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Abstract. 

Behaviour is a reflection of a reasoning 
process that must deal with constraints imposed by 
an external environment, internal knowledge and 
physical structure. This paper proposes a framework 
for behavioural animation that is based on the next 
generation of object-oriented, constraint-based expert 
systems technology, and applies a control structure 
of knowledge agents and knowledge units to 
determine the behaviour of objects to be animated. 
Knowledge agents are responsible for planning, plan 
implementation and information extraction from the 
environment. The activity of an agent is dependent 
on the knowledge units ascribed to them by the 
animator. The interaction between agents and 
knowledge units is resolved by the reasoning engine, 
and thus, influences the eventual motion displayed. 
An example given is NSAIL, a pilot implementation 
using the model-based ECHIDNA constraint logic 
programming shell. With this approach , the motion 
for a sailing scenario and other behavioural domains 
can be specified at a very high level through the 
characterization of the knowledge agents. 

Keywords: behavioural animation, constraint-based 
reasoning, knowledge-based animation, constraint 
logic programming, expert systems, agents, sailing. 

1.0 Introduction. 

In computer animation, the description and 
manipulation of an object in motion is usually based 
on mathematical models or techniques . Motion is 
generated by methods such as interpolation through 
keyframes, inverse kinematics and dynamics [22, 
25]. This is a definition of motion that resides purely 
at the physical level , addressing the detailed 

mechanics of the motion only. The animator is 
responsible for stating exactly how the motion is to 
be performed by an object to produce a desired 
movement or characterization . This level of 
interaction awards absolute direction of all 
components to the animator, but it can also be 
needlessly time-consuming and repetitive [8] and 
does not promote thinking about motion in natural, 
qualitative terms . 

Goal-directed animation systems strive 
towards user dictation of motion with natural 
language commands [I, 6], and towards higher levels 
of motion specification. In goal-directed animation 
systems, the animator states what action the object 
should perform, and the system wi 1I automatically 
create the appropriate output. Goal-directed 
animation systems [3, 16, 27] are based on the idea 
that objects can take, or learn, assigned motor skills 
and be directed to use those skills and make some 
adaptation to the current state of the surroundings. 
However, current systems can only deal with the 
direction of a single entity at one time, and the 
overall animation requires detailed instructions or 
scripts. 

Behavioural animation systems assign internal 
knowledge to objects to reduce the amount of 
direction that needs to be input by the animator. 
Behaviour is defined as the response of an 
individual, group or species to its environm~nt. 

Behaviour can be sol!'ly reactive, a refleXIve 
response to stimulus from an objec.t's environme~t, ~r 
it can be an intelligent response dnven by an object s 
internal desires and experience . For example, the 
motion of an automobile at the mechanical level can 
be expressed by the physics governin.g bodies in 
motion but the physics does not explain why a car 
turns ri'oht or left. The car, like many objects in the 
world, is controlled by an intelligent entity whose 
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reasoning process must be represented. This may be 
done by modelling the conditions in which to apply a 
particular action, and enabling the system to 
recognize when those conditions exist in the 
environment being animated. In current behavioural 
animation systems [15, 17, 18, 26], such conditions 
are often encoded procedurally or as production rules 
with an "IF <condition> THEN <action>" template 
[19] . Though feasible for simple rules and knowledge 
bases, production rule systems quickly fall victim to 
representational and procedural inadequacies [10]. 
To address these inadequacies, current research in 
expert systems technologies incorporates object
oriented paradigms and constraint logic 
programming. 

In this paper, a behavioural animation 
framework is proposed which applies an object
oriented, constraint-based reasoning approach . The 
framework examines the execution three major tasks : 
1) planning ; 2) implementation of the plan ; and 3) 
information extraction from the environment. Each 
object to be animated may have agents representing 
each of the tasks. Motion specification is achieved 
through the definition of the knowledge profile of 
objects and the description of the environment being 
animated. Thus, control is at a much higher level. 
This approach is explored in the implementation of 
NSAIL, a pilot system for constraint-based reasoning 
and animation of a sailing domain. 

Animation of a sailing environment provides a 
number of interesting characteristics: 1) multiple 
objects with similar behaviour; 2) multiple levels of 
control; 3) multiple levels of knowledge and 
reasoning (i .e . planning and reactive) ; and 4) 
interaction with environmental factors and with other 
objects. The behaviour of a sailboat, which is 
visible to people watching from shore, is defined not 
only by the physical mechanics of a wind-powered 
device in response to changing environmental 
conditions , but also by the character of the agent(s) 
controlling the physical device . Defining the 
knowledge profile of these agents will impact the 
resulting animation. The objective is to model not 
the underlying physical layer of a sail boat, but the 
knowledge and decision-making process of the 
agents controlling the sailboat under different 
conditions amidst other agent-controlled sailboats . 

The NSAIL program is built with the object
oriented ECHIDNA constraint-based reasoning 
system [10]. The application of a next generation 
expert system rather than a conventional rule-based 
system is interesting because it pushes the 
boundaries of knowledge-based research in computer 
graphics [4,7 , 11, 19, 23 , 27] further into behavioural 
animation systems . Section 2.0 describes the 
conceptual framework for the proposed constraint
based reasoning approach. Section 3.0 presents the 
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NSAIL program as an initial example for behavioural 
animation. The final sections conclude with an 
evaluation of the approach and a discussion of future 
work. 

2.0 The Reasoning Framework. 

Ideally, a framework for an integrated 
reasoning and animation system should provide 
strong knowledge representation and reasoning 
capabilities in a modular, expandable and reusable 
framework. Rule-based systems, with large flat and 
unstructured knowledge bases, have now reached 
their maturity due to their inability to represent 
knowledge for complex tasks, and a lack of facilities 
to efficiently apply the knowledge [10] . Approaches 
have been explored to resolve these deficiencies in 
rule-based systems , and those used in animation 
include priority assignments [6, 8] and frames [6, 20]. 
To provide greater representation power with model
based formal isms and wider procedural 
expressiveness, the emerging generation of expert 
systems have embedded constraint logic 
programming (CLP) languages . 

Logic programming, the combination of logic 
and procedural representations of knowledge, is well 
suited for modelling intelligent entities because it 
can handle the key notions of intelligent programs : 
nondeterminism, parallelism and pattern-directed 
procedure calls [5]. Intelligent programs involve 
problems that are generally solved by searching a 
finite discrete space, implicitly defined by a problem 
representation, for a point satisfying a set of 
constraints. The generic search strategies exploit 
qualitative heuristic knowledge about the problem 
domain [2] . CLP languages improve the search 
process by using consistency techniques to reduce 
the solution space [24] . Thus, it is worthwhile to 
investigate the potential of CLP languages to 
represent knowledge for behavioural animation. 

INTERFACE 

Reasoning 

System 

I : : I Reasoning 
I I Animation 

Object/Motion 
Modelling 

Fi ure 1 General Framework 
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The overall framework of a constraint-based 
reasoning animation system consists of two main 
components : the reasoning component and the 
display component. Each component consists of 
separate modules. The main modules in the system 
(see Figure 1) are: 1) the reasoning system and 
knowledge bases; 2) the object motion description 
module; 3) output modules for display; and 4) the 
interface module which provides the linkage between 
the separate modules and particularly between the 
reasoning and display modules . 

2.1 Knowledge Representation Structures. 

In the reasoning component, the basic 
knowledge representation formalism is constraint 
logic programming. A constraint, in Mackworth's 
terms [12], is simply a relationship. A constraint 
may be implemented as a persistent bi-directional 
data link that supports the flow of information back 
and forth between variables, as in ECHIDNA [10] . 
Pure constraints, which do not have a choice point, 
reduce the solution space for a problem. Simpler 
constraints are believed to contribute to faster 
resolution time because each constraint successively 
reduces the domain space of variables involved for 
the next constraint. 

The knowledge bases are organized in small 
knowledge units called morsels . Each morsel relates 
variables and objects to each other, and presents a 
format to organize complexity. Knowledge morsels 
are implemented as schemata. A schema refers to a 
way of organizing information which fosters 
specialization and inheritance in an object-oriented 
formalism. The morsels are used by the knowledge 
agents associated with an intelligent object. Varying 
the combinations of morsels for an agent results in 
different behavioural motion . In other words, what 
the agent knows is reflected in its motion. 

2.1.1 Knowledge Units or Morsels. 

Knowledge morsels have associated morsel 
variables which are used to relate object variables. 
Each morsel operates on one or more morsel 
variables which are bound to object variables. For 
example, in Figure 2, OBJECT _ V ARIABLE_A is 
bound to MORSEL_ V ARIABLE_A so that the morsel 
constraints can be applied to the object variable . 
Each object variable may be bound to multiple 
morsel variables. Thus, the relationships between 
object variables are stated in multiple smaller 
constraint expressions defined in a set of morsels . 
New relationships can be added by introducing new 
morsels to the knowledge bases. 

The primitive morsel schema is the basis for 
three other categories of knowledge morsels : object 

morsels, plan morsels and reaction morsels . Object 
morsels define relationships associated with the 
internal operation of the object and with 
environmental factors that determine its internal 
state. For example, a sailboat will have an object 
morsel relating the position of the sail to the 
direction of the wind. Plan morsels define the 
relationships between goals and actions, and encode 
the strategic knowledge for planning. These morsels 
are used in the planning process to find an 
appropriate set of actions to accomplish a goal (e.g. 
reach a destination). Reaction morsels for plan 
execution define the relationships between the object 
and other static or moving objects in the domain. 
Reaction morsels include "right of way" constraints 
to avoid collision with other moving obstacles. 

2.1.2 Knowledge Agents. 

Knowledge morsels are used by knowledge 
agents . As depicted in Figure 2, morsels are assigned 
to agents which in turn are assigned to a particular 
object. The agents represent the major tasks of the 
intelligent entity controlling the physical object 
under motion . There are three basic types of 
knowledge agents corresponding to the three major 
tasks : planning, implementation and perception. 
The three agents control the behavioural motion of 
an object by responding to stimuli from their 
environment. Overall object behaviour is thus 
influenced by the collective knowledge of these 
agents. It is not necessary to have all three agents 
associated with every intelligent object in the 
animation environment. For example, a car with an 
implementation agent but no planning agent will just 
drive around aimlessly obeying traffic lights . Also 
the same type of objects may have di fferent agents 
to represent different personalities and abilities. 
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Each agent has two parts: a part that resides in 
the reasoning component; and a part that resides in 
the display interface component (see Figure 3). A 
persistent communication channel is maintained 
between the two sides. An agent may have greater 
functionality on one side. For example, the planning 
agent operates mainly on the reasoning component 
side. The display component side of a planning 
agent only needs to initiate the planning process with 
the top-level goal specified by the user. 

Fi ure 3 ent 

The planning agent is responsible for the 
development of a plan, a set of actions to attain a 
given top-level goal. The planning process, adapting 
a constraint-based approach, is given in details 
elsewhere [13, 14]. Planning outputs a list of plan 
nodes where each plan node is a schema identifying 
a target location T, an action A and a state S . The 
list of plan nodes, therefore, guides the object from 
one action to another where the post-action state of 
one plan node establishes the necessary conditions 
for executing the next plan node. 

Enviromental 
Changes 

Impleme ntation AClill1. State 
Agent 

Posilioo (Reasooing) 
~-~ 

Application: 

Implemen tation 
Agent 

(Animation) 

Fi ure 4 The 1111 'J!el11entation A ent 

The implementation agent is responsible for 
executing the plan which becomes a set of 
constraints for its reasoning process . The 
implementation agent reacts to internal and external 
events, and is equally active in both components of 
the system: the reasoning component and the 
application display component. The resulting 
animation is the product of the execution of plans by 
implementation agents. Execution of a plan 
alternates between reasoning and display processes, 
passing information between the two components 
(see Figure 4). The implementation agent must first 
find a consistent state using its reasoning side, and 
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then calculate and output new positIOns on the 
display side. On the reasoning side, the agent 
maintains a state that is consistent with constraints 
from the plan, object morsels and reaction morsels . 

The perception agent, residing mainly on the 
display interface side, monitors the external 
environment by maintaining a panic box, which is a 
list of objects of importance in the immediate 
vicinity (e.g. those that may be on a collision course 
with the agent's object). The perception agent sends 
the contents of the panic box to the other two agents 
as input into their reasoning processes. 

2.2 Knowledge Structures and Animation. 

The animator, after the knowledge agents are 
developed, can create an animation by changing 
parameters such as the environmental factors, the 
characteristics of the "set" (e.g. the number, type and 
location of objects), the kinds of agents associated 
with objects and the knowledge profiles of the 
agents . All these parameters define relationships or 
constraints on the state of an object. Each type of 
object has a physical description and associated 
motion units (e .g . an automobile may have 
drive_forward and turn_right as motion units) . The 
motion units may be represented as segmented path 
structures [Figure 5] whose lengths and angles can be 
linked to morsel variables as part of the reasoning 
process. The knowledge agents activate morsels that 
eventually identify a particular motion unit to be 
performed . The animation is then automatically 
deduced from the grounded state of object variables 
and selected motion units. The animation interface 
aims to eventually provide facilities for high-level, 
interactive and intuitive control of behavioural 
motion for individuals and groups. 

pntl pnt2 

Basie SU'uelure of a mOl ion unil palh is shown above. 11 
can be used to represent an .action with a linear path in its 
defaull form (ie. ang I =ang2 = 0) . 

...,:-----_r_ \.... .... ang~ 
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3.0 The NSAIL Application. 

NSAIL is an animation interface for a sailing 
domain. The objectives of the implementation are: 
1) to test the proposed constraint-based methodology 
for behavioural motion control; 2) to gain further 
insight into the use of the ECHIDNA expert system 
for computer animation; and 3) to create an 
animation of an interesting, nontrivial environment. 

The proposed constraint-based framework is 
well-suited for animating a sailing domain since 
there is a natural hierarchical view of motion control 
for a sail boat, and the interaction between the 
sail boat and dynamic environment is clearly visible. 
There are established navigational objects (e.g . race 
markers and channel markers) which dictate definite 
relationships between themselves and the boat 
heading. There are well defined, if not widely 
obeyed, rules for determining the right of way when 
boats approach each other. It should be noted, 
however, that the sailing model for NSAIL is greatly 
simplified in order to demonstrate the concepts 
proposed, and does not implement the vast heuristic 
knowledge in the form of personal theories regarding 
sailboat performance and sailing strategy! 

The NSAIL architecture consists of two 
separate components: the ECHIDN A reasoning 
component and the sailing application interface 
which is the display component. Each sail boat 
object consists of three agents for planning, reaction 
and perception, which are respectively named the 
tactician, the captain and the lookout. The sailing 
animation occurs in two stages for each boat. 
Corresponding to possible onshore strategic planning, 
the first stage consists of planning for each boat. The 
second stage, controlled by the implementation 
agent, is the animation of the plan generated by the 
planning agent. The different morsels, object, 
planning and reaction morsels, are used in each 
stage to apply constraints on the plan and the actions 
that may be activated during the animation stage. 

The NSAIL reasoning component employs the 
ECHIDNA constraint-based reasoning system. 
ECHIDNA is a synthesis of three technologies : 
schema knowledge representation, constraint logic 
programming and intelligent backtracking via 
justification-type reason maintenance [9]. The 
object-oriented schema provides greater descriptive 
adequacy through composition and specialization 
hierarchies that are isomorphic to the structure of the 
domain at the task at hand. Thus, the implicit 
structure of the structure can be used to improve the 
efficiency of the search process. 

The NSAIL boat, at the lowest level of 
abstraction, is basically a boat heading and sail 
angle (see Figure 6). All reasoning eventually lead 
to an adjustment of the boat heading or sail angle . 

All other NSAIL boat variables , and selected motion 
units, are dependent on the boat heading and the 
wind direction. 

Main Sail 
Angle 

C 
Boat Headin. 

Fi ure 6 Main Sailboat Variables 

NSAIL has four basic motion units: 
sail_forward, sail3urved, starCboat and stop_boat. 
The basic structure of a motion unit is represented as 
a linear or curved path along which the boat sails. 
The reasoning component resolves when to use a 
particular motion unit , and what values the 
associated angles and lengths should have. The boat 
follows the resulting path during execution of the 
action . The actual velocity and heading of the boat 
must consider aero-hydrodynamic forces , and this is 
done in NSAIL by consulting tables of experimental 
data collected in wind tunnel research [13] . 

POINTS OF SAIL: 
Wind 

A = dosed hauled 001 
or bealing 

[~;.; B = close reach 
C = beam reach 
o = broad reach 
E = running or 

'.' B 

downwind . 
C 

Tru e Course (/3) is 
th e allgle between 

0 
boat heading alld . 
willd direction. E 

Fi ure 7 Points 0 Sail 

3.1 NSAIL Object Morsels 

NSAIL has three basic object morsels : the 
SAIL, TACK and POINT _OF _SAIL morsels. These 
knowledge morsels define all possible configurations 
for the basic NSAIL boat, and essentially relate the 
boat state variables with the wind direction. The 
point of sail refers to the general heading of a boat in 
relation to the wind . For example, a boat's point of 
sail is close-hauled if it is on a true course angle 
between 30· to 50· (region A in Figure 7). Different 
sailing actions are found at each point of sail. Points 
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of sail are represented within the POINT _OF_SAIL 
morsel which, along with other object morsels, is 
used during planning and plan implementation. 

The TACK morsel defines the relationship 
between boat tack and true course (B). The true 
course is already related to boat heading in the point 
of sail morsel. A boat is on a starboard tack if 13 is 
180· to 360· and a port tack if 13 is O· to 180· (see 
Figure 8). On a starboard tack, the mainsail is on 
the left side of the boat, and vise versa for the port 
tack. The TACK morsel also relates the boat tack to 
appropriate sailing actions (e.g. port beat or starboard 
beat) . The SAIL morsel defines the relationship 
between the point of sail and the main sail angle (J.l) . 
The sail is usually adjusted according to the point of 
sail for optimal wind flow and driving force. 

Wind 

B 

Sta rboard I 
Tack 

A •. 

P o rt 
T ack Boat Heading(0) must be 

(7t~ 0) or (0 ~m 

Fi ure 8 Boat Tack Fi ure 9 Static Ob 'ect 
L-~~~~~~~~~ 

3.2 NSAIL Reaction Morsels. 

Reaction morsels define the relationship s 
between objects in the NSAIL domain , mainly for 
collision avoidance. All sail boats have morsels to 
handle generic physical objects, both static and 
moving, in the domain. For each object Pi in a 
sailboat S's panic box (where l~ i ~n and n is the 
number objects in the panic box), a reaction morsel 
Rj is instantiated to relate the state variables of S 
and Pi: Each Pi:may be another boat, a static object 
or a land object (representing the shoreline). 

The reaction morsel for a generic static object 
Pi imposes a constraint on the boat heading(0) to 
pass on either side of Pi. The reaction morsel 
constrains the heading to be on either side of Pi. As 
the position of sailboat S is updated during the 
animation phase, the avoidance headings (angles 1t 

and n in Figure 9) may be modified due to 
unpredictable boat behaviour (i .e . it may stray off 
course) . In such cases, the reaction morsel will 
adjust the heading in response to existing conditions . 

The RIGHT_OF_WAY morsel defines the right 
of way rules between two sail boats SJ and S2 where S2 
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is in the panic box of SI. There are only three basic 
possibilities when two boats approach each other 
(see Figure 10). These possibilities are handled by 
three basic right of way rules to avoid collision. 
Boat headings and sail angles will be adjusted 
according to the constraints applied by this reaction 
morsel, and will persist until the boats are heading in 
opposite directions or are outside each other's panic 
boxes again. 

Wind Wind Wind 

~i~ i 
. OPPOSITE 

~ OVERT AKIN( . 
TACKS . . 

52 .' . 
". ~ , to • Slarboord uld (SI) 

• • has righl of way 

~\) 
• • Utward boot (SI . :. ,ovtr porttack(S2) . 
~. /uJs righl of way. . . , . . • 51 . 

b a s> \) . 
SI Ovulaken boat(S2} /uJs 

A B right of way. e 

Figure 10 Right a/way rules/or sailing 

3.3 NSAIL Animation. 

In animating an NSAIL scenario, a common 
top-level goal for a sail boat is to sail to a given 
location in the 20 world space . This can be assigned 
in the NSAIL interface and used by the planning 
process to find an action to reach the target location. 
The NSAIL planning process [13, 14] applies the 
boat morsels and plan morsels to determine how to 
reach the target location under current conditions. 
For example, Figure 11 illustrates two different 
strategies dependent on the wind direction. During 
the implementation stage, the plan nodes , boat 
morsels and reaction morsels all constrain the 
adjustment of boat heading and sail angle. 

Wind A 

When the wind is blowing 
from the nonh, planned 
action is a beat operation 
(upwind). 

B 

&. 
ms~ 
Wind 

When wind is blowing 
from the south, planned 
action is a run operation 
(downwind). 

Figure 11 Determining Action/or a Target Goal 
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Fi ure 12 The NSAIL lm lementation lnte ace 

The NSAIL interface is intended for sail boat 
creation and initialization, static object creation and 
placement to define the external environment, and 
wind direction control. With the current testing 
version of the NSAIL interface, as shown in Figure 
12, the behavioural motion of each sail boat can be 
altered by changing the makeup of agents and 
morsels associated with the sailboat. For example, a 
sailboat without a right-of-way morsel , and therefore , 
without any knowledge of rights of way, will just sail 
along blissfully ignorant of potential collisions . 
Different morsels can be defined to create variations 
in strategy and behaviour. 

The NSAIL interface is implemented on an 
Silicon Graphics Indig02 workstation using GNU 
G++. ECHIDNA is available for SUNs, HP and SGI 
workstations , and is also implemented in GNU G++. 

4.0 Evaluation and Discussion. 

The pilot NSAIL program has provided insight 
into four major areas of considerations related to the 
proposed constraint-based reasoning framework for 
behavioural animation: implementation, knowledge 
representation, support tools and the conceptual 
framework itself. 

Though it is clearly not yet possible to develop 
a real-time interface for constraint-based animation, 
the efficiency of NSAIL can be improved with 
careful consideration of the ordering of constraint 
application, selection of variable types and other 
implementation issues related to ECHIDN A [13] . A 
better mechanism is needed for handling 
nonmonotonic state changes and temporal concepts. 
Mechanisms are currently being explored for dealing 
with non-monotonicity in ECHIDNA . Another 

implementation issue is what exactly should be 
represented in the reasoning component. In general, 
greater ' performance may be achieved by moving 
more of the computations outside of ECHIDNA using 
external methods, and including the computed values 
in the reasoning process. 

Efficiency can also be gained in the improving 
the design of the knowledge bases. For example, the 
duplication of world representation in the reasoning 
component and the display component is costly and 
awkward. Maintaining changes in both components 
adds a heavy overhead cost to performance . 
Furthermore, the world representation suitable for 
reasoning is not the same as the common 3D 
Cartesian coordinate space used in computer 

. graphics . Alternative hierarchical representations for 
the world space, more appropriate for reasoning, 
have been suggested [13] . 

A comprehensive animation system will 
include a number of different tools using a variety of 
appropriate procedural and declarative techniques 
that will ease the creation and modification of 
behavioural motion . Support and visualization tools 
for the development of knowledge units and agents 
would be very helpful in constructing efficient 
constraint-based reasoning applications. Graphical 
constraint visualization would contribute to a better 
construction environment, and better designed 
knowledge bases. 

The proposed object-oriented , constraint-based 
framework is conceptually well-suited for 
representing and animating the sailing domain, and 
has the potential to be adapted in interesting ways to 
other domains . The NSAIL domain has interesting 
characteristics that are present in other domains : the 
multiple levels of control and the collaboration 
amongst agents ; the relationship between planning 
and execution ; the interaction with environmental 
factors and other agent-controlled objects; and the 
dynamic nature of the environment. Such domains 
are actively explored as part of research in artificial 
intelligence, robotics , simulation and computer 
animation [4, 7, 21, 25] . Advances in these areas 
will contribute to development of the proposed 
constraint-based reasoning approach. For example, 
an event driven reasoning model [21] may be 
appropriate given the dynamic nature of behavioural 
animation domains. 

5.0 Future Work. 

This initial work with a constraint-based 
reasoning approach for animation provides valuable 
experience for further research . It is particularly 
suitable for behavioural animation because of the 
nature of intelligent programs and behaviour. Future 
work will address issues of efficiency and 
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representation. New developments are under 
progress for the ECHIDNA reasoning system and the 
NSAIL sailing application. There is great interest in 
applying the basic approach to other domains, 
particularly human figure animation . Constraint 
logic programming is powerful, and with the 
appropriate representations can greatly enhance the 
capability of any animation system addressing 
concerns related to behavioural animation. 
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