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Abstract 
An image space algorithm for morphological 

interpolation between contours is presented . Image 
space interpolation avoids the need to represent or store 
contour data using intermediate data structures . The 
algorithm makes use of basic morphological transforms 
such as dilation and erosion and interimage operations 
such as XOR and union. Morphological interpolation is 
applied successfully to a variety of synthetic contours as 
well as naturally occurring contours such as those found 
in medical images or topographic maps [17]. The 
algorithm interpolates between nested, overlapping, 
nonoverlapping, or branching contours in a general way 
although nonoverlapping or minimally overlapping 
contours require initial registration . The algorithm is 
particularly appropriate for generation of digital 
elevation maps or whenever the original contour data is 
derived from a regular sampling grid. Image space 
morphological interpolation exploits pipeline architec­
tures allowing simultaneous generation of interpolated 
contour values while makin g essential use of 
neighboring contour morphology. In addition, there is a 
logarithmic gain in the number of interpolated points 
when processing a contour interval exhaustively. 

keywords: contour interpolation, morphological trans­
forms, parallel, height grid, DTM, DEM, cartography 

1. Introduction 
Many real world objects are effectively and 

succinctly represented by contours. For example, 
geologic terrain surfaces can be represented by nested, 
usually nonintersecting , isocontours found in 
topographic maps . Isocontours often are used to 
generate Digital Terrain Models (DTMs) or (discrete) 
Digital Elevation Models (DEMs) in automated 
cartography [1-4] . Contours also may be extracted from 
and used to represent closed three-dimensional objects 
such as medical anatomy. For example, contours of 
anatomical boundaries may be detected automatically 
from serial transaxial cross sections in CT or MRI 
scans [5]. In the case of closed three-dimensional 

objects, contours from two spatially adjacent slices 
frequently intersect or overlap when superimposed. 

Because it may not be economically or physically 
practical to densely sample the object of interes t, 
contours usually provide only a sparse representation of 
the object(s) from which they were extracted. As a 
result, interpolation schemes [6-10, 18] often are 
necessary to recover the original three-dimensional 
surface geometry. Thus, connection of, or equivalently, 
interpolation between contours is a general problem in 
computer graphics. The most significant advancements 
in approaching this problem have come through 
algorithms which address the correct mapping or 
correlation of contours points at one level with those at 
an adjoining level [6, 18]. 

Some of the greatest difficulties associated with a 
general solution to the problem of contour interpolation 
arise due to topological changes and/or overlap between 
adjacent contours, such as when contours differ in both 
position and number from one level to an adjacent level. 
Such is the case when there is a natural branching of the 
surface geometry. Even without branching, if there is a 
striking disparity in contour shape or position between 
two adjacent levels, interpolation algorithms may fail to 
provide a smooth transition of object geometry at 
intermediate levels. Thus, efficient and robust contour 
interpolation algorithms which make essential use of 
contour morphology at both the local and the global 
level are still needed. 

A new image space contour interpolation algorithm 
which exploits both local and global contour 
morphology has been developed. The algorithm makes 
use of morphological transforms (such as dilation and 
erosion) and other image-level logical operations (AND, 
OR, or XOR), all of which operate directly in image 
space. The main idea of the algorithm is to find the 
midline between two contours and use it to split the 
intercontour space into two halves, each of which can 
be processed in the same way. This process is repeated 
recursively until the intercontour space is exhausted (i.e. 
filled with midlines). If the initial two contours overlap, 
the first midline simply passes through the point of 

Graphics Interface '94 



intersection and the algorithm proceeds as usual . 
When compared to existing techniques, image space 

morphological contour interpolation offers advantages 
in robustness, accuracy, and computation. These include 

I . Robustness: Handles any number of contours of any 
shape including branching or overlapping geome­
tries. Nonoverlapping contours must be registered. 

2. Accuracy: Makes essential use of contour morph­
ology; local shape is extracted using dilation and 
erosion operations while global shape is represented 
by midlines. 

3. Computation: All operations are performed directly 
in image space which avoids intermediate contour 
representation and storage while exploiting pipeline 
architectures. For nested contours this results in 
massively parallel speedup since all contour inter­
vals as well as entire families of interpolated contour 
points within each interval are processed in parallel. 
In particular, for m contour intervals of width n the 
parallelism increases 0(2m-1) with each recursion 
while the number of operations decreases 0(log2n). 

This is because contour intervals are essentially Splil 
in two with each iteration. 

Morphological contour interpolation is very well 
suited to generation of height grid DEMs from discrete 
isocontours as is illustrated in this paper. However, the 
algorithm is also extensible and applicable to other 3D 
objects whose contours originate on the grid such as 
heart contours from CT scans [5] . 

A brief introduction to mathematical morphology is 
given in tSection 2. This is followed in Section 3 with a 
definition of and a distinction between the midline and 
the medial axis of a region . Section 4 presents the 
algorithm for morphological contour interpolation 
followed by results from both simulated and real world 
contours in Section 5. Section 6 contains a summary of 
algorithm features with suggestions for future work. 

2 . Mathematical Morphology 
One of the strengths of mathematical morphology 

lies in its ability to decompose complex shapes into 
their meaningful parts. In fact, some morphological 
transforms result directly in structures, such as the 
medial axis, which have powerful intrinsic shape­
describing content. The intent here is to present briefly 
some morphological operations which are integral to 
the problem of contour interpolation. For a more 
detailed treatment of mathematical morphology see 
references [11-12]. 
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2.1 Dilation and Erosion 
The most basic morphological transforms are dilation 
and erosion. Dilation and erosion transforms exist for 
both binary and grayscale images. We first define binary 
dilation, Ellb, and erosion, e b. Let X be a binary-I object 
such as shown in the image in Figure la. (Black dots 
indicate binary-l pixels; empty squares have value 0.) 
Let B be a structuring element of binary-l pixels such 
as shown in Figure lb. (A structuring element is 
similar to a convolution kernel in image processing.) 
Let Bx be the translation of B so that the origin of B is 
located at position x in the object image. The binary 
dilation of X by B (X Ellb B, Figure Ic) is obtained by 

passing B over the object image and ORing B to the 
(initially 0) output image whenever the origin of B is 
over a binary-I pixel x E X. Formally, 

(I) 

The binary erosion of an object X by B, (X e b B) 
is obtained by passing B over the object image and 
plotting the origin of B in the (initially 0) output image 
whenever B is completely contained in X. Formally, 

(2) 

If X were represented by the binary-I pixels in Figure 
le, binary erosion of X by B would result in the object 
in Figure la. Thus, binary erosion is the dual of binary 
dilation. 

1.[1 ~~ • • • • • • • • • • • • • • • 
• • • • • 

(a) (b) (c) 

Fig. 1. (a) Binary-I object pixels X =. (b) Structuring 

element, B =. (c) X Ell b B = • . ,denotes origin. 

Grayscale erosion and dilation can be considered an 
extension of the binary case. However, rather than 
being defined only in terms of binary set operations, 
gray scale erosion and dilation are defined in terms of 
minimum and maximum over grayscale image pixels I 
covered by a gray scale structuring element, Gx, with its 
origin translated to position x in I. Specifically, 
grayscale dilation of I by G (I Ellg G), is defined as 
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I <'Il g G = {x I x = max (I(z) + Gx(z)} (3) 
zeG.r\l 

where I(z) are the pixel values in image I corresponding 
to values of Gx(z) with its origin at x. Algorithmically, 
for each translation of G in image I, the pixel value x 
corresponding to the origin of G x is calculated as 

follows for grayscale dilation: 

Grayscale Dilation 
Input: Grayscale image I, grayscale structuring 

element, G 
Output: Dilated grayscale image I' 

for each pixel x in I {only process pixels 
covered by G} for each pixel z in Gx n I 

fez) f- I(z) + Gx(z) {add I value to corres­

ponding G value} 
f(x) f- max [I' (z) in Gx n I] {output max in I'} 

In contrast, gray scale erosion of I by G (I e g G), uses 

minimization over the intersect region . Specifically, 
(I e g G) is dermed as 

l eg G = {x I x = min (I(z) - Gx(z)} (4) 
zeG.r\l 

and can be computed with the appropriate changes in the 
dilation algorithm above. In the trivial case, the values 
of the structuring element G are all zero and add no bias 
to either the minimization or the maximization. 
Grayscale dilation of a simple image (Figure 2a) by a 4-
connected grayscale structuring element composed only 
of zero values (Figure 2b) results in the image in Figure 
2c, (ignoring values outside of the indicated region). 
Conversely, grayscale erosion of the image in Figure 2c 
would result in the original image in Figure 2a. This 
simple illustration is provided because the structuring 
element in Figure 2b is the one used for morphological 
contour interpolation described in the algorithm below. 

~ 5 5 5 4 4 III 5 5 5 5 4 

5 5 5 4 4 4 II 5 5 5 4 4 

5 5 5 4 4 4 5 5 5 5 4 4 

5 5 4 4 4 4 5 5 5 4 4 4 

5 5 4 4 4 4 5 5 5 4 4 4 

5 4 4 4 4 4 5 5 4 4 4 4 

(a) (b) (c) 

Fig. 2. (a) Grayscale image I (b) Structuring element, 

G (c) X <'Il g G . .. denotes origin. 

Figure 3. Medial axis, C, of region bounded by outside 
contour A and inside contour B. The medial axis 
includes the spine(s) (dashed) while the midline, C', 
does not. 

2.2 Medial-Axis versus Medial Line 
The medial axis [15] of a two-dimensional space­

filling region, R, is defined as the locus of points, 
x E R which have two or more points on the boundary 
of R which are equidistant from x (Figure 3). If the 
distance, d from x to the boundary is saved with each 
medial axis point, the region can be regenerated from 
the union of all disks of radius d centered at their 
respective medial axis points, x. Thus, the medial axis 
provides intrinsic and powerful global shape description 
capability. Note that the medial axis as used for shape 
regeneration is not necessarily connected. In this 
application the medial axis itself, rather than shape 
recovery, is our goal and it will be convenient for us to 
depict the medial axis as a connected line. 

Figure 3 shows the medial axis, C, of the region 
defined by the intercontour space between two contours 
A and B . Note that the medial axis contains an 
extension referred to here as a spine. We define the 
medial line or midline, C', to be the medial axis 
without the spine. For interpolation purposes, the 
medial line is preferable to the medial-axis since use of 
the medial axis (with spine(s)) results in an undesirable 
webbing artifact when used in the interpolation 
algorithm described below. 

3. Morphological Contour Interpolation 
The objective of the morphological contour 

interpolation algorithm which follows is to identify the 
height or elevation of points between contours initially 
labeled by height, z, thereby producing a continuous 
interpolated grid of contour values which defines 
explicitly the discrete surface represented by the original 
contour lines. The basic idea of the algorithm is to 

Graphics Interface '94 



expand (dilate) contours into the intercontour space until 
they collide. The collision front defines the medial line 
of the intercontour space. The medial line is labeled 
with the average of the original two contour labels and 
the process is repeated until all intercontour space pixels 
are labeled. This process is illustrated in Figure 4. The 
algorithm is given below. 

Morphological Interpolation Algorithm. 

Input : Labeled contours Cj (intensity = elevation) 

o u tp ut: Interpolated height grid A 
Structures: 

G 4-connected gray-scale dilation/erosion 
structuring element (Fig. 2b) 

A Accumulator Image (init with Cj , else zero) 
T, U, V, W, X - Work Images 
M maximum labellheight 

while min(A) = 0 do 
Wf-A 
T, W[O] f- M 
repeat 

{T, W = A with inter­
contour spaces set to M} 

W f- W[M] Gg G {Grayscale erode W until 
until max(W) < M all M pixels are gone} 

U f- (W I3lg G) n T 

V f- WXORU 
for all V > 0 

X f- M 
W f- [(U+W) n X]/2 
A f- AuW 

{Dilate & mask to overlap} 

{Overlap V=medialline(s)} 

{X f- medial line mask} 
{Get medial line height} 
{A f- new medial pixels} 

Input to the algorithm consists of the original 
contours Cj all labeled by height. The algorithm 

terminates when all regions in the accumulator array A 
are filled with a connected set of interpolated values. 
The algorithm begins by copying contour lines 
(initialized in A) into a work buffer W and mapping 
intercontour pixels to high values for subsequent 
erosion. It then erodes the contour lines into the 
intercontour space until the eroded lines meet. This is 
almost equivalent to dilating the contours into the 
intercontour space with the exception that when a 
choice between a larger or smaller value must be made, 
the smaller value is chosen. This is done because the 
next step favors the higher pixel values and therefore 
chooses a medial line closer to the center than does 
using dilation in both instances. After the intercontour 
space is filled, W is dilated once and placed in a 
temporary buffer U. The overlap (i.e.difference) between 
the two buffers contains the medial lines which 
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(a)O~gi?allabeled contours (b) Grayscale erosion of S 
WIth mtercontour space, (first pass). Note: only 
S, S is processed. 

(e) Dilation of intercontour (f) Label for medial line = 
space XORed with (d) average of original 
gives overlap = medial line. contours. 

Figure 4. (a) Original 
contours labeled by height. 
Intercontour space S is 
labeled white. (b) Gray­
scale erosion of S erodes S 
and dilates original con­
tours in the direction of S 
since only S is processed. 
(c) Original contours begin 

(g) Intercontour spaces are to meet with second ero­
relabeled for next iteration. sion of S. (d) Erosion of S 

is complete. (e) Position of medial line is at collision 
front in figure (d). (f) Medial line is output to 
accumulator array = interpolated grid. Label = average of 
original contour labels. (g) Relabeling of new inter­
contour spaces allows process to be repeated until entire 
intercontour space is fllled with interpolated values. 
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are extracted using an XOR operation and stored in work 
image V. The elevations are then computed and the 
medial lines are added to the accumulator. 

It is worth pointing out that all interpolated values 
are calculated simultaneously for several families of 
pixels (Le . contours) since the morphological 
operations are pipelined through all pixels in the image, 
targeting specifically the intercontour space pixels. 

The process is illustrated in Figure 5 for two simple 
nested contours. Figure 5 also shows three medial lines 
resulting from the first two iterations. The interpolated 
height grid is shown in Figure 6. Figure 7 shows the 
height grid rendered using an algorithm for polygonaliz­
ation of the discrete surface [17] (GI '94). The polygon 
rendering shows some roughness at the base and the top 
due to the discrete nature of the height grid and the 
corresponding polygonal approximation. This could be 

Interpolated 
ass 1 Inte 

Fig. 5. Interpolation of 3 medial lines (2 passes) from 
two simple nested contours. 

Fig. 6. Complete densely interpolated height grid. 

Fig. 7. Polygonal rendering of height grid in Fig. 6. 

overcome by finer (perhaps) subpixel polygonalization 
of the discrete surface. However, that is not the object­
ive of this paper; the polygon rendering is included here 
and in subsequent examples to demonstrate the surface 
geometry associated with the original contours. 

Figures 8 and 9 illustrate application of the 
algorithm to multiple nested contours with the 
corresponding surface rendering. Note the "ghosts" 
associated with the original contours and their respective 
levels. This illustrates the independent processing of 
each contour interval since each yield a different slope 
based on the (x,y) distance as well as the difference in 
height (z) between contours. If the medial line is 
identical to the medial axis, the slope is linear. If not, 
(i.e. spines exist) the slope or surface between two 
contours has negative curvature in the region of the 
spine, as illustrated in the top third of Figure 10. 
(Perhaps this is appropriate for terrain.) 

One of the strong features of the algorithm is that 
branching contours are handled automatically without 
any modification to the algorithm. This is illustrated for 
a simple set of nested contours in Figures 10 and 11. 
The height of the saddle between the two contours is a 
function of the distance between contours and the 
distance to the surrounding contour. As with slopes in 
general this need not be linear. In fact, the depth of the 
saddle or the pitch of the slope could be attenuated 
simply through a lookup table. 

Fig. 8. Multiple nested contours. 

Fig. 9. Polygonal rendering for Fig. 8. 

Graphics Interface '94 



The algorithm also handles overlapping contours in 
a general way. Figure 12 shows two overlapping 
contours (black) with the interpolated medial line 
resulting from the first iteration (gray) . In this case the 
initial contours are simply taken "as is." That is, no 
effort was made to register or align the contours. Figure 
13 shows two overlapping contours which were 
registered by their center of gravity prior to 
interpolation. Registration is appropriate for minimally 
overlapping contours and essential if the contours do 
not overlap at all. The resulting interpolated contour 
(gray) is superimposed by offsetting it half way between 
the corresponding centers of gravity. The algorithm also 
produces reasonable results for contours which overlap 
and branch as evidenced in Figure 14. The indentations 
in the interpolated (gray) contour correspond to and 
agree with the branching contours (B) and become more 
pronounced as subsequent interpolated contours between 
the gray line and B gravitate towards B. 

4. Results and Discussion 
Figures 15 -17 demonstrate application of the 

algorithm to a set of contours extracted from a topo­
graphic map. The height grid (DEM) in Figure 16 was 
created by interpolating between the isocontour lines in 
Figure 15 . The corresponding surface rendering in 
Figure 17 demonstrates that the algorithm performs 
well on real world data as well. Figure 18 is a height 
grid of Mount Rundle (near Banff, of course) computed 
from a topographic map of the region. Polygonalization 
and rendering for Figure 18 can be seen in [17] . 

Fig. 10. Nested branching contours. 

Fig. 11. Polygonal rendering for branching contours. 
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Fig . 12. Overlapping contours (black) . Interpolated 
medial line (gray). 

Fig. 13. Overlapping contours registered to produce 
interpolated medial line (gray) . 

Fig. 14. Overlapping and branching contours A and B. 
A is at one level and B (two separate contours) at 
another level. The gray contour is the interpolated 
result. 
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Fig. 15. Isocontour lines from a topographic map of the 
mouth of Provo Canyon, Utah. 

As an additional illustration of robustness the 
algorithm was applied to digital elevation contours of 
Taiwan (Fig. 19). The resulting DEM (Fig. 20) 
preserves terrain features with striking detail. 

The 500x400 DEM in Fig. 16 was created in about 
2 minutes using a MA TROX Image Series board hosted 
by a 386 processor. The 1024x1024 DEMs in Figures 
18 and 20 were generated in about 5 minutes. 

The algorithm has also been successfully applied to 
medical imaging. Figure 21 shows contours interpolated 
from cross-sectional outlines of the left ventricular 
chamber of the heart derived from Cine' CT scans. 
Unlike the nested isocontours used to generate terrain 
models, the left ventricular contours demonstrate both 
overlapping and branching situations. However, these 
present no special problems because of the general 
nature of the morphological interpolation as illustrated 
above. The resulting 3D surface of the left ventricle in 
Figure 22 helps to substantiate this claim. 

Specific contributions of this research to applica­
tions which require generation and use of an arbitrarily 
large three-dimensional (3D) data base include: 

1. Automated vs. manually-assisted creation of the 3D 
database 

2. Interpolation of the height grid directly from the 
contour image in image space without the need to 
explicitly extract contour data. 

3. No additional data structures necessary for 
intermediate representation or storage of contour data 

4 . It makes essential use of contour morphology. 

Several computational advantages also emerge as an 
inherent part of the algorithm: 

Fig. 16. DEM created by interpolating between 
isocontour lines in Figure 15. 

Fig. 17. Polygonalized rendering of DEM in Fig. 16. 

Fig. 18. DEM of Mt. Rundle (Banff, Alberta) generated 
by interpolating between isocontour lines. 

Graphics Interface '94 



Fig. 19 Digital isocontours of Taiwan. 
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Fig. 20. DEM of Taiwan obtained by interpolating 
contours in Fig. 19. Coastline inserted for reference. 

Fig. 21. Interpolated left ventricular contours. Fig. 22. 3D surface rendering of interpolated contours. 
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1. Contour intervals are independent of each other and 
can therefore be processed in parallel. 

2. Recursive decomposition of each contour interval 
into subintervals means each contour interval can be 
interpolated with -log2n operations (where n = width 
of the contour interval). This also means that the 
number of parallel operations increases from 1 to 2n 

for each successive subinterval, at which point the 
contour interval is fully interpolated. 

3. The algonthm is inherently parallel since for an 
N*N image an average of 2N points are interpolated 
simultaneously (ie. as a family of contour/isoline 
points). 

5. Conclusion 
Computational advantages of morphological 

interpolation have been presented and discussed. Other 
(application) advantages might include the use of 
contours as a highly compact/encoded representation of 
terrain (for an on-board data base for flight simulation). 
Future work will include experimentation with 
new/different structuring elements to distribute and 
balance 4-connected pixel propagation. Application to 
overlapping and unnested nonoverlapping contours will 
also be investigated. Efforts to find a transform which 
will generate a true (spineless} "mid"-axis transform 
(rather than medial axis) may be useful. One approach 
to producing smoother junctures (i.e. minimize contour 
"ghosts") would be to propagate, in a weighted sense, 
the gradient of the interpolated values from one contour 
interval into the next. 
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