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Abstract 

This paper describes an e ffi c ient method for construc ting a tiling 
between a pa ir of planar contours. The problem is of interest 
in a number of domains, inc luding medical imaging, bio logical 
research and geological reconstructions. Our method, based on 
ideas from multiresolution analys is and wavelets, requires O( n) 
space and appears to require O( n logn) time fo r average inputs, 
compared to the 0("/1 2

) space and 0("/1 2 logn) time required by 
the optimiz ing a lgorithm of Fuchs, Kedem and Uselton [4]. The 
results computed by our a lgorithm are in many cases nearly the 
same as those of the optimizing a lgorithm , but at a small frac
tion of the computational cost. The performance improvement 
makes the algori thm usable for large contours in an interactive 
system. The use of multiresolution analys is provides an e ffi c ient 
mechanism for data compression by discarding wave let coeffi 
cients smaller than a threshold value during reconstruction. The 
amount of detail los t can be controlled by appropriate choice 
of the threshold va lue. The use of lower resolution approxima
tions to the orig inal contours yie lds significant savings in the 
time required to display a reconstructed object, and in the space 
requi red to store it. 

Key Words: Surface reconstruction, tiling, meshes, multireso
lution analys is, wave lets. 

1 Introduction 

Reconstruction of surfaces from a set of planar contours such as 
those shown in Figure I is an important problem in medical and 
bio logical research, geology, and other areas . The problem can 
be broken into several subproblems [8 ], one of which, the tiling 
problem, is the subject of this paper. 

A solution to the tiling problem constructs a polyhedron from 
two planar polygons, using the polygons as two of the faces of 
the polyhedron, and triangles constructed from an edge of one 
polygon and a ve rtex of the other as the remaining faces. In Fig
ure 2, the upper le ft shows a pa ir of contours and and the lower 
right shows a solution to the tiling problem for those contours. 
To be a valid solution to the tiling problem , the polyhedron con
structed must be simple. O 'Rourke and Subramanian [9] have 
shown that such a solution is not always possible. They demon
strated that if the shapes of the contours differ suffic iently, no 
simple polyhedron can be constructed subject to the above re
strictions. In practice, adjacent contours are usua lly fairly sim-

1 This work was supported in part by the National Science Founda
tion under grant DMS-9 1 03002 

Figure I : A pair of contours obtained from the cerebral cortex 
of the human brain . The contours conta in 128 (c losed dots) and 
11 4 (open dots) vertices. 

ilar in shape but there are exceptions. Consider the pair of con
tours shown in Figure I , represent ing adjacent slices through 
the cerebral cortex of the human brain . Notice that the shapes 
of the contours d iffe r dramatically. In such cases, the shape di f
fe rences may be great enough that no simple polyhedral tiling 
can be constructed within the standard definiti on of the tiling 
problem. 

Numerous methods have been dev ised to solve the tiling prob
lem. A method that computes a tiling optimal with respect to a 
certain class of goal functions was devised by Keppel [6], and 
later improved by Fuchs, Kedem and Uselton [4]. The goal 
function ass igns a cost to each triangle of the tiling, and min
imizes the total cost over the triangles in the tiling. In part be
cause of the computational cost of the ir algorithm , numerous 
other methods have been devised that do not perform a g lobal 
optimization. A discussion of some of the methods can be found 
in [8]. 

This paper describes a new method for solving the tiling problem 
that represents a significant improvement in both space and time 
when compared to the algorithm of Fuchs, Kedem and Usel
ton [4]. Their algorithm requires O(n2 10gn) time and O(n2

) 

space to construct a tiling for a pair of contours each of size n. 
In many cases, this performance is acceptable. However, when 
the number of vertices in a contour is large, the performance 
of the optimizing algorithm becomes unacceptable, particularly 
in an interactive environment. Contours conta ining 1000 ver
tices or more are encountered in ac tual data sets. With current 
hard ware and suffic ient memory, the optimizing a lgorithm takes 
approximate ly 2 minutes to construct a tiling from a pair of con-
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Figure 2: The main steps of the multiresolution tiling algorithm. 
Upper Left: Input contou rs. Upper Right: Tiled base-case. 
Lower Left: Intennedi ate stage of s ing le-wave let recons truc
tion. Lower Right: Fina l tiling. 

tours each with 1000 venices. With insufficient memory. the 
time req uired in creases to more than 30 minutes. a problem we 
encountered when attempti ng to tile a pair of 1000 ve I1ex con
tours on a "nonna lly con fig ured" DECstation 5000/125 wi th 20 
megabytes memory. The mu ltireso lution tiling algorithm pre
se nted here takes about I second to compute a tiling for the same 
input. on the same machine . 

As Figure 3 shows. eve n the optimizin g algorithm can construct 
unacceptable tilings. For that reason . user interac tion is a nec
essary pan of a system for recons tructing surfaces from a set of 
contours. In an interac ti ve system. delays of the magn itude en
cou ntered with the optimizing algorithm are unacceptable. and 
have led to the use of fas ter. non-optimizing methods. The algo
rithm we desc ribe uses methods from multireso lution ana lysis to 
reduce the size of the co ntours. then uses the optimizing tiling 
algorithm of Fuchs, Kedem and Use lton [4] to construct an op
timal tiling for the reduced problem size. and fin ally uses mul
tiresolution reconstruction and loca l optimizati on to construct a 
fi nal ti ling. Our algorithm uses O( 11 ) space and what appears to 
be O( 11 logll) time. Although we do not prove this time bound . 
we show ex perimental results that SUppOI1 it. 

2 Multiresolution Analysis 

This section provides a brief introduction to multireso lution 
analys is and wavelets. The reader is refen'ed to [2J and [7] 
for a more detailed treatment. In the followin g. the notation 
]" " is used to denote a di screte signal consisti ng of 2" samples 
( .rg . .. . . 1' ~'1! -I) ' 

Consider a di sc rete signal c" , and let 

(/ = { . . .. U -I .U O . UJ ... . } 

denote a disc rete low-pass fi Iter. A low-resolution version of c" 
can be obtained by convo lving e" with u (treating e" as a peri
odic fun ction), followed by se lecting every other sample (o ften 

Figure 3: Tilings comp uted by Upper: Our single-wave let al
gorithm and Lower: The method of Fuchs. Kedem and Use lton. 
for the contours in Figure I. Neither result would be considered 
acceptable by a trained anatomist. 

called dOH'lIsalllplillg ). More fonnally e,,-J is obtained from c" 

by 
n-I '" 11 C t = ~ (l i-21 f t . 

I 

Clearl y. some detai l is lost in this fi ltering process, s ince C,,-I 

contains half as many samples as e" . I f u is appropriately cho
sen. this lost deta il can be captured as a detail s ignal r/ ,, - J : 

/ "- 1 '\"'1 " ( , = ~ 11-2,CI 

I 

where the filters u and b = { .. .. L J . bo. bJ . ... } are ca lled 
allalnisji/rers. The orig in al signal can be recovered from C,,-I 

and r/ "-1 by convolution wi th a pair of smrhesisji/rers p and (I 
according to: 

11 '\"' [ ,,-I /"-J] 
C, = ~ P ,-2ICI + (/ ,-21 ( I . 

I 

The process of computin g e,,-I and r/ ,, - I from e" is known 
as decolllposirioll and it s in verse. recove ring e" from C,,- I and 
r/ "-J . is known as recollsrrucrioll . The decomposition process 
can be applied recursive ly to C"- I to foml C,,-2 and (/,, -2 and 
so on. fOllning aji /rer-hallk. illustrated in Figure 4. The result of 
applying such a filter-bank to a signal e" is the set of seq uences 
eO .do ..... d"- J • 
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Since the o rig inal s igna l can be recovered by the set of sequences 
ca, dO , . . .. (r- 1 

, they can be thought of as a transfonn of the 

o rig ina l s ignal, sometimes referred to as a wavelet transform. 
Note that the number of e lements in the wave le t transform is 

the same as in the o rig ina l sequence e". Use of the filte r-bank 

outlined above makes it poss ible to compute the wavele t trans
fo rmation in linear time if the an alys is and synthesis fi lters a re 

of fi nite width (or support). 

The multireso lution analys is framework deve loped by Mallat 

[7] prov ides a partic ularly convenient framework fo r under

standing the re lationship be tween the ana lys is and synthesis fil
ters me ntioned above. Rather than s ta rting with the fi lte rs, Ma l

la t 's idea was to assoc iate a func tion Jl (r) w ith each sequence 

cJ according to 

where 0(.1') is a function that Malla t called a scaling f unction. 
Scaling func tions are required to be refin ahle; that is, the re must 

ex ist unique coe ffi c ients . . . . jJ -l. Po, p] , ... such that 

As sugges ted by the notation , the re fineme nt coeffic ients turn 

out to fo rm the synthes is fi Ite r p. Mo re fo rmally, g iven a scaling 
func tion o ( r), Mallat defines an infinite set of linear spaces \,' ) 

by 

\ ') = Span(o('2) - k ) I k E { .... -I. 0.1 .... }) 

The fac t that O(.r) is refi nable implies tha t these spaces are 
nested : \ '0 C \ .] C \ ' 2 .. '. 

By de finition, the translates o f the scaling function 6 ( '2) (J' )) 
fo rm a bas is fo r F ) . Let 11 ') denote the o rthogona l complement 
of \ ') in \ ';+] . A wavelet is a functi on ~'(.r) with the property 

th at translates of 4'( '2 ) .r) form a bas is fo r H·') . 

The ana lys is filte rs are formed by the coe ffi c ient seq uences that 

make the fo llo wing relation hold : 

o ('2 .r -I) = L [a l - 2ko (.r - k ) + bl-2k l'(.1' - kJ]. 
k 

Fina lly, the synthesis filte r q is defined to be the sequence sati s

fyi ng 

l'(.r) = L qko( '2r - k). 

k 

For multi reso lution analys is of conto urs, we use the linear B

spline (or hat fu nction ) as the scaling func tion 1))( r) . For 
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the wavele t func tion 4' ( 1' ) we use the single knot wavelet o f 
DeRose, Lounsbery and Warre n [3J . To obta in 11>(X ), first de
fine ~(:r) to be the projec tion of q, ( 2:r - 1) E VI into V O. Then 

defin e 4' (x) as 

I/' (r) = </> ('2x - 1 ) - q, (x ). 

This definition of ti'(:r) has an unfo rtunate consequence: 4' ( r) 
has infinite support . For our purposes, it is suffi c ient to s lightly 

modify the definition of 4'( J: ) so tha t the support is finite. We 
do that by solving for the projection of q,('21: - J) into VD fo r 
a limited number of non-zero terms. This modification has the 

consequence that 4,(:r) is no longer o rthogona l to V O
• One im

plication of this loss of orthogona lity is that the sequence (,,,-I 

is no longer the best least squares approx imation to e" (see [3 J 

fo r more deta il ). By appropriate ly choos ing the number of non
zero tenns in the projectio n o f q, ( 2:r - 1 ) into V O

, orthogonal

ity can be approached as c lose ly as des ired . Another approach 

to the problem of infinite support is to truncate an in fi nite se
que nce. That approach maintains o rthogonality but sacrifi ces 
the ability to exactly reconstruc t because of e rro rs int roduced 

by truncation. We choose to sac rifice o rthogona lity in favor of 

exact reconstruc tion. 

To apply wavelet analys is to conto urs, we treat a conto ur as a 

periodic sequence of kno ts w ith equa lly-spaced values of a pa
rameter t. Each knot has assoc iated va lues of T and y. We ap

ply the wave let transform to :r and ,If indepe ndently, eac h with 
respect to the parameter I. 

y 

1.00 

O.KO 

0.60 

0.40 

0.20 

fJ.f)O 

-fJ.::!O 

-2.00 

Wavelet and Sca ling Function 

-1-')1') f1 .f.lO 1.04'1 2.00 :\.00 

~ 
p·ti·i·i~·i· 

x 

Figure 5: The s ingle knot wave let 'I{' ( x ) and linear B-spline scal

ing function <I> ( ) . ) . 

The functions q, ( J.:) and 'Ii' ( J') are plotted in Figure 5 . Table I 
sho ws the non-zero te rms of analys is fi lte rs a. and b and synthesis 

filters p and q. 

Our choice of </> and tf, was motiv ated by the fac t that a po lygon 

o f 11 vertices can be considered to be a piece wise linear func tion 
defin ed on a set of n knots. Thus, the prope rties of the q, and 4' 
we chose are we ll suited to the nature of the data wi th which we 

a re working. 

3 Multiresolution Tiling 

Multiresolution ana lys is moti va tes a new approach to solv ing 
the tiling problem. The fi rst step is to reduce the s ize of the 

problem by us ing multiresolution analys is to fi nd low-reso lution 

"~"~"'- ' . ";:,,. 
/~~. 
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! Cl, b, p, (j , 

-4 1/24 0 0 0 
-3 - 1/ 12 0 0 1/24 
-2 - 1/8 0 0 1/1 2 
- I 1/3 0 1/2 -1 /8 
0 2/3 -1 /2 I -1/3 
I 1/3 I 1/2 2/3 
2 - 1/8 - 1/2 0 - 1/3 
3 -1/1 2 0 0 -1 /8 

I 
4 1/24 0 0 1/ 12 
5 0 0 0 1/24 

Ta ble I : The non-zero terms 0 f the a nalys is filte rs (/. and 

b and the synthesis filt e rs]l and lJ 

approximations to the orig inal contours (Fig ure 2). These low 
resolution contours are tiled usin g the optimiz ing method of 

Fuchs, Kedem and Use lton [4] . Deta il is then added to the low
resolution tiling by adding wave lets, inserting edges at new ly 
added ve rtices, and improv ing the tiling by loca l edge swap
ping. The resulting tiling is no longer g uaranteed to be globally 
optima l with respect to the goa l functio n used for computing 
the low-reso lution til ing, but it can be computed muc h fas ter. 
pa rtic ularly fo r contours with many ve rtices. Since the tiling be
g ins w ith an optimized base case and ma inta in s local optimality, 

the fin al tilin g constructed is often very nearly identical to that 
computed by the optim iz ing a lgorithm . S ignificant differences 
be tween the method s occ ur most o fte n in areas where the pair 
of conto urs have very d iffere nt shape . fo r example. whe n one 
conto ur has an indenta tion in an area tha t the othe r does no t. In 
such s ituations, it is oft en the case that ne ither me thod produces 
a result acceptable to a tra ined human use r (see Figure 3). 

To ac hieve an overa ll speed up. the reconstruction and local op
timization process must be fas t. If addit ion o f a s ing le wavele t 

coe ffi c ie nt to the reconstruction requires as much as O( 11 ) time. 
the ove rall process will require 0( 11 2

) time. Since addition of 
a wave let coe fficien t to a contour can be done in constant time 
using the filter-bank a lgorithm , it is only necessary to demon
stra te that the additio na l time req uired for the addition o f edges 
and loca l optimization of the ti ling is s uffi c iently small . It is 

pOSSIble to ImagIne a SlluatlOn In which inse rtion of an edge or 
movement of a vertex could a lter a loca l configuration so that 
a pre vio usly undesirable edge swap becomes des irable . That 
edge swap could conceivably a llow a "cascade" of prev iously 
un swappable edges to become swappable . If such situations are 
common, it cou ld take O( 11 ) time to optimize locall y after ad
dition of an edge , or movement of a vertex. Al though we otfer 
no proof of an uppe r bound for this p rocess. in Sec tion 4 we 
prese nt ex pe rime nta l data to suppo rt the asse l1 ion that for the 
average case it is very nearly a constant time ope ration to opti 
mi ze a ti ling locally after add ing a vertex and edge or mov ing a 
vertex (Figure 8, Fig ure (0). 

3.1 Contour Decomposition 

Decomposition of a contour into a set o f wave le t coe ffi c ients and 
a lower resolution contour is done using the fi lte r-bank method 
desc ribed in Section 2. If the number of vertices in a contour is 
not a power of 2, we add vertices us ing the fo llow ing method: 

I. Place the o rigina l conto uredges into a prio rity que ue based 
on their length . 

2. Remove and bisect the longest ed ge in the que ue by adding 
a new vertex at its midpo int. 

3. Insert the two new edges into the q ueue. 

4 . Re peat unti l the required numbe r o f vertices have been 
added . 

S ince the number of ve rtices in a contour is at most doubled by 
this process, no more than a constant factor of 2 is added to the 
overa ll complex ity of computing a tiling for the resulting con
to ur. With appropriate c hoice o f priority que ue implementation, 
this addition of vertices requires at most O( '/I logl/) time for a 
contour of 11 ve rtices . 

3.2 Reconstruction 

T he reconstruction of a conto ur from its low-resolution vers ion 
can be done us ing several d iffere nt methods. T he fi lte r-bank 
a lgorithm desc ribed in Section 2 is one . It is easy to implement , 
and reconstruction of a contour fro m its low-reso lution version 
requires O( 11) time. Another method is to reconstruc t by adding 

wave let coeffi c ients o ne at a time. Th is method is no t as easy to 
imple me nt as the fi lte r-bank a lgorithm , and the reconstruc tion 
of the orig ina l contour from its low-resolution vers ion requires 
O( /I log /l ) time . but it has some ad vantages over the fi Ite r-bank 
approac h. discussed be low. Loca l o ptimization of the tiling is 
done after each ste p o f the reconstruc tion . 

3.2.1 Filter-Bank Method 

Figure 6 : A tiling example. illustrating ve rtex and edge addition 

during reconstruc tion. Newly added vertices are open circ les. 
new ly added edges connect to a vertex of the oppos ite contour. 

Computing a tiling us ing the fi lte r-bank method involves the fo l
lowing s teps: First. use the filte r-bank to decompose each con
tour into a low-resolution version. Next. compute a tiling fo r 
thi s pair of low-reso lution contours us ing the optimi zing tiling 
algorithm. Fin a lly. reconstruct the o rig ina l conto urs by repeat
ing the fo llow ing s teps fo r eac h leve l of the filte r-bank: 

I . Construct a new po lygon fo r eac h contour using one leve l 
of the fi lte r-bank. Thi s bi sects eac h edge of both contours. 
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thereby introducing a new vertex into each triangle of the 
tiling from the lowe r resolution level, so that the former 
triang les are now quadrilaterals, with three vertices on one 
of the contours and the fourth on the opposite contour. 

2. For each new vertex added to a contour, construct an edge 
from that vertex to the quadrilateral vertex on the other 
conto ur, splitting the quadrilateral into 2 triangles (see Fig
ure 6). 

3. Place a ll the old cross edges into a list of "suspect" edges. 

4. Locally optimize the tiling as described in Section 3.3. 

5. Repeat until the orig ina l resolution is reached (Req uires 
'/I - m iterations for a contour of 2" vertices and a low
resolution contour of 2'" vertices). 

The filter-bank method is easy to impleme nt and reconstructing 
contours from the ir low-resol ution versions req uires only linear 
time. The cost of locally optimizing the tiling at each level of 
the filter bank reconstruction determines the overa ll cost of the 
a lgorithm. We have collec ted experimenta l resu lts by using this 
algori thm to construct tilings for contours obtai ned from the hu
man brain. These data suggest that optimizatio n after addition 
of one vertex and edge to the tiling (Figure 10) requires approx
imate ly constant time ; the ove ra ll cost of the filter-bank tiling 
method the refore appears to be O( n log '/l ) (Figure 8). 

3.2.2 Single-Wavelet Method 

The filter-bank reconstructio n process doubles the resolution of 
each contour at each step, and requires that wave let coeffic ients 
be added in the inverse of the order they were found during anal
ysis . By addi ng wave let coeffic ients one at a time, it is possi
ble to use them in any desired order, and to avo id using them 
if the ir magni tude is below some thresho ld value . It is particu
larly useful to reconstruct by add ing the wavelet coeffic ients in 
decreasing order of their magnitude. 

Adding wavelets in decreasing order has two benefits. First, 
it a llows for data compression. Reconstruct ion usi ng only 
wavelets with coeffic ient magnitude larger than some thresh
o ld value can reduce the number of vertices in a contour while 
preserving as much detailed structure as is consistent with the 
red uced numbe r of vertices. Second, reconstruction by addi
tion of wavelets in order of decreasing magnitude causes the 
conto urs to approach the ir original shape as rapidly as possible. 
Intuitive ly. it seems plausible that a better tiling should res ult , 
because the local optimization process operates on a close ap
proximation of the final shape as early as poss ible . In practice, 
this approac h seems to produce a better tiling than the method 
of Section 3 .2. 1. 

The initia l steps in computing a tiling using the single-wave let 
method are the same as those in the filter-bank method . 

Figure 7 illu strates add iti on of a wavelet to a one-d imensional 
funct ion J( I ). For a two-d imens iona l contour, the .1' and .lI co
ordinates of a ve rtex are modified respectively by the J' and y 
components of the wavelet coeffic ient. Starting from a tiled pair 
o f low-resolution conto urs, the sing le-wavelet method proceeds 
as fo llows: 

Wavelet 

Function 

Result of 
adding 
wavelet to 
function 

29 

3 A _. 
~ ~1 

5 + 

Figure 7: Illustration of Single-Wavelet reconstruction in one 
dimension. The wavelet has intrinsic knots at I va lues of 1, 3,5, 
6,7 , 9, 11. The function initia lly has knots with I values 0 , 4,8 , 
12. After addition of the wavelet , the function will have knots 
at t values 0, 1,3,4,5,6, 7, 8, 9, 11, 12. Open c irc les indicate 
knots added to the function and wavelet for which values must 
be inte rpolated before addi ng the wavelet to the function. 

I. Select a wave let to add. The method we use is to alte mate 
contours at each iteration , and use the wavelets in descend
ing order of the magnitude of the vector formed by their J' 

and .lI coeffic ients. 

2. Merge the set of knots intrinsic to the wave let and the set 
of knots present in the region of the contour influenced by 
the wavelet so that the wavelet and conto ur knot vectors 
match. After this step , both the wavelet and the reg ion of 
the contour influenced by the wavelet contain the union of 
the intrinsic wavelet knots and the knots originally present 
in the reg ion of the contour influe nced by the wavelet. 

3. Interpolate va lues for any newly in se rted knots of either 
the wavelet or the contour. Values for knots inserted into 
the contour are computed by linear interpolation . Va lues 
for knots in serted into the wavelet are computed by lin
ear interpolation after the intrin sic knot values have been 
sca led by the wavelet coeffic ient va lues. 

4. Update the positions of the vertices affected by the wavelet 
by adding the va lues of .r and y at the wavelet knots to the 
corresponding J' and :1) values of the contour knots at each 
knot in the wavelet knot sequence. 

5. Place all edges inc ident on any vertex influenced by addi
tion of the wave let onto a list of suspect edges. 

6. Locally optimize the tiling by the method desc ribed in Sec
tion 3.3. 

7. Repeat until all wavelets have bee n added, or until the co
e fficients of the remaining wavelets are below a threshold 
va lue. 

In contrast to the filter-bank me thod , reconstruction of a polygon 
using thi s single-wavelet algorithm requires O( n 10gl1) time. 
The main reason for using si ng le-wave let reconstruction is to 
ga in the bene fits associated with adding wavelets in sorted or
der. Because sorting requires O( '11 logn) time, thi s inefficiency 

~ 
. . ,- ...... 

"'~"""< \' . . . 

::° 0 
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relative to the filter-bank reconstruction is not a major cause for 
concem. 

3.3 Local Optimization 

.Local optimization of the tiling after addition of a wavelet in
volves identifying a subset of suspect edges, examining them to 
determine if the local geometry allows an edge swap, and if it 
does , swapping the edge orientation if doing so reduces the goal 
function. Only edges connecting vertices on different contours 
need to be considered, since contour edges cannot be swapped. 
The basic idea is that edges must be examined if the connectivity 
or geometry has changed in the ir immediate surroundings. 

Filter-bank reconstruction proceeds in levels that double the res
olution of the contour at each step. Initializ ing a suspects list 
for this reconstruction method is straightforward: all edges con
necting a vertex from one contou r to a vertex from the other 
contour in the tiling from the previous leve l are adjacent to a 
newly added edge, and so are placed onto the suspects list. 

The initia lizat ion of the list of suspect edges for the single
wave let reconstruct ion differs from that used in filter-bank re
construction. Single-wavelet reconstruction adds a variable 
number of vertices to a contour at each step (The number can 
range from 0 to 7 in our implementation). The ma xim um de
pends on the number of non-ze ro terms in the analysis and re
construction filters. If no vertices are inserted during addition 
of a wavelet, maintenance of a suspects list based on adjacency 
to new edges would not place any edges into the suspects list. 
That is not a good strategy, since any of the vertices within the 
range of the wavelet may have moved. The strategy we use is 
to in sert into the suspects lis t a ll edges incident on any vertex 
within the range of the added wave let. Once the suspects list 
has been initia lized, optimization proceeds in the same manner 
used for fi Ite r-bank reconstruction. 

After the list of suspect edges has been initiali zed, optimization 
proceeds by removing an edge from the suspects list and exam
ining it to determine whether a swap of its orientation reduce s 
the goal function, performing the swap if it does. If a swap is 
performed, edges adjacent to the swapped edge are placed onto 
the suspects list. The optimization process tenninates when the 
list is empty. 

The amount of time required for thi s local optimization is criti
cal to the complex ity of our algorithm. We have not been able to 
prove an uppe r bound for the process, but data collec ted in tests 
using contours rang ing in size from 16 to 1024 ve rtices sug
gest that the number of edges examined per vertex added during 
reconstruction is very nearly constant for contours ranging in 
size from 128 to 1024 vertices (see Fig 10). These data imply 
an expected pe rformance for the fi lter-bank reconstruction of 
O( '11) and for the s ingle-wave let reconstruction of O( 1/ logl/ ). 
S.ince addition of vertices to the o rig inal contour can req uire 
0('11 logn) time, the expected complex ity implied by our data 
is O( n log//.) for both the fi lter-bank and single-wave let meth
ods. 

3.4 Choice of Base-case Size 

The hase-case is a pa ir of low-resolution contours computed by 
performing a fi Iter-bank decomposition of the original contours. 
An optimal tiling is computed for the base-case using the algo
rithm of Fuchs, Kedem and Uselton (4) in step 2 of our algo
rithm. The s ize of this base-case needs to be chosen to balance 
overall execution time and quality of the resulting tiling. Since 
the base-case is cf constant size, its tiling can be computed in 
constant time. 

The smallest possible base-case is a pa ir of quadrilaterals. Re
ducing the original contours to this size should result in the max
imum speedup of the multiresolution tiling method over that of 
[4]. However, the qu ality of tiling constructed is like ly to de
pend on how different the shape of the base-case is from that of 
the original contours. Constructing an initia l opt imal tiling from 
a pair of contours that contain most of the key shape features of 
the orig inals is like ly to produce a better final tiling than con
structing the initial tiling from a base-case that contains few of 
the shape feature s of the original. 

One option is to a llow the user to spec ify the base-case size. In 
that manner the use r can make the tradeoff between acceptable 
tiling resul t and exec ution time. In a non-interactive environ
ment , a base-case size of 64 seems to work well (Figure 9). For 
contours of that size , the execution times of the Fuchs a lgori thm 
and the sorted single-wave let algorithm are approximate ly equa l 
(see Figure 8). Contours containing 64 or fewer vertices can be 
tiled us ing the Fuchs, Kedem, Uselton algorithm without sig
nifi cant loss of performance since a base-case that size can be 
computed in roughly the same time it wou ld take to reconstruct 
from a smaller base-case. 

4 Results 

We have implemented both the filter-bank and s ing le-wave let re
construction vers ions of the a lgorithm described above. To eva l
uate the ir performance we timed exec ution on pa irs of contours 
obtained from the " Digita l Anatomist Project", in the Depart
ment of Biolog ic al Structure, at the University of Washington. 
In those data , contour size ranges from 20 to over 1000 vertices. 
Each timing run computed a tiling us ing the Fuchs algorithm and 
a tiling using one of the multiresolution methods. Various statis
tics were gathered by counting the number of times certain key 
pieces of code were executed. The resulting tilings were com
pared with respect to the goal fun ction optimized by the Fuchs 
algorithm. The results of these tests are shown in Figures 8, 9, 
and 10. 

Figure 8 shows the timing res ults obtained for each of the Fuchs. 
Filter-Bank. and Single Wavelet algorithms using a base-case 
size of 8 . For n = 1024 the Filter-Bank algorithm is 70 times 
fas ter than the Fuchs algorithm. The Fuchs algorithm takes 
nea rly 80 seconds of CPU time. while the Filter-Bank method 
takes slightly over one second. 

Figure 9 shows how the se lection of base-case s ize affects the 
quality of the tiling for the se t of contours shown in Figure I . 
Notice that larger base-case size improves tilin g quality (mea
sured as the ratio between the cost of the optimal tiling and the 
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Figure 8: Execution time versus N for the Fuchs, Kedem, Usel
ton algorithm and the filter-bank and single-wavelet multireso
lution algorithms. 
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Figure 9: Tiling quality as a function of base-case size for the 
contours of Figure I. 

cost of the multiresolution tiling), and that a base-case size of 
64 seems to be at the point on the curve where further increase 
in base-case size only marginally improves the final result. 

Figure 10 shows the number of edges examined during the local 
optimization phase of reconstruction for the single-wavelet and 
filter-bank reconstruction methods. Contour size ranges from 
16 to 1024 vertices. After an initial rise in the number of edges 
considered per contour vertex, the number per vertex remains 
nearly constant for contours ranging in size from 64 to 1024 
vertices . These data suggest that for average inputs, a nearly 
constant number of edges needs to be considered per contour 
vertex during local optimization. 

The contours shown in Figure I represent a difficult instance of 
the tiling problem, obtained from the human cerebral cortex. A 
trained anatomist would recognize that each of the 7 indenta
tions on each contour should be linked to a corresponding in
dentation on the other contour by edges at their inner extrema. 
Figure 3 shows tilings produced for those contours by the op
timizing algorithm and by the multiresolution algorithm. Note 
that there are areas in both tilings that may not be acceptable 
according to the criterion that the indentations should be linked. 
The lower tiling, computed by the optimizing algorithm, con-
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Figure 10: Number of edges examined per vertex during the 
optimization process for contours ranging in size from 16 to 
1024 vertices by the filter-bank and single-wavelet reconstruc
tion methods. A base-case size of 8 was used. 

nects the long indentation on the right side of the smaller contour 
to the center of the edge of an indentation on the larger contour, 
which probably is not what happens in the real object. In the 
other tiling, computed by our single-wavelet algorithm, the in
dentation in the smaller contour is connected to an indentation 
of the larger contour, but it is unclear whether or not the "cor
rect" connection has been found. Simply put, the "correct" tiling 
in this region is ambiguous, and depends on the nature of the 
material from which the contours were derived. No algorithm 
is likely to yield results always acceptable to a trained human 
user. In this case, the multiresolution algorithm connected 6 of 
7 indentations , compared to 5 of 7 connected by the optimizing 
algorithm. 

We computed tilings for the contours shown in Figure 1 us
ing the linear-time "greedy" methods of Ganapathy and Den
nehy [5] and of Christiansen and Sederberg [I] . Both methods 
construct a tiling beginning from a start vertex on each contour. 
They sequentially advance along either the upper or lower con
tour, connecting the current vertex on one contour to the next 
vertex on the other. The Christiansen-Sederberg algorithm at
tempts to minimize the sum of edge lengths by always select
ing the shorter of the two possible edges at each step. The 
Ganapathy-Dennehy algorithm always selects the edge that min
imizes the difference in normalized arc length traversed between 
the upper and lower contours . Figure 11 shows the results. Each 
of the algorithms gets "confused" by a local configuration that 
is not well modeled by its heuristic. The resulting tilings are 
significantly worse than those of either the optimizing or mul
tiresolution algorithm. 

Figure 12 shows a series of reconstructions of single contours 
using the single-wavelet multiresolution method. In each tiling, 
coefficients smaller than a threshold value were discarded . The 
number of vertices in the contours decreases significantly, while 
the overall shapes of the contours retain much of the original 
detail. For many purposes, the resolution of the tiling shown on 
the right may be adequate. The low-resolution version requires 
significantly less space to store, and less time to display . 

. ~ .. :.~-- ,\,:,,
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Figure 11 : Tilings computed by Upper: The a lgorithm ofChris
tiansen and Sederberg and Lower: The algorithm of Ganapa
thy and Dennehy. for the contours in Figure I . Compare to the 
tilings shown in Figure 3 . 

5 Conclusions 

We have described a multiresolution approach to improving the 
perfonnance of a well-known optimizing algorithm for solving 
the tiling problem. that of Fuchs. Kedem and Uselton [4 J. 

A problem with all known tiling algorithms is that they can pro
duce unacceptable tilings. For that reason. a practical sys tem 
for reconstructing surfaces from contours must be interactive . 
The computat ional cost of the optimizing algorithm has caused 
implementors of practical systems to use linear-time "greedy" ' 
methods. The method we present in this paper is dramatically 
faster than the optimizing algorithm. Though it does not guaran
tee a g lobally optimal tiling. in many cases the tilings it produces 
are equivalent to the optimal tilings. In general. the optimal 
tiling differs significantly from the multiresolution results only 
in complex cases for wh ich neither a lgorithm produces a com
pletely acceptable result , but for whic h both methods produce 
results superior to those of linear-time "greedy" methods. The 
multiresolution algori thm represents an improvement in quality 
over the greedy methods, and is fast enough for interactive use. 
even with contours containing we ll over 1000 vertices . 

Multiresolution tiling provides a fast way to produce tilings at 
reduced resolution , resulting in sig nificant sav ings both in time 
required to display a reconstruction and in the space required to 
store it. 

Figure 12: Tilings of the contours in Figure I using the single
wavelet algorithm with threshold values of Left: 0.00 I, Center: 
0.0025. and Right: 0.005. The threshold value multiplied by 
the magnitude of the largest wavelet coefficient detennines the 
magnitude of the smallest coefficient used . 

6 Acknowledgements 

The au thor would like to thank Tony DeRose for the suggestion 
that multiresolution analysis might be profitably applied to the 
tiling problem, and for many he lpful discussions along the way. 

References 

[I] H.N. Christiansen and T.W. Sederberg. Conversion of com
plex contour line definitions into polygonal element mo
saics. Compllfer Graphics. 12(2): 187-192, August 1978. 

121 Charles K. Chui . Anlllrrodllcrioll To WQ\ ·elers. Academic 
Press. Inc. , 1992. 

13 J Tony D. DeRose. Michael Lounsbery. and Joe Warren . Mul
tiresolution analysis for surfaces of arbitrary topolog ical 
type. Tech nical Report 93-10-05, University of Washing
ton. Dept. of Computer Science and Engineering, 1993. 

14J H. Fuchs. Z.M. Kedem, and S.P. Use lton. Optimal surface 
reconstruction from planar contours. Communicarions of 
rhe ACM. 20( 10):693-702, October 1977. 

[5] S. Ganapathy and T.G. Dennehy. A new genera l triangu
lation method for planar contours. Compllfer Graphics, 
16(3):69-75. July 1982. 

[6] E. Keppel. Approximating complex surfaces by triangula
tion of contour lines. IBM J . Res . Del·elop ., 19:2- 11 , Jan
uary 1975. 

17] Stephane Mallat. A theory for multiresolution signal de
composition: The wavelet representation. IEEE Trans
acrions on Pallern Analysis and Machine Inrelligence, 
II (7):674-693 , July 1989. 

[8] David Meyers, Shelley Skinner, and Kenneth Sloan. Sur
face s from contours. ACM Transacrions on Graphics, 
11 (3):228-258, July 1992. 

19] Joseph O'Rourke and Vinita Subramanian . On reconstruct
ing polyhedra from parallel slices. Technical Report TR 
# 008. Smith College Department of Computer Science, 
Northampton , MA 0 I 063 , June 20, 1991 . 

~ 
.. , - ... .. 

"'~':'" · .. i·~ . . . 
:: .. Graphics Interface '94 


