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Abstract 
dotty is a customizable graph editor. Its main 
components are a programmable viewer (lefty) and 
graph layout generators (dot and neato). dotty can 
run stand-alone, but more importantly, it can be 
programmed to act as a front-end for other appli­
cations. Some interesting examples are ciao, a pro­
gram source code database browser, vdbx, a visual 
extension to dbx for displaying data structures as 
graphs, and vpm , an interactive distributed process 
monitor. 

Keywords: graph browser, visual debugger, process 
monitor, software information system. 

1 Introduction 
Graph drawings are one of the best ways to present 
technical information. Such diagrams are particu­
larly appropriate for showing relations between ob­
jects. Finite state machines , networks, program call 
graphs , and various kinds of object to object de­
pendencies are a few examples of information that 
can be made easier to understand when presented 
as graphs. 

It is therefore important to have a good set of 
tools for displaying and manipulating graphs. Such 
a toolkit should include tools to read and write 
graphs, to make layouts, and to view and interact 
with graphs as an interface to other programs. The 
tools and libraries presented in this paper make up 
such a toolkit. From the user's point of view, the pri­
mary tool is dotty. dotty can provide high-quality 
graph layouts and allow the user to operate on them. 
Figure 1 shows two snapshots of dotty in use. Fig­
ure la shows dotty as a stand-alone graph editor. 
A graph representing an automaton is being edited. 

Figure 1 b shows dotty as a front-end for a process 
management tool. 

dotty can be controlled either through a WYSI­
WYG interface, or through a textual (procedural) 
interface. As a stand-alone tool, dotty is similar 
in operation to other systems based on treating 
pictures of graphs as structured objects. GRAB, 
EDGE, and GraphEd [24, 22, 11J are some well­
known examples. Like these tools, dotty pro­
vides menu-driven commands for loading or creating 
graphs, performing editing operations, and saving 
the changed graphs. Attributed graphs are stored 
in a data language that is flexible in handling at­
tributes, so new ones can be added to graph files 
easily without causing incompatibility with existing 
graph tools. 

The procedural interface is convenient for algo­
rithmic operations (e.g . set node col or as a function 
of degree). The procedural interface also allows re­
programming the WYSIWYG interface. For exam­
ple, the left mouse button can be bound to a func­
tion that highlights all edges attached to the node 
under the mouse pointer. The underlying program­
ming language has primitives to start external pro­
cesses and to establish interprocess communication 
channels. This makes it possible for dotty to oper­
ate as a graphical front-end for other processes. In 
this context, graphs can represent state information 
maintained by a back-end process, and user actions 
can be bound to functions that translate graph op­
erations to corresponding state change requests sent 
to the back-end. 

As a front-end, dotty's programming language 
and the library of functions that accompanies it are 
higher level than C or C++ graph toolkits. dotty 
has already been used as the front-end for a number 
of applications: 
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(a) (b) 

Figure 1: Two snapshots of dotty in use 

• finite state machine animator 

• C/C++ source code database browser 

• distributed process monitor 

• debugger with graphical data structure displays 

• program trace animator 

• GUI for the Yeast event-action specification 
tool [17] 

• GUI for' the Provence process modeling tool [16] 

dotty itself is constructed as two co-operating pro­
cesses, dot and lefty. lefty is a programmable graph­
ics editor that takes care of displaying the graphs on 
the screen and allowing the user to operate on them. 
Thus dotty's programming language is actually that 
of lefty. lefty runs dot to make graph layouts. These 
programs communicate via pipes, as shown in Fig­
ure lb . 

Having interactive tools like dotty is clearly useful. 
There are, however, many situations where batch 
tools are also important. Since all our tools process 
files in our graph data language, it is easy to com­
pose command pipelines that perform graph filtering 
operations. Often this is easier than using a system 
in which operations must always be performed using 
a point and click interface. 

In this paper we describe dotty, lefty, dot, neato, 
and several graph filters. We also present our graph 
language, Jibgrapb. Finally, we present some of the 
applications where dotty is used as a front-end. 

2 Related Work 
Related graph viewing programs include EDGE, 
GraphEd, daVinci (U. of Bremen) , the XmGraph 
toolkit (Douglas Young, U. of Iowa) and the Graph 
Layout Toolkit [26]. Like our system, they allow 
programmers to add application-specific functions, 
possibly to communicate with external back-end 
processes. Another related system is Knuth's Stan­
ford GraphBase [14], which is a C library and data 
sets for implementing and measuring the perfor­
mance of graph algorithms. Unlike the other pack­
ages, GraphBase has no special graph layout or user 
interface features. We will compare some aspects of 
these systems with ours. 

Architecture. Almost all these systems take the 
point of view that the user will run most applica­
tions "by hand" from a central GUI. In contrast we 
envision dotty as a complement to a collection of 
non-interactive tools and filters . Often there are en­
gineering advantages to creating a number of smaller 
tools that each perform one task well, instead of 
making one large system that combines many di-
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verse functions. Also, other systems have insuffi­
cient data language support for graph processing 
applications. Ideally, the data language should be 
implemented with a clean library interface and sep­
arated from the user interface. (EDGE is an excep­
tion to this criticism, but only a prototype parser 
was implemented). Admittedly, a disadvantage of 
a less-integrated design is that sometimes a feature 
must be duplicated in several places, or eliminated 
with a possible loss in functionality. Examples in­
clude the functions to draw node shapes, interpret 
text labels, or fit edge splines. 

Programming Language. Almost all the other 
systems are C or C++ toolkits . To customize 
the system, an application programmer writes C 
or C++ code and links it with the main system. 
dotty's script language is higher-level than C and 
should be more productive for user-interface pro­
gramming. Experience suggests this is true with 
other high-level user-interface languages such as 
TCL/tk [21]. A disadvantage of our system is that 
the language is non-standard, but most of its fea­
tures , such as functions, scalars and associative ar­
rays , hierarchical name spaces, windows, menus, and 
text-stream I/O are familiar to experienced pro­
grammers. Another issue is that C is more general 
than dotty's script language. For example, it may 
be easier to add new graphical widget types to an 
ordinary C program than to an interpreter having 
its own graphics model. 

da Vinci is written in an applicative language 
called ASpecT, and is customized by creating an 
external process that treats da Vinci as an abstract 
user interface, using an application protocol to com­
municate about menus, selections , text dialog boxes, 
etc . There does not seem to be much further support 
for client-side graph data structures or operations. 
It would be interesting if ASpecT and its graph li­
brary were made available for writing applications. 

Port ability. dotty makes it possible to write 
very portable applications because lefty hides the 
host graphics and operating system. Applica­
tion programmers do not deal with the details of 
fonts , menus, color maps or other low-level fea­
tures that impair port ability. Consequently we can 
run the same scripts in the Microsoft Windows and 
UNIX/Xll versions of dotty. 

Layout Quality and Robustness. dotty bene­
fits from using dot to make layouts . Considerable ef­
fort was spent on developing dot's layout algorithms , 
and creating a robust and efficient implementation. 
This is important because making readable layouts 
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automatically, without requiring user intervention, 
is a central problem in graph visualization. Robust­
ness is also important because graphs from real life 
can have multiple edges, self-arcs, degenerate com­
ponents, etc. Some of the other systems provide a 
much wider variety of layout algorithms (GraphEd 
3.0 has 18) , but the implementations are often not 
very robust or practical. 

3 Graph Language and Library 
Graphs sent between processes or stored in files in 
our system use a common format with variable (not 
fixed) attributes. Attributes are essentially property 
lists attached to graphs, nodes, and edges. This ac­
commodates a variety of applications without forc­
ing them to agree in advance on the set of at­
tributes. To describe structure within graphs, the 
graph model allows nested subgraphs. Figure 2a 
shows a sample graph . Basic graph data structures, 
operations, and file I/O for C and C++ program­
ming are encapsulated in libgraph [20]. 

4 Graph Layout Tools 
dot makes hierarchical layouts of directed graphs [8] . 
It was written as a successor to dag [9], which incor­
porated results of Warfield , Carpano, and Sugiyama 
et al [27, 1, 25] . dot makes good layouts and has an 
assortment of shapes, styles, and colors appropri­
ate for software-related diagrams. For example, dot 
can draw data structure graphs, displaying records 
as nested box lists, with node ports for connecting 
pointers. dot also incorporates a new algorithm for 
drawing graphs with clusters or recursive node set 
partitions [19] . Clusters at the same level are drawn 
in non-overlapping rectangles. This has applications 
in diagrams of hierarchical structures, such as nested 
source code modules. Figure 2b shows the dot lay­
out for the graph in Figure 2a. dot has the ability 
to emit graphs either in our graph language, or in 
several graphical languages such as PostScript . 

For undirected graphs (such as the computer net­
work graph of Figure 3), hierarchical layouts may 
not be as informative as other types that emphasize 
connectivity. neato is an undirected graph embed­
der that uses virtual physical models of Kamada and 
Kawai [13]. It is compatible with dot to the extent 
of accepting the same input files and command line 
options. In fact, dotty can switch between either of 
the two using just a simple path name change. 
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digraph G { 
size ="4,4"; 

} 

main [shape=box]; /* comment */ 
main -> parse [weight=8]; 
parse -> execute; 
main -> init [style=dotted]; 
main -> cleanup; 
execute -> { make_string; printf} 
init -> make_string; 
edge [color=red]; 
main -> printf [ 

style=bold,label="100 times" 
J; 
make_string [label="make a\nstring"]; 
node [ 

J; 

shape=box 
style=filled 
color="blue" 

execute -> compare; 

(a) 

(b) 

Figure 2: A sample graph description and its layout 

5 Graph Filters 
Layouts of large graphs are often complex and diffi­
cult to read . Though good layout algorithms help , 
sometimes a graph is simply too large or dense to 
understand visually. Appropriate techniques of fil­
tering, partitioning, collapsing, and applying color 
can often help to convey properties of interest. We 

Figure 3: A sample layout from neato 

have written utilities for some of these operations. 
tred computes transitive reductions of directed 

graphs. When applied to dense graphs, this oper­
ation removes many edges without modifying the 
property of reachability between nodes. 

unflatten adjusts lengths of leaf edges or wide fan­
out fan-in patterns. When applied to bushy graphs, 
this yields layouts having less extreme aspect ratios. 

gpr (for "graph processor") applies a given predi­
cate expression on node or edge attributes to select 
a subgraph, that is emitted. A command line option 
enables path contraction on non-selected nodes and 
edges. 

colorize allows setting "seed" colors on some 
nodes, and propagates colors along edges to help 
highlight nodes that are logically related, even when 
dispersed geometrically. This takes advantage of 
the capability of the human eye to quickly locate 
similarly-colored objects in a collection. 

6 lefty 
lefty [15] is a two-view graphics editor for technical 
pictures. This editor has no hardwired knowledge 
about specific picture layouts or editing operations. 
Each picture is described by a program that contains 
functions to draw the picture and functions to per­
form editing operations that are appropriate for the 
specific picture. Primitive user actions, like mouse 
and keyboard events, are also bound to functions in 
this program. Besides the graphical view of the pic­
ture itself, the editor presents a textual view of the 
program that describes the picture. The language 
implemented by lefty is inspired by the language in 
the EZ system [7] 

Programmability and the two-view interface al-
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low the editor to handle a variety of pictures, but 
are particularly useful for pictures used in technical 
contexts, e.g., graphs and trees. Also, lefty can com­
municate with other processes. This feature allows 
it to use existing tools to compute specific picture 
layouts and allows external processes to use the ed­
itoras a front-end to display their data structures 
graphically. 

Figure 4 shows a typical snapshot of lefty in use. 
The editor has been programmed to edit delaunay 
triangulations. The window on the left shows the 
actual picture. The user can use the mouse to insert 
or move cites and the triangulation is kept up to 
date by the editor (which uses an external process 
to compute the triangulation). The window on the 
right shows the program view of the picture. 
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Figure 4: A snapshot of lefty in use 

7 dotty 
dotty is implemented as two cooperating processes 
(Jeftyand dot) and a program in the lefty language 
that customizes lefty so that it can handle graphs 
and their components. The program includes func­
tions to insert and delete nodes and edges, as well as 
to draw these objects according to attributes such 
as color, shape, and style. There is also a function 
that computes the layout . This function sends the 
graph to a dot process running in the background. 
The dot process computes the layout and sends the 
graph (with layout information inserted as graph at­
tributes) back to the lefty process. lefty then up­
dates the node and edge coordinates and redraws 
the graph on the screen. Figure 1 b shows how the 
two processes are connected. 

The l efty program is organized in two layers. The 
lower layer (called the dot layer) implements the 
necessary data structure operations such as inser-
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tion and deletion of nodes, edges, and subgraphs. 
This layer includes functions for reading and writ­
ing graphs from files, internet sockets, or UNIX 
pipes. The functions that perform the actual in­
put and output operations are implemented as C 
functions and are accessed as lefty builtins . This 
allowed us to use pieces of libgraph. The higher 
layer (called the dotty layer) implements the nec­
essary graphical operations. For example, func­
tion dotty. insertnode inserts a new node by call­
ing function dot. insertnode and then drawing the 
node on the display using the node 's col or and shape 
attributes. Figure 5 shows the main parts of these 
two functions. 

dot.insertnode = 
function (graph, name, attr) { 

graph.nodedict[name] = nid; 
graph.nodes[nid] = [ 

J; 

'nid' 
'name' 
'attr' 
'edges' 

= nid; 
name; 
copy (dot.nodeattr); 
[J; 

return graph. nodes [nid] ; 
} ; 
dotty.insertnode = 

}; 

function (gt, pos, name, attr) { 

if (-(node = dot .insertnode (gt.graph, 
name, attr))) 

return null; 
node.pos = pos; 
node.size = size; 
dotty.drawnode (gt.views, node); 
return node; 

Figure 5: Functions for inserting a new node 

Overall, the lefty program implements the follow­
ing operations: 

• create or destroy graphs. 

• create or destroy views of graphs (a graph may 
have several views). 

• load or save graphs to files (or sockets and 
pipes) 

• insert or delete nodes, edges, and subgraphs 
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• pan or zoom within a view 

• search for a node by name 

• geometrically move a node (and have all its 
edges follow) 

• edit attributes of an object 

User actions can be bound to graph operations. 
For example, pressing the left mouse button can 
be bound to a function that inserts a new node 
at the position of the cursor. This can be done 
by writing a function called leftdown that calls 
dotty. insertnode with the appropriate arguments. 
By default the left mouse button is bound to insert­
ing or moving nodes, the middle button is bound 
to inserting edges between existing nodes, and the 
right button brings up a menu for selecting the rest 
of the operations mentioned in the list above. There 
are also node- and edge-specific menus. 

Because of its design, dotty took very little time 
to build. Though the IPC overhead between dot 
and lefty would be avoided if dot were called as a 
library, this cost is small compared to the layout 
time, and so not noticeable, and we gain the flexi­
bility of having smaller, compatible tools instead of 
one excessively complicated graph viewing program. 
Any approach where the graph editor is constructed 
from scratch (as a single C or C++ program) would 
take significantly longer to build. It would also be 
harder to debug and improve. In dotty, the indi­
vidual tools can be tested and fixed independently. 
Both leftyand dot can be driven through scripts and 
this makes testing much easier. 

Though the decomposition of dotty into separate 
lefty and dot processes has advantages, it does also 
create some limitations. Because the processes com­
municate at a high level (through the graph lan­
guage), low-level features, such as typesetting of text 
labels, formatting of records, and color name lookup 
need to be replicated. Also, dot is a batch program 
and does not presently handle incremental layout . 
The disadvantage of this is that layouts of very sim­
ilar graphs are not necessarily close topologically. 
We intend to address support of interactive and in­
crementallayout in future versions of dotty. 

An important feature of dotty is that it can be 
easily customized. Customizing dotty amounts to 
modifying its lefty program. For example, the user 
interface functions (such as leftdown) can be rede­
fined to perform different actions. Alternatively, the 
functions that operate on the graph data structures 
(such as dot. insertnode) could be modified to only 

allow operations that are appropriate for a specific 
type of graph. The most interesting class of cus­
tomizations is the one where dotty is programmed 
to act as a front-end for another process. In this 
context, a tool that generates and maintains infor­
mation that can be expressed as a graph can use 
dotty to display this information graphically. dotty 
provides high quality layouts and a simple way to 
implement a user interface. Graphs are first class 
citizens in such an interface; they are used not only 
as a way to view information, but also as a way to 
operate on this information. An added advantage of 
this approach is that it requires little or no change 
to the original back-end tools. 

8 dotty applications 
8.1 ciao - A source code database 

front-end 

ciao is a graphical interface to the cia and cia++ 
program databases [2, 3] . These are source code 
analysis tools for large programs written in C or 
C++ respectively. For simplicity, we will refer to 
both as cia. 

cia constructs databases of C or C++ entities, 
such as files, macros, types (or classes), functions , 
and global variables. cia has text commands to ex­
ecute database queries and updates. For example, 
the following command lists all the call sites of a 
given function. 

> cref function - function fprintf 
k1 file1 name 1 k2 file2 name2 
-- ========= ======== == ======== ======= 
p peekf.c main p 
p xmalloc.c xrealloc p 
p xmalloc.c xmalloc p 

<libc . a> fprintf 
<libc . a> fprintf 
<libc . a> fprintf 

Some query types generate simple lists of objects. 
Most of the queries, however, generate lists of tuples. 
These lists can be represented pictorially as graphs. 
Each line in the example above can be represented 
as a graph edge between the two objects in that line. 
Users find such graphical representations can help to 
clarify relationships between program entities. 

A number of program browsers integrate text 
views of source code with layouts of procedure and 
data graphs, and allow navigation between graphs 
and source files . cia, on the other hand , has UNIX 
text commands instead of such browsing features . 
Given the size of the programs cia is intended to 
analyze, its authors made a reasonable decision in 
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emphasizing data-handling capabilities over an in­
teractive interface. In fact, interactive browsers of­
ten have efficiency limitations in loading source pro­
grams having tens or hundreds of thousands of lines. 
One reason is that such systems usually keep signif­
icantly more detail about individual source state­
ments, down to the token level. The thesis of cia's 
design is that for large programs, the cost of main­
taining this information is not justified. 

Although the user interface for cia is mostly text­
based it does provide tools for converting the output 
of queries into graphs. The graphs can then be pro­
cessed using either dag or dot to compute their lay­
outs. The disadvantage here is that after the layout 
is made there is no way to navigate between graph 
views and text views, or otherwise operate on the 
pictures as structured objects. We felt that we could 
match many of the advantages of the integrated sys­
tems without incurring their cost or complexity by 
creating an interface with dotty. 

The main customization to dotty was the specifi­
cation of a table that provides a mapping between 
node types (which correspond to cia entities) and 
operations appropriate for each type. (The cia tool 
that generates the graphs includes the entity type of 
each node as an attribute of that node). The user 
interface functions were then modified so that when 
the user tries to bring up a menu over a graph node, 
the menu that appears contains exactly those oper­
ations that are appropriate. Some menu selections 
result in new graphs that are displayed in separate 
windows, while other selections produce text output 
that is appended to a message window. There is also 
a global menu that can be used to generate complete 
graphs , such as the full function to function refer­
ence graph or the file to file inclusion graph. 

To generate one of these graphs, dotty composes 
a UNIX command pipeline. The first part of the 
pipeline is the appropriate cia query. The second 
part of the pipeline is the cia tool that generates 
graphs from query output. dotty then runs this com­
mand and collects the output (which is a graph). Big 
graphs, such as the full function to function graphs, 
can also be cached by storing them in files . 

ciao consists of approximately 500 lines of lefty 
code. No changes were made to any of the cia tools 
and it took only a couple days to put a prototype 
together. Figure 6 shows a snapshot of a ciao ses­
sion. It shows several windows, each containing a 
different graph. Some show full graphs while others 
were created by selecting an object on a full graph 
and performing a cia query. 
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Figure 6: A snapshot of ciao in use 

8.2 vdbx - A graphical debugger 

Although graphical users interfaces are common­
place, debuggers lack useful graphical data struc­
ture displays. Several previous efforts have involved 
displays of lists or simple graphs [12] but lack gener­
ality. A great deal of other work has concentrated on 
algorithm animation [18, 23] . Generally this relies 
on adding extra code to abstract data types, such 
as arrays, stacks, lists, queues, and geometric data 
structures, to create on-line graphical displays, or 
at least emit traces for subsequent post-processing 
and animation. This is quite general, and well de­
signed algorithm animations can be highly informa­
tive. These techniques, however, are not directly 
applicable to general-purpose debugging using pic­
tures; they are usually intrusive and the pictures 
often do not map well to the lower-level or concrete 
views needed in practical situations. 

vdbx nonintrusively adds graphical data structure 
displays to dbx. Neither dbx nor the target program 
are modified. vdbx uses dotty to draw data struc­
tures. dot already has good capabilities in this area, 
so the main issues are handling communication be­
tween dotty and the debugger. A multiplexing pro­
cess is used to link dotty to the debugger. This 
multiplexor contains a parser to translate dbx-style 
output into graphs. It also allows the debugger to 
be accessed from a virtual terminal window (shown 
in Figure 7). 

vdbx is compatible with any debugger that uses 
the dbx syntax for C structs. The user can ac­
cess dbx through the virtual terminal window just 
as if dbx was being run directly. The user can set 
breakpoints, inspect values, and give other debug­
ging commands in the usual way. 
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Figure 7: A snapshot of vdbx in use 

At the same time, the user can issue graphical 
queries in the dotty window. There are two kinds of 
queries. One kind prompts the user for the name of 
a variable, and displays it as a new root node. Non­
null pointer fields are marked by a special symbol, 
unexpanded. The other kind of query follows an 
unexpanded pointer. When executing either case, 
dotty translates the graphical query to a text com­
mand that is sent to the multiplexor. The multi­
plexor communicates with dbx to augment the data 
structure graph. The new graph is returned to 
dotty, drawn by dot, and displayed . This communi­
cation takes place invisibly to the user . The graph­
ical interface is not only easier to use than dbx text 
queries, but it also makes it easier to understand 
how the various data structures are inter-connected. 

We have found vdbx to be practical for visualiz­
ing data structures while debugging. For example, 
one of our colleagues found it useful for debugging a 
program with geometric data structures, which tend 
to form complex pointer inter-connections. vdbx 
shows promise, but its user interface needs refine­
ment before it is practical for everyday use. One 
issue is that in practice, records often have many 
fields . Displaying them all wastes valuable screen 
area and can overwhelm the user with irrelevant in­
formation . Programmers are usually interested in 
only a few fields during a given debugging run, so 
only these should be drawn. Another issue involves 
displays of dynamic arrays and unions in C. Because 
programmers must define their own runtime conven­
tions to store array sizes or define which members of 

unions are in use, this information is not automati­
cally available to dbx for generating data structure 
graphs . One solution would be for programmers to 
advise vdbx of such conventions, using a debugging 
language extension kept in a start up file [10J. An­
other limitation is that our data structure graphs 
are static snapshots, and are not automatically up­
dated as a program runs and modifies its data. To 
have automatic updates , the debugger needs to track 
changes in the data structure. Typically this is done 
with watchpoints, but they are expensive on most 
computers. A related issue is that we need stable 
incremental layouts from dot. 

8.3 vpm - Visual Process Manager 

Operating systems such as UNIX make it easy for 
users to create multiple processes and have them co­
operate by exchanging messages via pipes or sock­
ets. If tools have good interfaces, then they can 
often be combined to create powerful new appli­
cations, achieving a high degree of software re-use 
at the process level. Success depends on two fac­
tors: a good selection of components, and powerful 
support tools, such as debuggers, program analysis 
tools, and facilities to trace processes. Generally in 
the second area, most existing debugging techniques 
break down when there are multiple distributed pro­
cesses. 

vpm was designed to monitor and debug commu­
nicating processes in a distributed system. It cre­
ates a graphical view of their interactions. Figure 8 
shows a sample snapshot . It is, in fact, a snapshot 
of vpm itself. Rectangles represent processes , while 
ellipses represent files. Double circles represent ei­
ther pipes or sockets. The bigger rectangle in this 
figure represents a host computer; the processes en­
closed in this rectangle are the processes running on 
that machine. vpm can monitor activity across ma­
chines. Figure 9 shows a snapshot of using nmake[4J 
and coshell[5J to run several compilations over a net­
work of machines. The processes of each machine 
are grouped together into dot clusters so that they 
appear next to each other in the layout. 

vpm uses nDFS[6J to monitor process activity 
at the system call level. nDFS stands for multi­
dimensional file system. Its features include the 
ability to attach servers at various points in the 
file system. Accessing a file under such an attach­
ment point results in making a service request to 
the attached server. Besides servers, one can also 
attach monitoring processes. vpm is implemented 
by instructing nDFS to monitor process activities. 
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Figure 8: Monitoring processes on a single machine 

Figure 9: Monitoring processes on a network of ma­
chines 

nDFS can selectively intercept several kinds of sys­
tem calls . Currently, vpm monitors the following 
classes of system calls. 

• process management system calls, e.g. fork , 
exec, and exit . In Figure 8, when process vpm 
forks and creates process 13053, this is shown 
by creating a new node (for 13053) and linking 
that node to all the files that the parent had 
open. In this case, 13053 is linked to ttyq7. 
When process 13053 execs a program called 
lefty, the name of 13053 changes to lefty (it 
was vpm up to that point). 

• I/O channel management system calls, e.g. 
open, close , dup , and pipe. Network connec­
tions are modeled using open and close calls. 

[13051 3750] fork()=13053 
[13053 3750] fork()=13051 
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[13053 3750] exec("/home/ek/bin/lefty")=O 
[13053 3750] close(1162+295 Ox2bafb)=0 

Figure 10: vpm trace sequence 

For example, the four nodes at the bottom of 
Figure 8 are UNIX pipes. They were created by 
process lefty. lefty first created two pipes, 
then it forked and execed process dot, which 
inherited these pipes. lefty then created the 
other two pipes and used them to connect to 
process cs (which is used in vpm to collect the 
nDFS monitor output). The arrows in process 
to file edges show whether the files are opened 
for read or write or both . 

• I/O operations, e.g. read and write . 

Which system calls are intercepted can be defined 
on a per-process level; each new process inherits its 
parent 's mask, but this mask can be changed during 
the lifetime of the process. 

Figure 10 shows an excerpt from the monitoring 
information generated by vpm. It corresponds to 
having process vpm in Figure 8 spawn a process that 
eventually runs program lefty. When the vpm pro­
cess performs a fork we get two fork messages; one 
from the parent and one from the child. The first 
number in brackets is the pid of the process perform­
ing the action. The second number identifies the 
computer where the process runs. The final close 
happens because process vpm had one of its file de­
scriptors marked as close-on-exec. 

vpm can work either in real time, or in single step. 
In real time, vpm reads the activity log as it is be­
ing generated and updates its graphical represen­
tation periodically. Some amount of control over 
processes is available to the user; the user can send 
signals to individual processes, start up and attach 
a source level debugger on them, and hide processes 
or files that the user considers unimportant. We 
are currently working on adding more functional­
ity to vpm. One important feature is to allow the 
user to put breakpoints, so that when a process exe­
cutes a specific system call it stops and waits for user 
acknowledgment before proceeding. In single step, 
vpm reads an already generated log and updates its 
graphical view after every step (or after a sequence 
of steps, depending on user interactions). The real 
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time view is good for seeing things as they happen . 
The single step mode provides a more detailed view 
and is better suited for debugging. 

An important feature of vpm is that it requires no 
changes to the applications to allow them to be mon­
itored. On systems that provide shared libraries, 
the nDFS shared library is prepended in the list of 
libraries to load when starting a program. (On sys­
tems without shared libraries, applications have to 
be linked with the static version of the nDFS li­
brary). 

The real-time performance of the system is no­
ticeably limited by dotty's throughput. When new 
processes or files are inserted in the graph, dot has 
to re-layout the whole graph . The need for increased 
throughput suggests work on incremental layout al­
gorithms. We need such algorithms to improve lay­
out stability, but we are cautious in viewing this as a 
solution to throughput problems, because maintain­
ing stability in incremental layouts may well incur 
additional overhead. It does seem likely, though , 
that further tuning of the cluster layout code will 
yield significant improvements. 

9 Conclusions 
We have described how new software visualiza­
tion applications have been created from smaller, 
general-purpose tools: a programmable 2-D graph­
ics editor, graph layout tools, and text-based appli­
cations. An important practical aspect of these sys­
tems is that they are unintrusive. vpm and vdbx, for 
example, work with unmodified programs. The ease 
with which they were created suggests that small , 
well-focussed tools can be a better starting point 
than large C or C++ libraries. 

We are currently working on incremental graph 
layouts. Our 'main goal is to provide layout stability: 
if a small, localized change is made to a graph, the 
layout of the graph should also change only slightly. 
Our current techniques will sometimes result in ma­
jor changes to the layouts and this is disorienting 
to users. At the same time, we want the quality 
of incremental layouts to be as good as the batch 
layouts , making this problem very challenging. 

References 
[1] M. Carpano. Automatic display of hierarchized 

graphs for computer aided decision analysis. 
IEEE Transactions on Software Engineering, 
SE-12(4):538- 546 , Apr. 1980. 

[2] Y.-F. Chen. The C Program Database and 
Its Applications. In USENIX Baltimore 1989 
Summer Conference Proceedings, pages 157-
171 , 1989. 

[3] Y.-F. Chen and J . Grass. The C++ Informa­
tion Abstractor. In The Second USENIX C++ 
Conference, pages 265-278, 1990. 

[4] G. Fowler. The fourth generation make. In 
USENIX Portland 1985 Summer Conference 
Proceedings, pages 159-174, 1985. 

[5] G. Fowler. The shell as a service. In USENIX 
Cincinatti 1993 Summer Conference Proceed­
ings, pages 267-278, 1993. 

[6] G. Fowler, Y. Huang, D. Korn, and H. Rao. 
A user-level replicated file system. In USENIX 
Cincinatti 1993 Summer Conference Proceed­
ings, pages 279-290, 1993. 

[7] C. W. Fraser and D . R. Hanson. High-Ievellan­
guage facilities for low-level services. In 12th 
ACM Symp. on Prin. of Programming Lan­
guages, pages 217- 224, 1985. 

[8] E. Gansner , E . Koutsofios, S. North , and K. VO. 
A technique for drawing directed graphs. IEEE­
TSE, Mar. 1993. 

[9] E . R. Gansner , S. C. North, and K. P. 
Vo. DAG-A program that draws directed 
graphs. Software-Practice and Experience, 
18(11) :1047- 1062, Nov. 1988. 

[10] M. Golan and D. R. Hanson. Duel- a very high­
level debugging language. In Winter USENIX 
Conference Proceedings, pages 107- 117, 1993. 

[11] M. Himsolt. Graphed: An interactive graph 
editor . In Proc . STACS 89, volume 349 of Lec­
ture Notes in Computer Science , pages 532-
533, Berlin , 1989. Springer-Verlag. 

[12] S. Isoda, T . Shimomura, and Y. Ono. VIPS: A 
Visual Debugger. IEEE Software, pages 8- 19, 
May 1987. 

[13] T . Kamada and S. Kawai. An algorithm for 
drawing general undirected graphs . Informa­
tion Processing Letters, 31(1) :7- 15 , Apr. 1989. 

[14] D. E . Knuth. The Stanfo rd Graphbase: a plat­
form fo r combinatorial computing. Addison­
Wesley, 1993. 

Graphics Interface '94 



[15J E . Koutsofios and D. Dobkin. Lefty: A two­
view editor for technical pictures. In Graph­
ics Interface '91, Calgary, Alberta, pages 68-76, 
1991. 

[16J B. Krishnamurthy and N. Barghouti. Provence: 
A Process Visualization and Enactment En­
vironment. In Proceedings of the Fourth Eu­
ropean Conference on Software Engineering, 
pages 151- 160, Garmisch-Partenkirchen, Ger­
many, September 1993. Springer-Verlag. Pub­
lished as Lecture Notes in Computer Science no. 
717. 

[17J B. Krishnamurthy and D. S. Rosenblum. An 
event-action model of computer-supported co­
operative work: Design and implementation. 
In K. Gorling and C. Sattler, editors, Proceed­
ings of the International Workshop on Com­
puter Supported Cooperative Work, pages 132-
145. IFIP TC 6/WG C.5, 1991. 

[18J M. Lee. An algorithm animation programming 
environment. In Lecture Notes in Computer 
Science, volume 602 , Berlin, 1992. Springer­
Verlag. 

[19J S. C. North. Drawing ranked digraphs with 
recursive clusters. In Proc. ALCOM Interna­
tional Workshop PARIS 1993 on Graph Draw­
ing and Topological Graph Algorithms, 1993. 
ftp /pub/papers/compgeo/gd93-v2.tex.Z from 
wilma.cs. brown.edu. 

[20J S. C. North and K.-P. Vo. Dictionary and graph 
libraries. In USENIX Winter Conference, pages 
1-11 , 1993. 

[21J J. K. Ousterhout. An x11 toolkit based on the 
tcl language. In USENIX Winter Conference, 
Jan 1991. 

[22J F . N. Paulish and W. Tichy. Edge: An ex­
tendible graph editor. Software-Practice and 
Experience, 20(Sl):1/63- S1/88, 1990. 

[23J S. P. Reiss. Program visualization: Where we 
go from here. In IFIP Tran A, volume V12, 
pages 218- 227, 1992. 

[24J L. A. Rowe, M. Davis, E. Messinger, C. Meyer, 
C. Spirakis, and A. Tuan. A browser for di­
rected graphs . Software-Practice and Experi­
ence, 17(1) :61-76, Jan. 1987. 

245 

[25J K. Sugiyama, S. Tagawa, and M. Toda. Meth­
ods for visual understanding of hierarchical sys­
tem structures. IEEE Transactions on Sys­
tems, Man, and Cybernetics, SMC-11(2):109-
125, Feb. 1981. 

[26J Tom Sawyer Software, 1824B Fourth Street, 
Berkeley, CA 94710. Graph Layout Toolkit, 1.08 
edition. 

[27J J . Warfield. Crossing Theory and Hierarchy 
Mapping. IEEE Transactions on Systems, 
Man, and Cybernetics, SMC-7(7):505-523, July 
1977. 

Graphics Interface '94 



246 

Author Index 

Baecker, Ronald M ............. 133, 141 Lalonde, Paul............... ......... .... 149 
Bajaj, Chandrajit L .................... 174 MacKenzie, I Scott ..................... 75 
Baker, Ellie ................. ..... ........... 91 Mah, Sang .................................. 200 
Balakrishnan, Ravin...................... 1 McQueen, Craig .......................... 75 
Barrett, WilliamA ................. 16,33 Meltz, Malcom............. ..... ... ....... 75 
Bartram, Lyn .............................. 216 Meyers, David ........... ...... .... ....... 25 
Buxton, William..................... ..... 83 Moran, Thomas P ........................ 83 
Calvert, Thomas W .................... 200 Mortensen, Eric .......................... 16 
Carroll, John.............................. 112 Noik, E.G ................................... 225 
Chen, Jindon .............................. 174 Nonnecke, Blair .......................... 75 
Dill, John .................................... 216 North, Stephen C ....................... 235 
Drucker, Steven M ..................... 190 Ovans, Russell ........................... 216 
Dyck, Michael ........................... 216 Owen, Russell ......... ......... ......... 141 
Fiume, Eugene ........................... 208 Pfeifle, Ron ................................ 182 
Forsey, David............................. 149 Riddersma, Stan........ ....... ........... 75 
Fournier, Alain .......................... 157 Rosenthal, Alan J ...................... 133 
Garland, Michael ........................ 43 Rosson, Mary Beth ..... ..... ......... 112 
Goss, Michael E............... ........... 67 Seidel, Hans-Peter. .......... ........... 182 
Harrison, Beverly L . .............. ... 141 Seltzer, Margo ............................. 91 
Harrison, J ason ......................... 149 Shinya, Mikio . ............................ 59 
Havens, William S ............. 200, 216 Stam, Jos ..................................... 51 
Heckbert, Paul......... .... .... ........ ... 43 Strothotte, Thomas ...................... 101 
Ho, Albert .................................. 216 Taylor, David C..... ............... 16, 33 
Johnsgard, Todd ............................ 8 van de Panne, Michiel ............... 208 
Kim, Ryan ........................... ...... . 208 Walker, Robert ..... ........... .......... 149 
Kochhar, Sandeep ..................... 120 Ware, Colin ............... ...... .............. 1 
Koutsofios, Eleftherios .............. 235 Wyvill, Brian .............................. 165 
Kugas, Doreen .......................... 101 Xu, Guoliang ............................ 174 
Kurtenbach, Gordon ..... .... .......... 83 Zeltzer, David ............................ 190 
Kurtz, Martin ............................ 101 

~: /~~: 
.-:.:.~ Graphics Interface '94 


