 25] . Advances in these areas
will contribute to development of the proposed
constraint-based reasoning approach. For example,
an event driven reasoning model [21] may be
appropriate given the dynamic nature of behavioural
animation domains.

5.0 Future Work.

This initial work with a constraint-based
reasoning approach for animation provides valuable
experience for further research . It is particularly
suitable for behavioural animation because of the
nature of intelligent programs and behaviour. Future
work will address issues of efficiency and

Graphics Interface '94

representation. New developments are under
progress for the ECHIDNA reasoning system and the
NSAIL sailing application. There is great interest in
applying the basic approach to other domains,
particularly human figure animation . Constraint
logic programming is powerful, and with the
appropriate representations can greatly enhance the
capability of any animation system addressing
concerns related to behavioural animation.

Acknowledgments. This research was funded in part by
a Post-Graduate Award and other grants from the Natural
Sciences and Engineering Council of Canada (NSERC),
and by grants from the Social Science and Humanities
Research Council. The development of ECHIDNA is
supported by the Centre for Systems Science of Simon
Fraser University, the B.C. Science Council and NSERC.

References.

[1] N. I. Badler. The Use of Natural Language in
Human Animation. SIGGRAPH Course (#17): Advanced
Techniques in Human Modelling, Animation and
Rendering, July, 1992, pp. 133-178.

[2] . D. C. Brown, B. Chandrasekaran. Design Problem
Solvmg: Knowledge Structures and Control Strategies.
Morgan Kaufmann Publishers, San Mateo. California.
1989.

[3] A. Bruderlin and T. Calvert. Goal-Directed.
Dynamic Animation of Human Walking. Proe. of ACM
SIGGRAPH 89, Computer Graphics. Vol. 23. No. 3, 1989,
pp. 233-242.

[4] T. W. Calvert. The Challenge of Human Figure
Animation. Proc. of Graphics Interface 1988, pp. 203-210.

[5] W. F. Clocksin and C.S. Mellish. Programming in
Pro log. Springer-Verlag, Berlin Heidelberg, 1981.

[6] K. Drewery and J. Tsotsos. Goal Directed
Animation Using English Motion Commands. Proc. of
Graphics Interface 1986. pp. 131-135.

[7] J. Esakov and N. I. Badler. An Architecture for
H.igh-Le.vel Task Animation Control. Knowledge-Based .
Simulation: Methodology and Application. Springer
Verlag, Berlin Heidelberg. 1991. pp. 162-199.

[8] R. L. Gould. Making 3-D Computer Character
Animation: A Great Future of Unlimited Possiblitv or Just
Tedious? SIGGRAPH 89 Course Notes: 3D Character
Animation by Computer, 1989, pp. 31-60.

[9] W. Havens. Intelligent Backtracking in the Echidna
CLP Reasoning System. TR No. CSS-IS-TR-91-07, Simon
Fraser University, 1991. Also in The International Journal
of Expert Systems: Research and Applications (in press).

[10] W. Havens, S. Sidebottom, G. Sidebottom, J. Jones
and R. Ovans. ECHIDNA: A Constraint Logic
Programming Shell. TR No. CSS-IS-TR-92. Simon Fraser
University, 1992. Also in Proc. of the 1992 Pacific Rim
Intl Conference on Artificial Intelligence (Seoul, Korea).

[11] P. Karp and S. Feiner. Automated Presentation
Planning of Animation Using Task Decomposition with
Heuristic Reasoning. Proc. of Graphics Interface 1993 pp.
118-127. '

. .' . . '.

207

[12] A. Mackworth . Consistency in Networks of
Relations. Artificial Intelligence, 8, 1977, pp. 99-118.

[13] S. Mah. A Constraint-Based Reasoning Approach
for Behavioural Motion Control in Computer Animation.
M.Sc. Thesis. School of Computing Science. Simon Fraser
University. 1993.

[14] S. Mah, T. Calvert and W. Havens. NSAlL PLAN:
An Experience with Constraint-Based Reasoning in
Planning and Animation. Proceedings of Computer
Animation 1994 (to be published).

[15] C. L. Morawetz. Goal-Directed Human Animation
of Multiple Movements. Proceedings of Graphics Interface
90, 1990, pp. 60-67.

[16] C. Phillips and N. I. Badler. Jack: A Toolkit for
Manipulating Articulated Figures. Proc. SIGGRAPH
Symposium on User Interface Software, Banff, Canada,
1988.

[17] O. Renault. N. Magnenat-Thalmann, D. Thalmann.
A Vision-Based Approach to Behavioural Animation. The
Journal of Visualization and Computer Animation, 1(18),
1990, pp. 18-21.

[18] C. W. Reynolds. Flocks. Herds and Schools: A
Distributed Behaviour Model. Proc. ACM SIGGRAPH 87,
Computer Graphics 21(4). 1987. pp. 25-34.

[19] G. Ridsdale. The Director's Apprentice: Animating
Figures in a Constrained Environment. PhD Thesis, School
of Computing Science. Simon Fraser University. TR No.
CMPT-TR-87-6, 1987.

[20] G. Ridsdale and T. Calvert. Animating Microworlds
from Scripts and Relational Constraints. Computer
Animation 90, N. Magenat-Thalmann and D. Thalmann
(eds.), pp. 107-117.

[21] B. Hayes-Roth. Opportunistic Control of Action in
Intelligent Agents. IEEE Transaction on Systems, Man, and
Cybernetics, Vol. 23, No. 6, NovlDec 1993, pp. 1575-1587.

[22] D. Sturman. A Discussion on the Development of
Motion Control Systems. Computer Animation: 3-D
Motion Specification and Control, SIGGRAPH 87 Notes
for Course No. 10. 1987. pp. 3-16.

[23] D. Thalmann. N. Magnenat-Thalmann, B. Wyvill, D.
Zeltzer. Synthetic Actors : The Impact of Artificial
Intelligence and Robotics on Animation, Siggraph 88
Course Notes #4. Boston. 1988.

[24] P. Van Hentenryck. Constraint Satisfaction in
Logic Programming. The MIT Press, Cambridge, MA, 1989.

[25] J. Wilhelms. Toward Automatic Motion Control.
IEEE Computer Graphics and Applications, Vol. 7, No. 4,
April 1987. pp. 11-22.

[26] 1. Wilhelms. Behavioural Animation Using An
Interactive Network. Proc. Computer Animation 1990, pp.
95-105 .

[27] D. Zeltzer. Knowledge-Based Animation.
Proceedings of SIGGRAPH/SIGART Workshop on Motion.
Morgan Kaufmann Publishers. Inc .• San Mateo. California,
1983, pp. 187-192.

~
.. -.....

"'~': ' " " '.:',.

":" , Graphics Interface '94

