
33

An Algorithm for Continuous Resolution
PolygonaIizations of a Discrete Surface

David C. Taylor and William A. Barrett
Detparment of Computer Science

Brigham Young University
Provo, Utah, 84602

e-mail:dct@newt.cs.byu .edu
Telephone: 801-378-7430

Abstract

An algorithm for polygonalizing a discrete surface
(height grid) is presented. A quad tree is used to create
a bottom-up, irregular rectangular polygonalization of
an input height grid by merging homogenous regions
starting at the pixel level and working up the tree. A
homogenous region is composed of any number of
smaller regions that differ within a user specified error
tolerance in gradient and that fit together to form a
rectangular polygon. As rectangular polygons are
merged, a polygon tree (poly tree) is built which
describes the merge proce~s and can be used to rapidly
locate neighboring polygons. The poly tree is used to
describe the discrete surface at multiple levels of
resolution. After all possible regions have been merged,
the rectangular polygons are triangulated to eliminate
gaps created by the irregular intersections of the
rectangles . , This algorithm automatically preserves
critical lines, even with coarse polygonal
represent~tions. Continuous resolution can be achieved
through the use of TIN morphing between the discrete
levels of resolution computed by the algorithm.
Additionally, parallel simulations indicate that this
algorithm can achieve maximum speedups of O(,.Jn) to
O(nllog n), where n is the number of nodes in the
bottom level of the tree.
Keywords : TIN, terrain, morph, hierarchical, parallel

1. Introduction

The purpose of polygonalizing a discrete surface is to
reduce the complexity of its representation, thereby
allowing rapid access to parts of the surface (in a
graphical editing system) and rapid rendering of the
surface (in real-time environment simulations). One of
the major drawbacks of polygonal representation is the
loss of realism through the use of coarse representations.

f+ I 1+ 1+ 1+
f+

H-H-H- H- H-
R: I± 1

R=
H- I H-
H-t+t+ 1+ 1+

~ ~ ~

Regular PoIygonalization Based on a Quad Tree

~\I\ I~ ~~AV~
~I\~ "",'I .<: '" 1

U\/~~~&./
Semi regular PoIygonalization (Delaunay Triangulation)

..J±±- I
I er-H+-----1 I

- ::qH III " f-i=
- 1-1-

-1 I I
I -r1 ,Cl Ri

Irregular PoIygonalization

Figure 1, Three different types of polygonalizatlon. Note that the vertices
on the regular and semi regular poIygonalizatlons tend to coincide with
vertices of other polygons whereas the vertices of the polygons in the
irregular polygonalization do not.

If the set of polygon vertices is chosen correctly, the
polygonal representation will represent the object much
more realistically with a given number of polygons than
if the set of polygon vertices is chosen at random. Any
algorithm which attempts to optimize the set of polygon
vertices must pay particular attention to the preservation
of critical lines. Critical lines are parts of the object with
sharp discontinuities in gradient, such as ridges and
peaks in mountainous terrain. The human visual system
relies heavily on critical lines for object recognition and

Graphics Interface '94

34

depth perception.
Past work on polygonalization has concentrated on
triangulated irregular networks (TIN) and regular
hierarchical polygonalization. TINs are usually based on
the Delaunay triangulation [TARVYDAS 84]. The
advantages of the Delaunay triangulation include its
local adaptability to varying point densities and the fact
that the same triangulation is produced for a given set of
points regardless of the starting point. However, this
type of triangulation is insensitive to critical lines unless
points are manually selected on critical lines before
triangulation begins [MCCULLAGH 82], [FOWLER
79] . Changing the number of polygons in an object (i.e.,
for zooming in on terrain) requires a complete re­
triangulation of the object or a nonregular hierarchical
structure [SCARLATOS 90] . Also, balancing loads for
multiple processors requires excessive communications
overhead in this approach.

Regular hierarchical polygonalizations are intrinsically
parallelizeable because of local information flow
patterns, but the top-down approach generally used
produces many more polygons than a TIN for a given
level of approximation to the terrain [SAMET 88],
[BERT 81], [BARONTI 90]. Figure I shows examples
ofa regular hierarchical polygonalization, a TIN, and an
irregular rectangular polygonalization.

The polygonalization algorithm described in this paper
preserves critical lines and is highly parallelizeable. The
algorithm relies on a bottom-up approach to merge
similar adjacent polygons. Critical lines are preserved
by merging polygons only when they have similar
gradients. This process begins at the most local level

Initialized Terrain
height grid Generator

Height Grid
Generation
and Display

Height grid with discrete
terrain mapped to leaves
of quad tree

and gradually extends to encompass the entire height
grid. This local to global approach results in massive
parallelism in the merge process, since the majority of
polygon merges are done at the local level without
concern for surrounding data. The user can specify how
closely the polygons must match the actual data using a
number called the error tolerance (allowable difference
between polygons to be merged). By interpolating
between polygonal grids of two different error
tolerances, continuous resolution can be achieved. The
three salient features of this algorithm are completely
automated polygonalization to continuous levels of
resolution, critical line preservation, and massive
parallelism. Each of these are discussed in this paper.

The parallel merge algorithm and the TIN morphing
technique are discussed in Section 2. Results of this
algorithm are presented in Section 3. Section 4
summarizes current research efforts and future work.

2. Hierarchical Polygonalization ofa Discrete Surface

2.1. Data Structures
The polygonalization algorithm requires a height grid as
input. A height grid is a two-dimensional array where
each entry represents an altitude at a particular point.
Height grids can be obtained from various sources
([PETERSEN 90], [JEFFERY 87]). The height grids
used in this work are represented by two-dimensional
arrays. Natural terrains from USGS DEMs and
topographical maps are used.

A standard quad tree data structure is used as a
processing architecture for polygon merging (Figure 2,

IPOI~Z I?§ood~;~

of the quad tree

Polygon Merging Polygon Display
Figure 2. The three main sections of the merge algorithm.

Graphics Interface '94

middle). As shown in Figure 2, the quad tree initially
has leaves attached directly to the polygons formed by
each pixel of the height grid. Each of the nodes in the
quad tree maintains a list of polygons in its area of
influence. The area of influence of a node is defined as
that part of the height grid to which the node's
descendant leaves are attached. At the beginning of the
merge phase, the polygon lists of all interior nodes are
empty. The merge algorithm described in Section 2.4 is
applied to each node whose sons all have non-empty
polygon lists . This process is repeated until the root
node is reached. The result is that each node of the quad
tree has a list of polygons for its area of influence.

The quad tree structure is especially useful in operations
such as finding neighboring polygons. As the merge
algorithm is applied at each node, a structure called a
po[ytree (Figure 3) is constructed. Each node in the
quad tree has its own polygon list which forms part of
the poly tree . As shown in Figure 3, the father pointers
in the poly tree point to polygons in the lists of quad tree
nodes at higher levels of the quad tree. These polygons
are the result of merging one or more polygons from
lower levels of the quad tree. For example, the father

Quadtree

•

3S

pointers of polygons 7, 8, 12, and 13 point to polygon 3
which was created by merging 7, 8, 12, and 13.

Finding neighboring polygons is an important part of the
merge process on every level. Figure 3 also illustrates
this process. To find the right neighbor of polygon 7, the
algorithm is given a point immediately to the right ofthe
right edge of polygon 7. The quad tree is descended until
a quad tree leaf node or an interior node that contains
this point (which is inside the right neighbor of 7) and
has a single polygon in its list is located. The single
polygon in the list of this node is a descendant of
polygon 8 by virtue of its location on the height grid.
Polygon 8 is located by following the father pointers up
the partially constructed poly tree to a polygon in the list
of the current quad tree node. The advantage of this kind
of search is that it requires only O(log n) time, where n
is the number of nodes in the quad tree. It is possible to
search the polygon list of the quad tree node to find X
without using the poly tree, but this is sequential and does
not take advantage of available gains. Non-hierarchical
networks must rely on more complex pointer schemes or
sequential searches to find neighbors.

pointer to polygon list

• father pointers in quad tree

• ~---->~[.'.'.~..j j D LJ~--~>[J
leaflevD,....-------------~>: · .. 1

polytree leaf nodes
with father pointers

Figure 3. Relationship between the quad tree and the polytree.

Graphics Interface '94

36

Error tolerances
2 3 4 5

..... Polygon list index array

~
Poly tree roots for
error tolerance 0

Output polygon list for all error tolerances
(stored as an array)

Figure 4. The multiresolution polygon array

When the merge phase is finished, there are two trees in
memory: the quad tree and the poly tree (Figure 3). The
quad tree leaves point to the leaves of the poly tree, and
the poly tree describes the merge process. Following the
father pointers of a leaf polygon up through the poly tree
will bring one to a polygon in the list of the root node in
the quad tree, which contains a list of all the "roots" of
the poly tree. This list is the final polygonal description
of the height grid at a given error tolerance.

The output multiresolution polygon array is shown in
Figure 4. This output list consists of two a1Tays. The
first array is an index into the second, where all the
polygons are stored. For each computed error tolerance,
an integer stored in the first array specifies the starting
position of the corresponding list in the second array.
The second array is an anay of polygon structures. This
array is filled with the polygon list in the root of the
quad tree after each merge phase is completed for a
specified error tolerance.

2.2 Homogeneity Criteria
The homogeneity criteria or measure of similarity used
to merge neighboring polygons into a single, larger
polygon is a function of the gradient. The X gradient is
the average difference between the altitudes at the X
limits of the polygon divided by the X dimension of the
polygon (xdist) and the Y gradient is computed
similarly. The difference between two polygons is
simply the sum of the difference between their X
gradients and their Y gradients. Any pair of adjacent
polygons whose difference is less than the error
tolerance specified by the user is considered mergeable,
as long as the resulting polygon can still be described by
only four data points as shown in Fit;ure 5. This means

that either the X limits or the Y limits of the two
polygons must be equal.
The raw gradient measure is modified in such a way that
critical lines are preserved. Instead of dividing by the X
and Y dimensions of the polygon to obtain a slope as a
measure of similarity, the absolute altitude change in the
X and Y directions is used, as shown in the following
equations which correspond to Figure 5.

Xgr = «z2-z1) + (z3-z4» (1)
Y gr = «z4-z I) + (z3-z2» (2)
Grad Diff= IXgrl'l- Xgr1'21 + IYgrpI - Ygrpj (3)

In Figure 5. polygon 1 has an X gradient of 7 and a Y
gradient of -9. and polygon 2 has an Xgr of 15 and a Y gr
of -11 . The gradient difference is 10, resulting in a merge
if the error tolerance is greater than 10. This modi fication
has little effect on the accuracy of the measure because
adjacent polygons that satisfy the "X or Y limits equal"

o(- xd;.'~

(3,5,16) (8,5,20) (8,5,20) (15.5,28)

OI P2

(3 ,13,12) (8,13,15) (8,13,15) (15,13,22)

Figure S. Homogeneity I Gradient merge criteria. Polygons P1 and P2 merge to form P3 .

Graphics Interface '94

rule are usually either very close to or exactly the same
size. The most important effect of this change is to
preserve major features at high levels of the tree . This
happens because not normalizing the absolute
difference to a slope or surface normal allows large
polygons whose surface normal directions differ by a
certain amount to be much less similar than two
smaller polygons whose surface normal directions
differ by the same amount. This results in a greater
resistance to merging already large polygons together,
especially at low error tolerances. This ensures that
critical features, such as ridgelines and canyons, do not
get erased simply because the land surfaces on either
side are uniform. Also, this procedure prevents the
formation of large, highly non planar polygons. Of
course, with sufficiently large error tolerances even
this extra protection disappears. Even with very high
tolerances, this algorithm still shows a remarkable
tendency to preserve major topographic features .

2.3 The Merge Process
The merge phase generates a hierarchical description
of the object surface. This hierarchical structure
contains sufficient information to describe the object
surface at varying levels of detail. Each node in the
quad tree used to generate this structure consists of a
bounding polygon and a list of contained polygons
resulting from merges on lower levels, where lower
levels correspond to higher levels of detail. The merge
phase consists of applying the merge algorithm to each
node of the quad tree whose sons have been merged
until the root node is reached. The merge procedure for
each node is described in part 2 of the algorithm below.

At the beginning of the merge phase, the height grid is
mapped to the leaves of the quad tree. The height grid
is a surface discretely represented at 65536 points. Each
quad tree leaf node is assigned four of these points,
which are represented as four unit (I x I) polygons of
uniform altitude. It should be noted that larger grids
such as 120 I x 120 I DEM files are handled by
subdividing the grid into 256x256 chunks and
polygonalizing each chunk separately, then combining
the roots of each of the poly trees as if each root were a
child node of a larger tree. Likewise, irregular grids are
handled by embedding them in a 256x256 grid with
points outside the irregular grid set to zero altitude.

The goal of the merge phase is to create a tree of
polygons (poly tree) that allows leaf polygons to be
merged into as few polygons as possible for a specified
level of error. The merge algorithm is applied to the

37

Multiresolution Polygonalization Algor~hm

1. Construct the hetght grid and initialize strud" ..

read_lerrain(heighl..llrid) Read in a diecrete terratnlrom a fikt

inl_quadlree(rooI) Allach lhe quad I 10 lhe height grid and
oeI aN po/yIists in eadl node 10 NULL

2. Merge lhe polygons 10 lhe rooI oIlhe quad Iree al each error loIerance

a. !or (each error loIerance level) [a-il Call1he merge conlrol procedure wilh
cumode < •• mol a poInl ... 10 lhe fOOl oIlhe quad lree

b. m ... ge(curnode)

merge(curnode): le-hI
e. 11 curnode->poIyhl is not NULL Thlo node hu already been meroe<I

return
for (each son 01 currode) Mal<. oure oono are rrMIf9"d baIora

m_(el.mOde->aon) merging cumode (f8CUIWMI)

d. gelJ)lists(cumode->sons) ObCain lhe meroe<I aons' polygon 1ioI.

e. mwgeJllist(cumode) Merge Ihis node (a. 1_)

(repeallor each _ B. and C) Thlo procedL<e is similar for each border.
P <-- fl~ polygon along bordw Find firs! polygons along _

o < •• malching polygon acroaa border

(repeal for all polygons on each border)

f. If boundS_~'Ob and " a pair 01 polygon. pass .. lhe Iwo leal,
similarily_e (P.) lhen merge lhem reoord lhe loalhel

Make_newJ)Olygon(P.O) the merge was unsuccessful. al ..
g. Sfll_neighbor_flags(P.O)

h. P.O < •• Next polygons down _ Check all conliguous combinalions

I. CopyJlOlygon_IISI(rooI) Copy merged list in r()()l of quadtree 'or
this error tolerance into the mu.ip6e , .. -

j. for (each nods In lhe quad Iree) oIulion polygon hi
If (I her. is > 1 polygon in lhe node's lisl) Prepare the quad tree for merging al

Delelo_PoIygon_Lis1(node) the next higher Ie~ of errOf tolerance

3. Display lha poIygonaizalion

oeCuS8c error()
Find ouIlhe level 01 error requested by
the user

draw_fIalJ)Olygon_oeI() Show bounds oIlhe polygons by drawing
them as redanokts from a lop view

rondorJ)Olygon_sel() Send lhe appropriale polygon list 10 lha
display engine for 3-D rendering

height grid for each error tolerance of interest (a). In the
merge algorithm, part 2 is initially called with the root
node (b). Recursive calls are made to merge until a node
is reached whose sons all have nonempty polygon lists
(c). At the beginning of the merge phase, only the leaf
nodes have nonempty lists. The root node is the last node
to be merged. When merging a node, the algorithm first
gets access to the polygon lists of the sons (d). The
algorithm then checks the borders of the sons' areas of
influence for mergeable polygons (e). The algorithm
proceeds in a specific order when merging polygons
from the four sons of a node. As shown in Figure 6, the
first step is to merge polygons common to border A
between son I and son 2_ Next, the polygons adjacent to
border B between son 4 and son 3 are merged. Finally,
the polygons common to border C between sons 1 and 2
and sons 4 and 3 are merged (12-43 merge). This merge
algorithm relies on the fact that tb only possible merges
exist along the boundaries between child nodes (Figure
6), because all possible interior merges are completed at
lower levels in the tree.

The two steps to merging are (1), identify polygons

Graphics Interface '94

38

along the boundaries of child nodes, and (2), perform
the two merge tests on each adjacent pair of boundary
polygons. Adjoining polygons are merged if they satisfy
both the bounds check (their combination produces a
rectangle) and the homogeneity criteria (f). If an attempt
to merge two polygons fails, a flag is set in the polygons
to remember this fact for future processing (g). All
possible combinations of adjacent polygons along the
borders are tested for mergeability (h). Once all the
boundaries have been checked for possible merges, the
current father (node being merged) goes into "child"
mode so that its father may begin the merge phase.

1 A 2

c c

4 B 3

~ .~ .~
Node before merging After A and B edge merge After C edge merge

Figure 6. Merge order lor 8 quad Iree node. Dart< lines represenl unmerged boundaries.

A single pass of the merge algorithm produces a set of
polygons that describe the surface at a single level of
detail (i). This algorithm is used to polygonalize at
multiple levels of resolution. The approach taken is to
apply the basic merge algorithm for each error
tolerance, and not re-merge nodes which have only one
polygon in their lists after the previous merge pass (j).
This procedure is surprisingly efficient, given that on
the average over SO distinct levels of error tolerance are
computed. The algorithm derives its efficiency from the
fact that if a quad tree node contains a single polygon
after the merge phase on a given level of error, any
merges using higher error tolerances will also result in
a single polygon remaining in the node. This fact makes
it possible to avoid repeating work already done at
lower levels of error tolerance and increases the
efficiency of the algorithm considerably. (It takes about
2.5 times as long to generate the entire multiresolution
poly tree as it does to generate the zero tolerance

structure in the single resolution case). This process
continues until there is only one polygon in the root after
a merge. At that point, any higher error tolerances would
simply generate that same polygon, so further merges are
pointless.

2.4 Extension to triangular polygonalization

When the irregular rectangular polygons are used to
render the terrain, gaps appear at points where two
rectangles are adjacent along the side of a third. The
solution is to triangulate the set of points formed by the
vertices of the rectangles to form a TIN [BARRS7].
Triangulation is simplified considerably by using a data
set such as this, because no triangle ever crosses a
boundary of a rectangle. As a result, each rectangle can
be independently triangulated. Vertices that lie along the
boundary of each rectangle are located in a local fashion
using the poly tree and the neighbor finding procedure
describedin Section 2.1. This means that this
triangulation is much more parallelizeable than
triangulation on a standard TIN. The Delaunay
triangulation is applied to the collection of points found
for each rectangle.

Through experimentation, we found that an irregular
rectangular polygonalization and a triangular
polygonalization of a given terrain represent that terrain
to the same level of accuracy with about the same
number of polygons. This is advantageous, as triangles
are guaranteed to be planar and occupy less memory per
polygon. When an irregular rectangular polygon set is
triangulated, about 3 times as many triangles are
generated as there were rectangles. Since the accuracy of
a triangular set is the same as a rectangular set of the
same size, this means that a triangular polygonalization
at a given error tolerance can be completely represented
bya rectangu lar pol ygonal ization that contains about one
third as many polygons . This is equivalent to a 2.5 : I
lossless compression of the image, as determined by tests
on numerous synthetic and actual terrains .

Most importantly, one of the main problems facing
conventional algorithms that rely on the Delaunay
triangulation is the selection of data points that preserve
important features . The rectangular polygon set
preserves critical lines automatically by using smaller
polygons in areas of high curvature. The irregularity of
the rectangular set allows rich variation in the orientation
of critical lines, since every 2-edge intersection point in
the rectangular set provides a vertex for triangulation.
Therefore, the set of vertices defined by the rectangles

~
" ' ?

.~···· .. i' . . " . . .,..
:.- Graphics Interface '94

provides the type of data set needed by a triangulation
algorithm, and in a way that allows highly parallel
triangulation (normally a sequential operation). When
used in this way, the polygonalization algorithm of
Section 2 becomes a massively parallel feature detector
for finding critical lines in an image represented by a
height grid. This in itself is an important contribution of
this work.

Figures 7-9 demonstrate how critical lines are
preserved even at high error tolerances. While Figure 8
lacks the surface detail found in Figure 7, major features
(such as ridges and canyons) are preserved.

39

2.5 Continuous resolution from TIN morphing

The merge algorithm produces a polygonalization for a
given level of error tolerance. When two
polygonaJizations done at different error tolerances are
rendered, it is easy to see visual differences caused by
noncoincident polygons. This effect is unavoidable
unless the error tolerances are close enough to make the
difference negligible. This solution is not practical, as
thousands of polygonalizations would have to be stored
for a single terrain. This problem can be solved by
interpolating between two meshes of differing error
tolerance. This process is called TIN morphing.

After the polylists for each level of error tolerance are
built in the merge phase, they are linked together from
low error tolerance to high error tolerance with pointers
from polygons in polylists of lower error tolerance to
positionally coincident polygons in polylists of higher
error tolerances. For example, a polygon with XY
coordinate (0,0) that is in the polylist of error tolerance
T will point to the polygon with XY coordinate (0,0) that
is in the polylist of error tolerance T + 1, as long as no
polylists with error tolerances between T and T + 1 exist.
If one polygon in list T coincides with more than one
polygon in list T + 1, the polygon in list T is split and each
of the resulting polygons are inserted into the list of T.
Very few additional polygons are created by this
operation.

Once pointers exist between levels T and T + I , a

Figure 10. Interpolated triangular mesh.

Graphics Interface '94

40

Continuous Resolution Rendering Algorithm

1. Construct mu.lresoIu1ion poly1ree (Muhi",soI"ion polygonalization IIJ9orithm)

2. Get the requestod orror tolerance from the user (in foot) ~ .. 01

Sot A la the first genorated polygonal ... wih 1 The vertices in set A and set B w"1 be
tolerance ala <_ tAoI . interpolated 10 find 8 981 U with as many

Set B la the first generated polygonal set wih verttces as set A and potygons sim~a(

tolerance btol >_ .. o!. to both sets.

3. Generate a polygon aeI U between A and B

I • ("of.atol)l(btof."of) A linear inlerpow.tion is used

for eadl polygon a in aeI A Use the father poinfers previously
find the encloaing polygon b in eet B computed
t = the Iial 01 vertices on the top edge 01 a

(incfudee oomer.) Lists I and r may be e~ty .
I. the hi 01 vertices on the left edge 01 a

(do .. not incfudo corners)
b = the Iiot 01 vertices on the bottom edge 01 a

(Incfudee comen)
r • the 1101 01 vertices on the right edge 01 •

(do .. not Incfuclt comers)

do ft.f1.fb.fr oimifalty for the father
(poiygonb) The lists ut,ul,ur. and ub are now
for each vertex In I created.

find the cloeest vertex in It
The Z coordinate can be interpolated insert a vertox in .. with coordin (X.V) :
or "'trioved from the height grid X _ IX + ~IX-tlC)"i
at position (X.V)

V _ tV + (ftV -tV)"1

pertorm the same operation for b,t . and I .. 1 .. 2 ut3

Starting wih the three upper IeItmost vertices.

UllV.~ triangutale the ... (ut .ul.ur.ub).

ubI ub2
Order 01 Triangulation

4. Render the list 01 triangles

mapping from the vertices of T to the vertices of T + I
can be created. This process is also parallel, since no
vertex from level T that is on the border of or inside a
polygon of level T + I will map to a vertex outside that
polygon. This considerably reduces the number of
possible mappings, resulting in a much faster algorithm.
The X and Y positions of each vertex are linearly
interpolated from the low error tolerance mesh to the
high error tolerance mesh, and the Z position is taken
from the original height grid. The Delaunay
triangulation is applied to the collection of points found
and interpolated for each rectangle on level T.

This morphing technique provides visually continuous
resolution, making a limited number of
polygonalizations do the work of an infinite number of
polygonalizations .

3. Results

3.1 Data Acquisition

The two datasets used in this paper were acquired from
topographical maps. The Timpanogos data came from
USGS 15-minute series maps with 40-foot contour
intervals, and the Banff data came from the equivalent
Canadian series with lOO-foot contours. In both cases,

digitized maps were converted to discrete height grids
using a morphological contour interpolation program
[BARRETI 94 (in review)] . These height grids were
used as input to the polygonalization program to produce
the results shown here. The Timpanogos grid is a single
256x256 area (I km x 1 km) along the Timpanogos ridge.
The Banff data is a 1700x2787 area (17 km x 12 km)
centered on the northern end of Mt. Rundle. The data
points in the Banff data are spaced about twice as far
apart as those in the Timpanogos set, resulting in an
increased area of coverage and resulting loss of detail.
Sixty poly trees are merged to form the complete Banff
mosaic, containing about 4.2 million polygons at the
lowest level of tolerance.

3.2 Parallel simulation

One of the advantages of the polygonalization algorithm
compared to other approaches is that it is massively
parallel. This is because the polygonalization procedure
has been reduced to a local problem by removing global
geometric constraints on the location of the vertices. The
quad tree and poly tree structures are used to exploit this
massive parallelism.

In the simulations of parallelism, it is assumed that each
node of the quad tree is replaced by a processor and the
links of the tree are replaced by dedicated
communication paths from processor to processor. There
are no intralevel data dependencies, so no processor
requires data from another processor on the same level to
complete its task. Processors can only communicate with
their fathers or sons, if they exist. This type of
parallelism is exploitable on almost any type of parallel
machine, as the problem can be broken down into an
arbitrary number of modules and communication
requirements are negligible. Actual speedups would
depend on memory access latency through the processor
network and not interprocess communication. The
algorithm shows a high tendency towards data
parallelism in the lower levels of the quad tree with
bottlenecking occurring at the high levels of the quad
tree.

The order of complexity of the algorithm depends on the
type of terrain and the error tolerance. This is because for
low error tolerances, the algorithm is dominated by
polygon comparisons along the boundary lines of sons,
and for high tolerances, the algorithm is dominated by
the merging of single polygons on each level. For the
fonner, the time increases by a factor of 2 on each level.
This is because the length of the mergeable boundaries

~
...... ..

'~': ""'-.
: .. Graphics Interface '94

increases by a factor of 2 on each level. Since the
number of processors decreases by a factor of 4, this
results in a low bound of O(";n) where n is the number
of processors at the base of the tree . For the high error
tolerance/smooth terrain case, the amount of time spent
on each level is the same (if the tree merges the terrain
to one polygon), so the high bound on the order of the
algorithm is simply the number of processors divided by
the number of levels in the tree, or nllog n. This
corresponds well to the values found in the parallel
simulations. Speedup for most of the tests falls in
between these two values.

Figure 11 . View of Banff

Figure 12. Contours of Mt. Rundle

3.3 Continuous resolution and critical line
preservation

The tendency of the algorithm to preserve critical lines
is shown in Figures 7 and 8. Both of these figures show
Mount Timpanogos in Orem, Utah. Figure 7 uses
101,000 triangles, and Figure 8 uses 1,200. The
ridgelines in both figures are nearly identical, while less
important details on the face of the mountain have been
lost in Figure 8. Continuous resolution is best

. . ' -

41

demonstrated using video media. Figure 10 shows an
interpolated triangular grid. Distortion of the rectangular
polygons from the lower tolerance level is evident as
they are transformed to the corresponding polygons in
the higher tolerance level.

Figure 11 shows a view looking from the canyon west
of Mt. Rundle towards Banff. Figure 12 shows part of
the cleaned contours used to create the height grid of
Banff. It should be noted that since the input data had
100-foot contour lines, no details smaller than 100 feet
are visible in the rendering.

3.4 Execution time and hardware

A complex (rough) 256X256 terrain is polygonalized to
100 distinct levels of error tolerance in about 55 seconds
on an HP750 workstation. Interpolating between two
error tolerance levels takes about 12 seconds for an
interpolation between 100,000 polygons and 40,000
polygons, and less than a second for interpolations where
the lower level has less than 8,000 polygons. This time
includes drawing the polygonal mesh to an X window.
Rendering 100,000 polygons using StarBase takes 8
seconds on the workstation, which has no special
graphics hardware.

4. Conclusions

This paper has described a new polygonalization
procedure which makes essential use of a quad tree to
construct a polygonal description of a discrete surface at
multiple levels of detail. This procedure provides
continuous resolution polygonalizations, is highly
parallel, extracts and preserves critical lines
automatically, allows rapid neighbor polygon searches,
and provides easy access to any level of detail. This
algorithm can also be used to automatically select the
correct data points to preserve critical lines for
triangulation algorithms. While automatic feature
extraction has addressed this problem to some extent,
this research presents a massively parallel critical feature
extractor that extracts a set of points that can be
triangulated in a highly parallel fashion.

The hierarchical structure generated when
polygonalizing the height grid at each level of error
tolerance possesses distinct advantages over the
sequential Delaunay triangulation. The most important
advantage is the ability to select and locate polygons in
the structure using a tree search (log n) instead of a
sequential search (n). Modifications to the Delaunay

~
' - " ' ';>

... ~ .. . :..,.
:.' Graphics Interface '94

42

algorithm which rely on hierarchical models
[DEFLORIANI 89] overcome this limitation, but at the
expense of non-parallel tree construction. In addition,
continuous resolution capability requires a hierarchical
structure (Le., a poly tree) to link and describe the
changes from level to level. Triangle-based algorithms
can also do this, except that the result is not as
accessible in terms of specific locations on the height
grid. Also, continuous resolution allows interpolation of
an arbitrary level of detail from a discrete number of
hierarchically coupled polygonalizations, which avoids
computation and storage requirements associated with
conventional polygonalizations.

The ability to have multiple levels of resolution on one
display at the same time is a future research topic. Also
of interest is the extension of this algorithm to three­
dimensional anatomical structures in medical imaging,
such as skulls.

Bibliography
S. Baronti, A. Casina, F. Lutti, et aI, "Variable

Pyramid Structures for Image Segmentation", Computer
Vision, Graphics, and Image Processing, March 1990,
346-356.

Alan H. Barr and Brian Von Herzen, "Accurate
Triangulations of Deformed Intersecting Surfaces",
Computer Graphics, July 1987, 103-110.

William A. Barrett, "Morphological Contour
Interpolation", GI 94, Banff, Canada

Peter J. Bert, Tsai-Hong Hong, and Azriel
Rosenfield, "Segmentation and Estimation of Image
Region Properties Through Cooperative Hierarchical
Computation" , IEEE Transactions on Systems, Man,
and Cybernetics, Dec. 1981, 802-809.

Leila De F1oriani, "A Pyramidal Data Structure
for Triangle Based Surface Description", IEEE
Computer Graphics and Applications, March 1989,67-
78.

Robert 1. Fowler and James J. Little, "Automatic
Extraction of Irregular Network Digital Terrain
Models" , Computer Graphics , August 1979, 199-207.

M. J . McCullagh, "MinilMicro Display of Surface
Mapping and Analysis Techniques", Cartographica
19:2 (Summer 1982),136-144.

Sydney M. Petersen, William A. Barrett and
Robert P. Burton, "A New Morphological Algorithm for
Automated Interpolation of Height Grids from Contour
Images" , 1990 SPIE/SPSE Symposium on Electronic
Imaging Science and Technology. Santa Clara, Feb.
1990.

Hanan Samet and Robert E. Webber,
"Hierarchical Data Structures and Algorithms for
Computer Graphics, Part In, IEEE Computer Graphics
and Applications, May 1988, 48-68.

Lori L. Scarlatos, "A Refined Triangulation
Hierarchy for Multiple Levels of Terrain Detail",
Proceedings. IMAGE V Conference, Phoenix, Arizona,
19-22 June 1990.

Albin Tarvydas, "Terrain Approximation by
Triangular Facets", ASP-ACSM Convention. Technical
~ 1984 Vol. 1,524-533.

This work was partially supported by a grant from IBM.

Graphics Interface '94

