
235

Applications of Graph Visualization

Stephen C. North
Eleftherios Koutsofios

AT &T Bell Laboratories
600 Mountain A venue
Murray Hill, NJ 07974

Abstract
dotty is a customizable graph editor. Its main
components are a programmable viewer (lefty) and
graph layout generators (dot and neato). dotty can
run stand-alone, but more importantly, it can be
programmed to act as a front-end for other appli­
cations. Some interesting examples are ciao, a pro­
gram source code database browser, vdbx, a visual
extension to dbx for displaying data structures as
graphs, and vpm , an interactive distributed process
monitor.

Keywords: graph browser, visual debugger, process
monitor, software information system.

1 Introduction
Graph drawings are one of the best ways to present
technical information. Such diagrams are particu­
larly appropriate for showing relations between ob­
jects. Finite state machines , networks, program call
graphs , and various kinds of object to object de­
pendencies are a few examples of information that
can be made easier to understand when presented
as graphs.

It is therefore important to have a good set of
tools for displaying and manipulating graphs. Such
a toolkit should include tools to read and write
graphs, to make layouts, and to view and interact
with graphs as an interface to other programs. The
tools and libraries presented in this paper make up
such a toolkit. From the user's point of view, the pri­
mary tool is dotty. dotty can provide high-quality
graph layouts and allow the user to operate on them.
Figure 1 shows two snapshots of dotty in use. Fig­
ure la shows dotty as a stand-alone graph editor.
A graph representing an automaton is being edited.

Figure 1 b shows dotty as a front-end for a process
management tool.

dotty can be controlled either through a WYSI­
WYG interface, or through a textual (procedural)
interface. As a stand-alone tool, dotty is similar
in operation to other systems based on treating
pictures of graphs as structured objects. GRAB,
EDGE, and GraphEd [24, 22, 11J are some well­
known examples. Like these tools, dotty pro­
vides menu-driven commands for loading or creating
graphs, performing editing operations, and saving
the changed graphs. Attributed graphs are stored
in a data language that is flexible in handling at­
tributes, so new ones can be added to graph files
easily without causing incompatibility with existing
graph tools.

The procedural interface is convenient for algo­
rithmic operations (e.g . set node col or as a function
of degree). The procedural interface also allows re­
programming the WYSIWYG interface. For exam­
ple, the left mouse button can be bound to a func­
tion that highlights all edges attached to the node
under the mouse pointer. The underlying program­
ming language has primitives to start external pro­
cesses and to establish interprocess communication
channels. This makes it possible for dotty to oper­
ate as a graphical front-end for other processes. In
this context, graphs can represent state information
maintained by a back-end process, and user actions
can be bound to functions that translate graph op­
erations to corresponding state change requests sent
to the back-end.

As a front-end, dotty's programming language
and the library of functions that accompanies it are
higher level than C or C++ graph toolkits. dotty
has already been used as the front-end for a number
of applications:

Graphics Interface '94

236

(a) (b)

Figure 1: Two snapshots of dotty in use

• finite state machine animator

• C/C++ source code database browser

• distributed process monitor

• debugger with graphical data structure displays

• program trace animator

• GUI for the Yeast event-action specification
tool [17]

• GUI for' the Provence process modeling tool [16]

dotty itself is constructed as two co-operating pro­
cesses, dot and lefty. lefty is a programmable graph­
ics editor that takes care of displaying the graphs on
the screen and allowing the user to operate on them.
Thus dotty's programming language is actually that
of lefty. lefty runs dot to make graph layouts. These
programs communicate via pipes, as shown in Fig­
ure lb .

Having interactive tools like dotty is clearly useful.
There are, however, many situations where batch
tools are also important. Since all our tools process
files in our graph data language, it is easy to com­
pose command pipelines that perform graph filtering
operations. Often this is easier than using a system
in which operations must always be performed using
a point and click interface.

In this paper we describe dotty, lefty, dot, neato,
and several graph filters. We also present our graph
language, Jibgrapb. Finally, we present some of the
applications where dotty is used as a front-end.

2 Related Work
Related graph viewing programs include EDGE,
GraphEd, daVinci (U. of Bremen) , the XmGraph
toolkit (Douglas Young, U. of Iowa) and the Graph
Layout Toolkit [26]. Like our system, they allow
programmers to add application-specific functions,
possibly to communicate with external back-end
processes. Another related system is Knuth's Stan­
ford GraphBase [14], which is a C library and data
sets for implementing and measuring the perfor­
mance of graph algorithms. Unlike the other pack­
ages, GraphBase has no special graph layout or user
interface features. We will compare some aspects of
these systems with ours.

Architecture. Almost all these systems take the
point of view that the user will run most applica­
tions "by hand" from a central GUI. In contrast we
envision dotty as a complement to a collection of
non-interactive tools and filters . Often there are en­
gineering advantages to creating a number of smaller
tools that each perform one task well, instead of
making one large system that combines many di-

Graphics Interface '94

verse functions. Also, other systems have insuffi­
cient data language support for graph processing
applications. Ideally, the data language should be
implemented with a clean library interface and sep­
arated from the user interface. (EDGE is an excep­
tion to this criticism, but only a prototype parser
was implemented). Admittedly, a disadvantage of
a less-integrated design is that sometimes a feature
must be duplicated in several places, or eliminated
with a possible loss in functionality. Examples in­
clude the functions to draw node shapes, interpret
text labels, or fit edge splines.

Programming Language. Almost all the other
systems are C or C++ toolkits . To customize
the system, an application programmer writes C
or C++ code and links it with the main system.
dotty's script language is higher-level than C and
should be more productive for user-interface pro­
gramming. Experience suggests this is true with
other high-level user-interface languages such as
TCL/tk [21]. A disadvantage of our system is that
the language is non-standard, but most of its fea­
tures , such as functions, scalars and associative ar­
rays , hierarchical name spaces, windows, menus, and
text-stream I/O are familiar to experienced pro­
grammers. Another issue is that C is more general
than dotty's script language. For example, it may
be easier to add new graphical widget types to an
ordinary C program than to an interpreter having
its own graphics model.

da Vinci is written in an applicative language
called ASpecT, and is customized by creating an
external process that treats da Vinci as an abstract
user interface, using an application protocol to com­
municate about menus, selections , text dialog boxes,
etc . There does not seem to be much further support
for client-side graph data structures or operations.
It would be interesting if ASpecT and its graph li­
brary were made available for writing applications.

Port ability. dotty makes it possible to write
very portable applications because lefty hides the
host graphics and operating system. Applica­
tion programmers do not deal with the details of
fonts , menus, color maps or other low-level fea­
tures that impair port ability. Consequently we can
run the same scripts in the Microsoft Windows and
UNIX/Xll versions of dotty.

Layout Quality and Robustness. dotty bene­
fits from using dot to make layouts . Considerable ef­
fort was spent on developing dot's layout algorithms ,
and creating a robust and efficient implementation.
This is important because making readable layouts

237

automatically, without requiring user intervention,
is a central problem in graph visualization. Robust­
ness is also important because graphs from real life
can have multiple edges, self-arcs, degenerate com­
ponents, etc. Some of the other systems provide a
much wider variety of layout algorithms (GraphEd
3.0 has 18) , but the implementations are often not
very robust or practical.

3 Graph Language and Library
Graphs sent between processes or stored in files in
our system use a common format with variable (not
fixed) attributes. Attributes are essentially property
lists attached to graphs, nodes, and edges. This ac­
commodates a variety of applications without forc­
ing them to agree in advance on the set of at­
tributes. To describe structure within graphs, the
graph model allows nested subgraphs. Figure 2a
shows a sample graph . Basic graph data structures,
operations, and file I/O for C and C++ program­
ming are encapsulated in libgraph [20].

4 Graph Layout Tools
dot makes hierarchical layouts of directed graphs [8] .
It was written as a successor to dag [9], which incor­
porated results of Warfield , Carpano, and Sugiyama
et al [27, 1, 25] . dot makes good layouts and has an
assortment of shapes, styles, and colors appropri­
ate for software-related diagrams. For example, dot
can draw data structure graphs, displaying records
as nested box lists, with node ports for connecting
pointers. dot also incorporates a new algorithm for
drawing graphs with clusters or recursive node set
partitions [19] . Clusters at the same level are drawn
in non-overlapping rectangles. This has applications
in diagrams of hierarchical structures, such as nested
source code modules. Figure 2b shows the dot lay­
out for the graph in Figure 2a. dot has the ability
to emit graphs either in our graph language, or in
several graphical languages such as PostScript .

For undirected graphs (such as the computer net­
work graph of Figure 3), hierarchical layouts may
not be as informative as other types that emphasize
connectivity. neato is an undirected graph embed­
der that uses virtual physical models of Kamada and
Kawai [13]. It is compatible with dot to the extent
of accepting the same input files and command line
options. In fact, dotty can switch between either of
the two using just a simple path name change.

Graphics Interface '94

digraph G {
size ="4,4";

}

main [shape=box]; /* comment */
main -> parse [weight=8];
parse -> execute;
main -> init [style=dotted];
main -> cleanup;
execute -> { make_string; printf}
init -> make_string;
edge [color=red];
main -> printf [

style=bold,label="100 times"
J;
make_string [label="make a\nstring"];
node [

J;

shape=box
style=filled
color="blue"

execute -> compare;

(a)

(b)

Figure 2: A sample graph description and its layout

5 Graph Filters
Layouts of large graphs are often complex and diffi­
cult to read . Though good layout algorithms help ,
sometimes a graph is simply too large or dense to
understand visually. Appropriate techniques of fil­
tering, partitioning, collapsing, and applying color
can often help to convey properties of interest. We

Figure 3: A sample layout from neato

have written utilities for some of these operations.
tred computes transitive reductions of directed

graphs. When applied to dense graphs, this oper­
ation removes many edges without modifying the
property of reachability between nodes.

unflatten adjusts lengths of leaf edges or wide fan­
out fan-in patterns. When applied to bushy graphs,
this yields layouts having less extreme aspect ratios.

gpr (for "graph processor") applies a given predi­
cate expression on node or edge attributes to select
a subgraph, that is emitted. A command line option
enables path contraction on non-selected nodes and
edges.

colorize allows setting "seed" colors on some
nodes, and propagates colors along edges to help
highlight nodes that are logically related, even when
dispersed geometrically. This takes advantage of
the capability of the human eye to quickly locate
similarly-colored objects in a collection.

6 lefty
lefty [15] is a two-view graphics editor for technical
pictures. This editor has no hardwired knowledge
about specific picture layouts or editing operations.
Each picture is described by a program that contains
functions to draw the picture and functions to per­
form editing operations that are appropriate for the
specific picture. Primitive user actions, like mouse
and keyboard events, are also bound to functions in
this program. Besides the graphical view of the pic­
ture itself, the editor presents a textual view of the
program that describes the picture. The language
implemented by lefty is inspired by the language in
the EZ system [7]

Programmability and the two-view interface al-

Graphics Interface '94

low the editor to handle a variety of pictures, but
are particularly useful for pictures used in technical
contexts, e.g., graphs and trees. Also, lefty can com­
municate with other processes. This feature allows
it to use existing tools to compute specific picture
layouts and allows external processes to use the ed­
itoras a front-end to display their data structures
graphically.

Figure 4 shows a typical snapshot of lefty in use.
The editor has been programmed to edit delaunay
triangulations. The window on the left shows the
actual picture. The user can use the mouse to insert
or move cites and the triangulation is kept up to
date by the editor (which uses an external process
to compute the triangulation). The window on the
right shows the program view of the picture.

c_ •• o l1 .. 'c_ .. · · ·c_ •• ·,
"'10'''" ' 'wncu.., 1. • • 1 (...);
"' •• nU" · ', d.'.' ... · ·.,

·r~i~~~ ::~~~ j~ ~;~ : <: ;~: ,;:
:=: ':':::!r::(L~:((::)h
11 · · (... "

- . ' U_ ' , .. 1 (.•. h
.... 11 · . (. .. h
r'''r_" ' , " t • • • 1 (•• . " ,
. n •• • • (...),
: ~~::W- .·O:"

U ,.h " ' t .. . 11
. (... h

Figure 4: A snapshot of lefty in use

7 dotty
dotty is implemented as two cooperating processes
(Jeftyand dot) and a program in the lefty language
that customizes lefty so that it can handle graphs
and their components. The program includes func­
tions to insert and delete nodes and edges, as well as
to draw these objects according to attributes such
as color, shape, and style. There is also a function
that computes the layout . This function sends the
graph to a dot process running in the background.
The dot process computes the layout and sends the
graph (with layout information inserted as graph at­
tributes) back to the lefty process. lefty then up­
dates the node and edge coordinates and redraws
the graph on the screen. Figure 1 b shows how the
two processes are connected.

The l efty program is organized in two layers. The
lower layer (called the dot layer) implements the
necessary data structure operations such as inser-

239

tion and deletion of nodes, edges, and subgraphs.
This layer includes functions for reading and writ­
ing graphs from files, internet sockets, or UNIX
pipes. The functions that perform the actual in­
put and output operations are implemented as C
functions and are accessed as lefty builtins . This
allowed us to use pieces of libgraph. The higher
layer (called the dotty layer) implements the nec­
essary graphical operations. For example, func­
tion dotty. insertnode inserts a new node by call­
ing function dot. insertnode and then drawing the
node on the display using the node 's col or and shape
attributes. Figure 5 shows the main parts of these
two functions.

dot.insertnode =
function (graph, name, attr) {

graph.nodedict[name] = nid;
graph.nodes[nid] = [

J;

'nid'
'name'
'attr'
'edges'

= nid;
name;
copy (dot.nodeattr);
[J;

return graph. nodes [nid] ;
} ;
dotty.insertnode =

};

function (gt, pos, name, attr) {

if (-(node = dot .insertnode (gt.graph,
name, attr)))

return null;
node.pos = pos;
node.size = size;
dotty.drawnode (gt.views, node);
return node;

Figure 5: Functions for inserting a new node

Overall, the lefty program implements the follow­
ing operations:

• create or destroy graphs.

• create or destroy views of graphs (a graph may
have several views).

• load or save graphs to files (or sockets and
pipes)

• insert or delete nodes, edges, and subgraphs

Graphics Interface '94

240

• pan or zoom within a view

• search for a node by name

• geometrically move a node (and have all its
edges follow)

• edit attributes of an object

User actions can be bound to graph operations.
For example, pressing the left mouse button can
be bound to a function that inserts a new node
at the position of the cursor. This can be done
by writing a function called leftdown that calls
dotty. insertnode with the appropriate arguments.
By default the left mouse button is bound to insert­
ing or moving nodes, the middle button is bound
to inserting edges between existing nodes, and the
right button brings up a menu for selecting the rest
of the operations mentioned in the list above. There
are also node- and edge-specific menus.

Because of its design, dotty took very little time
to build. Though the IPC overhead between dot
and lefty would be avoided if dot were called as a
library, this cost is small compared to the layout
time, and so not noticeable, and we gain the flexi­
bility of having smaller, compatible tools instead of
one excessively complicated graph viewing program.
Any approach where the graph editor is constructed
from scratch (as a single C or C++ program) would
take significantly longer to build. It would also be
harder to debug and improve. In dotty, the indi­
vidual tools can be tested and fixed independently.
Both leftyand dot can be driven through scripts and
this makes testing much easier.

Though the decomposition of dotty into separate
lefty and dot processes has advantages, it does also
create some limitations. Because the processes com­
municate at a high level (through the graph lan­
guage), low-level features, such as typesetting of text
labels, formatting of records, and color name lookup
need to be replicated. Also, dot is a batch program
and does not presently handle incremental layout .
The disadvantage of this is that layouts of very sim­
ilar graphs are not necessarily close topologically.
We intend to address support of interactive and in­
crementallayout in future versions of dotty.

An important feature of dotty is that it can be
easily customized. Customizing dotty amounts to
modifying its lefty program. For example, the user
interface functions (such as leftdown) can be rede­
fined to perform different actions. Alternatively, the
functions that operate on the graph data structures
(such as dot. insertnode) could be modified to only

allow operations that are appropriate for a specific
type of graph. The most interesting class of cus­
tomizations is the one where dotty is programmed
to act as a front-end for another process. In this
context, a tool that generates and maintains infor­
mation that can be expressed as a graph can use
dotty to display this information graphically. dotty
provides high quality layouts and a simple way to
implement a user interface. Graphs are first class
citizens in such an interface; they are used not only
as a way to view information, but also as a way to
operate on this information. An added advantage of
this approach is that it requires little or no change
to the original back-end tools.

8 dotty applications
8.1 ciao - A source code database

front-end

ciao is a graphical interface to the cia and cia++
program databases [2, 3] . These are source code
analysis tools for large programs written in C or
C++ respectively. For simplicity, we will refer to
both as cia.

cia constructs databases of C or C++ entities,
such as files, macros, types (or classes), functions ,
and global variables. cia has text commands to ex­
ecute database queries and updates. For example,
the following command lists all the call sites of a
given function.

> cref function - function fprintf
k1 file1 name 1 k2 file2 name2
-- ========= ======== == ======== =======
p peekf.c main p
p xmalloc.c xrealloc p
p xmalloc.c xmalloc p

<libc . a> fprintf
<libc . a> fprintf
<libc . a> fprintf

Some query types generate simple lists of objects.
Most of the queries, however, generate lists of tuples.
These lists can be represented pictorially as graphs.
Each line in the example above can be represented
as a graph edge between the two objects in that line.
Users find such graphical representations can help to
clarify relationships between program entities.

A number of program browsers integrate text
views of source code with layouts of procedure and
data graphs, and allow navigation between graphs
and source files . cia, on the other hand , has UNIX
text commands instead of such browsing features .
Given the size of the programs cia is intended to
analyze, its authors made a reasonable decision in

Graphics Interface '94

emphasizing data-handling capabilities over an in­
teractive interface. In fact, interactive browsers of­
ten have efficiency limitations in loading source pro­
grams having tens or hundreds of thousands of lines.
One reason is that such systems usually keep signif­
icantly more detail about individual source state­
ments, down to the token level. The thesis of cia's
design is that for large programs, the cost of main­
taining this information is not justified.

Although the user interface for cia is mostly text­
based it does provide tools for converting the output
of queries into graphs. The graphs can then be pro­
cessed using either dag or dot to compute their lay­
outs. The disadvantage here is that after the layout
is made there is no way to navigate between graph
views and text views, or otherwise operate on the
pictures as structured objects. We felt that we could
match many of the advantages of the integrated sys­
tems without incurring their cost or complexity by
creating an interface with dotty.

The main customization to dotty was the specifi­
cation of a table that provides a mapping between
node types (which correspond to cia entities) and
operations appropriate for each type. (The cia tool
that generates the graphs includes the entity type of
each node as an attribute of that node). The user
interface functions were then modified so that when
the user tries to bring up a menu over a graph node,
the menu that appears contains exactly those oper­
ations that are appropriate. Some menu selections
result in new graphs that are displayed in separate
windows, while other selections produce text output
that is appended to a message window. There is also
a global menu that can be used to generate complete
graphs , such as the full function to function refer­
ence graph or the file to file inclusion graph.

To generate one of these graphs, dotty composes
a UNIX command pipeline. The first part of the
pipeline is the appropriate cia query. The second
part of the pipeline is the cia tool that generates
graphs from query output. dotty then runs this com­
mand and collects the output (which is a graph). Big
graphs, such as the full function to function graphs,
can also be cached by storing them in files .

ciao consists of approximately 500 lines of lefty
code. No changes were made to any of the cia tools
and it took only a couple days to put a prototype
together. Figure 6 shows a snapshot of a ciao ses­
sion. It shows several windows, each containing a
different graph. Some show full graphs while others
were created by selecting an object on a full graph
and performing a cia query.

241

Figure 6: A snapshot of ciao in use

8.2 vdbx - A graphical debugger

Although graphical users interfaces are common­
place, debuggers lack useful graphical data struc­
ture displays. Several previous efforts have involved
displays of lists or simple graphs [12] but lack gener­
ality. A great deal of other work has concentrated on
algorithm animation [18, 23] . Generally this relies
on adding extra code to abstract data types, such
as arrays, stacks, lists, queues, and geometric data
structures, to create on-line graphical displays, or
at least emit traces for subsequent post-processing
and animation. This is quite general, and well de­
signed algorithm animations can be highly informa­
tive. These techniques, however, are not directly
applicable to general-purpose debugging using pic­
tures; they are usually intrusive and the pictures
often do not map well to the lower-level or concrete
views needed in practical situations.

vdbx nonintrusively adds graphical data structure
displays to dbx. Neither dbx nor the target program
are modified. vdbx uses dotty to draw data struc­
tures. dot already has good capabilities in this area,
so the main issues are handling communication be­
tween dotty and the debugger. A multiplexing pro­
cess is used to link dotty to the debugger. This
multiplexor contains a parser to translate dbx-style
output into graphs. It also allows the debugger to
be accessed from a virtual terminal window (shown
in Figure 7).

vdbx is compatible with any debugger that uses
the dbx syntax for C structs. The user can ac­
cess dbx through the virtual terminal window just
as if dbx was being run directly. The user can set
breakpoints, inspect values, and give other debug­
ging commands in the usual way.

Graphics Interface '94

242

(dbx) C
.top~ i n o.laun-." at 11M 13 11"1 fl l .. ~/d.1aun.w.c ··

(db!~ dl'ht .1au1t • (TW(LDEDGES ..) lII . ll ce (s l n o f' nWCLDEDGES» ;

(dbx) .tCl~ at 13'-
~~~II ~t~p at " / nOllla/ .k / wo rk/ aun"' t t.r l adl I d.launa.., . c" : 13" 

.topp~ 11"1 o.launaij at line 13" 1n ;11. M/ d.launau .c" 
13" r •• ult-) •• cond • rdo ; 

(dbx ) n 
atopl»d 1n o.laun~ iIIt Un. 135 11"1 f 11. M/ dl'10lu n4l ... , c M 

135 rl'turn r •• u lt; 
(dt)x) p -r •• u l t 
." dal.una., "o. l aurtaij ",. •• u l t • ( 

f ' rat • Ox152f'O 
•• cond • 0)(15"IB 

) 
( d blo() P - ,..aul t - )' l l"at 
.·d.l.unO~~~!·o:~;o"u lt- ) f l r.t • ( 

) 
(dbx) 

Mut • 01115""9 
Rot • Od!52.f'c 

Figure 7: A snapshot of vdbx in use 

At the same time, the user can issue graphical 
queries in the dotty window. There are two kinds of 
queries. One kind prompts the user for the name of 
a variable, and displays it as a new root node. Non­
null pointer fields are marked by a special symbol, 
unexpanded. The other kind of query follows an 
unexpanded pointer. When executing either case, 
dotty translates the graphical query to a text com­
mand that is sent to the multiplexor. The multi­
plexor communicates with dbx to augment the data 
structure graph. The new graph is returned to 
dotty, drawn by dot, and displayed . This communi­
cation takes place invisibly to the user . The graph­
ical interface is not only easier to use than dbx text 
queries, but it also makes it easier to understand 
how the various data structures are inter-connected. 

We have found vdbx to be practical for visualiz­
ing data structures while debugging. For example, 
one of our colleagues found it useful for debugging a 
program with geometric data structures, which tend 
to form complex pointer inter-connections. vdbx 
shows promise, but its user interface needs refine­
ment before it is practical for everyday use. One 
issue is that in practice, records often have many 
fields . Displaying them all wastes valuable screen 
area and can overwhelm the user with irrelevant in­
formation . Programmers are usually interested in 
only a few fields during a given debugging run, so 
only these should be drawn. Another issue involves 
displays of dynamic arrays and unions in C. Because 
programmers must define their own runtime conven­
tions to store array sizes or define which members of 

unions are in use, this information is not automati­
cally available to dbx for generating data structure 
graphs . One solution would be for programmers to 
advise vdbx of such conventions, using a debugging 
language extension kept in a start up file [10J. An­
other limitation is that our data structure graphs 
are static snapshots, and are not automatically up­
dated as a program runs and modifies its data. To 
have automatic updates , the debugger needs to track 
changes in the data structure. Typically this is done 
with watchpoints, but they are expensive on most 
computers. A related issue is that we need stable 
incremental layouts from dot. 

8.3 vpm - Visual Process Manager 

Operating systems such as UNIX make it easy for 
users to create multiple processes and have them co­
operate by exchanging messages via pipes or sock­
ets. If tools have good interfaces, then they can 
often be combined to create powerful new appli­
cations, achieving a high degree of software re-use 
at the process level. Success depends on two fac­
tors: a good selection of components, and powerful 
support tools, such as debuggers, program analysis 
tools, and facilities to trace processes. Generally in 
the second area, most existing debugging techniques 
break down when there are multiple distributed pro­
cesses. 

vpm was designed to monitor and debug commu­
nicating processes in a distributed system. It cre­
ates a graphical view of their interactions. Figure 8 
shows a sample snapshot . It is, in fact, a snapshot 
of vpm itself. Rectangles represent processes , while 
ellipses represent files. Double circles represent ei­
ther pipes or sockets. The bigger rectangle in this 
figure represents a host computer; the processes en­
closed in this rectangle are the processes running on 
that machine. vpm can monitor activity across ma­
chines. Figure 9 shows a snapshot of using nmake[4J 
and coshell[5J to run several compilations over a net­
work of machines. The processes of each machine 
are grouped together into dot clusters so that they 
appear next to each other in the layout. 

vpm uses nDFS[6J to monitor process activity 
at the system call level. nDFS stands for multi­
dimensional file system. Its features include the 
ability to attach servers at various points in the 
file system. Accessing a file under such an attach­
ment point results in making a service request to 
the attached server. Besides servers, one can also 
attach monitoring processes. vpm is implemented 
by instructing nDFS to monitor process activities. 

Graphics Interface '94 



Figure 8: Monitoring processes on a single machine 

Figure 9: Monitoring processes on a network of ma­
chines 

nDFS can selectively intercept several kinds of sys­
tem calls . Currently, vpm monitors the following 
classes of system calls. 

• process management system calls, e.g. fork , 
exec, and exit . In Figure 8, when process vpm 
forks and creates process 13053, this is shown 
by creating a new node (for 13053) and linking 
that node to all the files that the parent had 
open. In this case, 13053 is linked to ttyq7. 
When process 13053 execs a program called 
lefty, the name of 13053 changes to lefty (it 
was vpm up to that point). 

• I/O channel management system calls, e.g. 
open, close , dup , and pipe. Network connec­
tions are modeled using open and close calls. 

[13051 3750] fork()=13053 
[13053 3750] fork()=13051 

243 

[13053 3750] exec("/home/ek/bin/lefty")=O 
[13053 3750] close(1162+295 Ox2bafb)=0 

Figure 10: vpm trace sequence 

For example, the four nodes at the bottom of 
Figure 8 are UNIX pipes. They were created by 
process lefty. lefty first created two pipes, 
then it forked and execed process dot, which 
inherited these pipes. lefty then created the 
other two pipes and used them to connect to 
process cs (which is used in vpm to collect the 
nDFS monitor output). The arrows in process 
to file edges show whether the files are opened 
for read or write or both . 

• I/O operations, e.g. read and write . 

Which system calls are intercepted can be defined 
on a per-process level; each new process inherits its 
parent 's mask, but this mask can be changed during 
the lifetime of the process. 

Figure 10 shows an excerpt from the monitoring 
information generated by vpm. It corresponds to 
having process vpm in Figure 8 spawn a process that 
eventually runs program lefty. When the vpm pro­
cess performs a fork we get two fork messages; one 
from the parent and one from the child. The first 
number in brackets is the pid of the process perform­
ing the action. The second number identifies the 
computer where the process runs. The final close 
happens because process vpm had one of its file de­
scriptors marked as close-on-exec. 

vpm can work either in real time, or in single step. 
In real time, vpm reads the activity log as it is be­
ing generated and updates its graphical represen­
tation periodically. Some amount of control over 
processes is available to the user; the user can send 
signals to individual processes, start up and attach 
a source level debugger on them, and hide processes 
or files that the user considers unimportant. We 
are currently working on adding more functional­
ity to vpm. One important feature is to allow the 
user to put breakpoints, so that when a process exe­
cutes a specific system call it stops and waits for user 
acknowledgment before proceeding. In single step, 
vpm reads an already generated log and updates its 
graphical view after every step (or after a sequence 
of steps, depending on user interactions). The real 

Graphics Interface '94 



244 

time view is good for seeing things as they happen . 
The single step mode provides a more detailed view 
and is better suited for debugging. 

An important feature of vpm is that it requires no 
changes to the applications to allow them to be mon­
itored. On systems that provide shared libraries, 
the nDFS shared library is prepended in the list of 
libraries to load when starting a program. (On sys­
tems without shared libraries, applications have to 
be linked with the static version of the nDFS li­
brary). 

The real-time performance of the system is no­
ticeably limited by dotty's throughput. When new 
processes or files are inserted in the graph, dot has 
to re-layout the whole graph . The need for increased 
throughput suggests work on incremental layout al­
gorithms. We need such algorithms to improve lay­
out stability, but we are cautious in viewing this as a 
solution to throughput problems, because maintain­
ing stability in incremental layouts may well incur 
additional overhead. It does seem likely, though , 
that further tuning of the cluster layout code will 
yield significant improvements. 

9 Conclusions 
We have described how new software visualiza­
tion applications have been created from smaller, 
general-purpose tools: a programmable 2-D graph­
ics editor, graph layout tools, and text-based appli­
cations. An important practical aspect of these sys­
tems is that they are unintrusive. vpm and vdbx, for 
example, work with unmodified programs. The ease 
with which they were created suggests that small , 
well-focussed tools can be a better starting point 
than large C or C++ libraries. 

We are currently working on incremental graph 
layouts. Our 'main goal is to provide layout stability: 
if a small, localized change is made to a graph, the 
layout of the graph should also change only slightly. 
Our current techniques will sometimes result in ma­
jor changes to the layouts and this is disorienting 
to users. At the same time, we want the quality 
of incremental layouts to be as good as the batch 
layouts , making this problem very challenging. 

References 
[1] M. Carpano. Automatic display of hierarchized 

graphs for computer aided decision analysis. 
IEEE Transactions on Software Engineering, 
SE-12(4):538- 546 , Apr. 1980. 

[2] Y.-F. Chen. The C Program Database and 
Its Applications. In USENIX Baltimore 1989 
Summer Conference Proceedings, pages 157-
171 , 1989. 

[3] Y.-F. Chen and J . Grass. The C++ Informa­
tion Abstractor. In The Second USENIX C++ 
Conference, pages 265-278, 1990. 

[4] G. Fowler. The fourth generation make. In 
USENIX Portland 1985 Summer Conference 
Proceedings, pages 159-174, 1985. 

[5] G. Fowler. The shell as a service. In USENIX 
Cincinatti 1993 Summer Conference Proceed­
ings, pages 267-278, 1993. 

[6] G. Fowler, Y. Huang, D. Korn, and H. Rao. 
A user-level replicated file system. In USENIX 
Cincinatti 1993 Summer Conference Proceed­
ings, pages 279-290, 1993. 

[7] C. W. Fraser and D . R. Hanson. High-Ievellan­
guage facilities for low-level services. In 12th 
ACM Symp. on Prin. of Programming Lan­
guages, pages 217- 224, 1985. 

[8] E. Gansner , E . Koutsofios, S. North , and K. VO. 
A technique for drawing directed graphs. IEEE­
TSE, Mar. 1993. 

[9] E . R. Gansner , S. C. North, and K. P. 
Vo. DAG-A program that draws directed 
graphs. Software-Practice and Experience, 
18(11) :1047- 1062, Nov. 1988. 

[10] M. Golan and D. R. Hanson. Duel- a very high­
level debugging language. In Winter USENIX 
Conference Proceedings, pages 107- 117, 1993. 

[11] M. Himsolt. Graphed: An interactive graph 
editor . In Proc . STACS 89, volume 349 of Lec­
ture Notes in Computer Science , pages 532-
533, Berlin , 1989. Springer-Verlag. 

[12] S. Isoda, T . Shimomura, and Y. Ono. VIPS: A 
Visual Debugger. IEEE Software, pages 8- 19, 
May 1987. 

[13] T . Kamada and S. Kawai. An algorithm for 
drawing general undirected graphs . Informa­
tion Processing Letters, 31(1) :7- 15 , Apr. 1989. 

[14] D. E . Knuth. The Stanfo rd Graphbase: a plat­
form fo r combinatorial computing. Addison­
Wesley, 1993. 

Graphics Interface '94 



[15J E . Koutsofios and D. Dobkin. Lefty: A two­
view editor for technical pictures. In Graph­
ics Interface '91, Calgary, Alberta, pages 68-76, 
1991. 

[16J B. Krishnamurthy and N. Barghouti. Provence: 
A Process Visualization and Enactment En­
vironment. In Proceedings of the Fourth Eu­
ropean Conference on Software Engineering, 
pages 151- 160, Garmisch-Partenkirchen, Ger­
many, September 1993. Springer-Verlag. Pub­
lished as Lecture Notes in Computer Science no. 
717. 

[17J B. Krishnamurthy and D. S. Rosenblum. An 
event-action model of computer-supported co­
operative work: Design and implementation. 
In K. Gorling and C. Sattler, editors, Proceed­
ings of the International Workshop on Com­
puter Supported Cooperative Work, pages 132-
145. IFIP TC 6/WG C.5, 1991. 

[18J M. Lee. An algorithm animation programming 
environment. In Lecture Notes in Computer 
Science, volume 602 , Berlin, 1992. Springer­
Verlag. 

[19J S. C. North. Drawing ranked digraphs with 
recursive clusters. In Proc. ALCOM Interna­
tional Workshop PARIS 1993 on Graph Draw­
ing and Topological Graph Algorithms, 1993. 
ftp /pub/papers/compgeo/gd93-v2.tex.Z from 
wilma.cs. brown.edu. 

[20J S. C. North and K.-P. Vo. Dictionary and graph 
libraries. In USENIX Winter Conference, pages 
1-11 , 1993. 

[21J J. K. Ousterhout. An x11 toolkit based on the 
tcl language. In USENIX Winter Conference, 
Jan 1991. 

[22J F . N. Paulish and W. Tichy. Edge: An ex­
tendible graph editor. Software-Practice and 
Experience, 20(Sl):1/63- S1/88, 1990. 

[23J S. P. Reiss. Program visualization: Where we 
go from here. In IFIP Tran A, volume V12, 
pages 218- 227, 1992. 

[24J L. A. Rowe, M. Davis, E. Messinger, C. Meyer, 
C. Spirakis, and A. Tuan. A browser for di­
rected graphs . Software-Practice and Experi­
ence, 17(1) :61-76, Jan. 1987. 

245 

[25J K. Sugiyama, S. Tagawa, and M. Toda. Meth­
ods for visual understanding of hierarchical sys­
tem structures. IEEE Transactions on Sys­
tems, Man, and Cybernetics, SMC-11(2):109-
125, Feb. 1981. 

[26J Tom Sawyer Software, 1824B Fourth Street, 
Berkeley, CA 94710. Graph Layout Toolkit, 1.08 
edition. 

[27J J . Warfield. Crossing Theory and Hierarchy 
Mapping. IEEE Transactions on Systems, 
Man, and Cybernetics, SMC-7(7):505-523, July 
1977. 

Graphics Interface '94 



246 

Author Index 

Baecker, Ronald M ............. 133, 141 Lalonde, Paul............... ......... .... 149 
Bajaj, Chandrajit L .................... 174 MacKenzie, I Scott ..................... 75 
Baker, Ellie ................. ..... ........... 91 Mah, Sang .................................. 200 
Balakrishnan, Ravin...................... 1 McQueen, Craig .......................... 75 
Barrett, WilliamA ................. 16,33 Meltz, Malcom............. ..... ... ....... 75 
Bartram, Lyn .............................. 216 Meyers, David ........... ...... .... ....... 25 
Buxton, William..................... ..... 83 Moran, Thomas P ........................ 83 
Calvert, Thomas W .................... 200 Mortensen, Eric .......................... 16 
Carroll, John.............................. 112 Noik, E.G ................................... 225 
Chen, Jindon .............................. 174 Nonnecke, Blair .......................... 75 
Dill, John .................................... 216 North, Stephen C ....................... 235 
Drucker, Steven M ..................... 190 Ovans, Russell ........................... 216 
Dyck, Michael ........................... 216 Owen, Russell ......... ......... ......... 141 
Fiume, Eugene ........................... 208 Pfeifle, Ron ................................ 182 
Forsey, David............................. 149 Riddersma, Stan........ ....... ........... 75 
Fournier, Alain .......................... 157 Rosenthal, Alan J ...................... 133 
Garland, Michael ........................ 43 Rosson, Mary Beth ..... ..... ......... 112 
Goss, Michael E............... ........... 67 Seidel, Hans-Peter. .......... ........... 182 
Harrison, Beverly L . .............. ... 141 Seltzer, Margo ............................. 91 
Harrison, J ason ......................... 149 Shinya, Mikio . ............................ 59 
Havens, William S ............. 200, 216 Stam, Jos ..................................... 51 
Heckbert, Paul......... .... .... ........ ... 43 Strothotte, Thomas ...................... 101 
Ho, Albert .................................. 216 Taylor, David C..... ............... 16, 33 
Johnsgard, Todd ............................ 8 van de Panne, Michiel ............... 208 
Kim, Ryan ........................... ...... . 208 Walker, Robert ..... ........... .......... 149 
Kochhar, Sandeep ..................... 120 Ware, Colin ............... ...... .............. 1 
Koutsofios, Eleftherios .............. 235 Wyvill, Brian .............................. 165 
Kugas, Doreen .......................... 101 Xu, Guoliang ............................ 174 
Kurtenbach, Gordon ..... .... .......... 83 Zeltzer, David ............................ 190 
Kurtz, Martin ............................ 101 

~: /~~: 
.-:.:.~ Graphics Interface '94 


