
33 

An Algorithm for Continuous Resolution 
PolygonaIizations of a Discrete Surface 

David C. Taylor and William A. Barrett 
Detparment of Computer Science 

Brigham Young University 
Provo, Utah, 84602 

e-mail:dct@newt.cs.byu .edu 
Telephone: 801-378-7430 

Abstract 

An algorithm for polygonalizing a discrete surface 
(height grid) is presented. A quad tree is used to create 
a bottom-up, irregular rectangular polygonalization of 
an input height grid by merging homogenous regions 
starting at the pixel level and working up the tree. A 
homogenous region is composed of any number of 
smaller regions that differ within a user specified error 
tolerance in gradient and that fit together to form a 
rectangular polygon. As rectangular polygons are 
merged, a polygon tree (poly tree) is built which 
describes the merge proce~s and can be used to rapidly 
locate neighboring polygons. The poly tree is used to 
describe the discrete surface at multiple levels of 
resolution. After all possible regions have been merged, 
the rectangular polygons are triangulated to eliminate 
gaps created by the irregular intersections of the 
rectangles . , This algorithm automatically preserves 
critical lines, even with coarse polygonal 
represent~tions. Continuous resolution can be achieved 
through the use of TIN morphing between the discrete 
levels of resolution computed by the algorithm. 
Additionally, parallel simulations indicate that this 
algorithm can achieve maximum speedups of O(,.Jn) to 
O(nllog n), where n is the number of nodes in the 
bottom level of the tree. 
Keywords : TIN, terrain, morph, hierarchical, parallel 

1. Introduction 

The purpose of polygonalizing a discrete surface is to 
reduce the complexity of its representation, thereby 
allowing rapid access to parts of the surface (in a 
graphical editing system) and rapid rendering of the 
surface (in real-time environment simulations). One of 
the major drawbacks of polygonal representation is the 
loss of realism through the use of coarse representations. 

f+ I 1+ 1+ 1+ 
f+ 

H-H-H- H- H-
R: I± 1 

R= 
H- I H-
H-t+t+ 1+ 1+ 

~ ~ ~ 

Regular PoIygonalization Based on a Quad Tree 

~\I\ I~ ~~AV~ 
~I\~ "",'I .<: '" 1 

U\/~~~&./ 
Semi regular PoIygonalization (Delaunay Triangulation) 

..J±±- I 
I er-H+-----1 I 

- ::qH III " f-i= 
- 1-1-

-1 I I 
I -r1 ,Cl Ri 

Irregular PoIygonalization 

Figure 1, Three different types of polygonalizatlon. Note that the vertices 
on the regular and semi regular poIygonalizatlons tend to coincide with 
vertices of other polygons whereas the vertices of the polygons in the 
irregular polygonalization do not. 

If the set of polygon vertices is chosen correctly, the 
polygonal representation will represent the object much 
more realistically with a given number of polygons than 
if the set of polygon vertices is chosen at random. Any 
algorithm which attempts to optimize the set of polygon 
vertices must pay particular attention to the preservation 
of critical lines. Critical lines are parts of the object with 
sharp discontinuities in gradient, such as ridges and 
peaks in mountainous terrain. The human visual system 
relies heavily on critical lines for object recognition and 
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depth perception. 
Past work on polygonalization has concentrated on 
triangulated irregular networks (TIN) and regular 
hierarchical polygonalization. TINs are usually based on 
the Delaunay triangulation [TARVYDAS 84]. The 
advantages of the Delaunay triangulation include its 
local adaptability to varying point densities and the fact 
that the same triangulation is produced for a given set of 
points regardless of the starting point. However, this 
type of triangulation is insensitive to critical lines unless 
points are manually selected on critical lines before 
triangulation begins [MCCULLAGH 82], [FOWLER 
79] . Changing the number of polygons in an object (i.e., 
for zooming in on terrain) requires a complete re­
triangulation of the object or a nonregular hierarchical 
structure [SCARLATOS 90] . Also, balancing loads for 
multiple processors requires excessive communications 
overhead in this approach. 

Regular hierarchical polygonalizations are intrinsically 
parallelizeable because of local information flow 
patterns, but the top-down approach generally used 
produces many more polygons than a TIN for a given 
level of approximation to the terrain [SAMET 88], 
[BERT 81], [BARONTI 90]. Figure I shows examples 
ofa regular hierarchical polygonalization, a TIN, and an 
irregular rectangular polygonalization. 

The polygonalization algorithm described in this paper 
preserves critical lines and is highly parallelizeable. The 
algorithm relies on a bottom-up approach to merge 
similar adjacent polygons. Critical lines are preserved 
by merging polygons only when they have similar 
gradients. This process begins at the most local level 
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and gradually extends to encompass the entire height 
grid. This local to global approach results in massive 
parallelism in the merge process, since the majority of 
polygon merges are done at the local level without 
concern for surrounding data. The user can specify how 
closely the polygons must match the actual data using a 
number called the error tolerance (allowable difference 
between polygons to be merged). By interpolating 
between polygonal grids of two different error 
tolerances, continuous resolution can be achieved. The 
three salient features of this algorithm are completely 
automated polygonalization to continuous levels of 
resolution, critical line preservation, and massive 
parallelism. Each of these are discussed in this paper. 

The parallel merge algorithm and the TIN morphing 
technique are discussed in Section 2. Results of this 
algorithm are presented in Section 3. Section 4 
summarizes current research efforts and future work. 

2. Hierarchical Polygonalization ofa Discrete Surface 

2.1. Data Structures 
The polygonalization algorithm requires a height grid as 
input. A height grid is a two-dimensional array where 
each entry represents an altitude at a particular point. 
Height grids can be obtained from various sources 
([PETERSEN 90], [JEFFERY 87]). The height grids 
used in this work are represented by two-dimensional 
arrays. Natural terrains from USGS DEMs and 
topographical maps are used. 

A standard quad tree data structure is used as a 
processing architecture for polygon merging (Figure 2, 
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of the quad tree 

Polygon Merging Polygon Display 
Figure 2. The three main sections of the merge algorithm. 
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middle). As shown in Figure 2, the quad tree initially 
has leaves attached directly to the polygons formed by 
each pixel of the height grid. Each of the nodes in the 
quad tree maintains a list of polygons in its area of 
influence. The area of influence of a node is defined as 
that part of the height grid to which the node's 
descendant leaves are attached. At the beginning of the 
merge phase, the polygon lists of all interior nodes are 
empty. The merge algorithm described in Section 2.4 is 
applied to each node whose sons all have non-empty 
polygon lists . This process is repeated until the root 
node is reached. The result is that each node of the quad 
tree has a list of polygons for its area of influence. 

The quad tree structure is especially useful in operations 
such as finding neighboring polygons. As the merge 
algorithm is applied at each node, a structure called a 
po[ytree (Figure 3) is constructed. Each node in the 
quad tree has its own polygon list which forms part of 
the poly tree . As shown in Figure 3, the father pointers 
in the poly tree point to polygons in the lists of quad tree 
nodes at higher levels of the quad tree. These polygons 
are the result of merging one or more polygons from 
lower levels of the quad tree. For example, the father 

Quadtree 

• 
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pointers of polygons 7, 8, 12, and 13 point to polygon 3 
which was created by merging 7, 8, 12, and 13. 

Finding neighboring polygons is an important part of the 
merge process on every level. Figure 3 also illustrates 
this process. To find the right neighbor of polygon 7, the 
algorithm is given a point immediately to the right ofthe 
right edge of polygon 7. The quad tree is descended until 
a quad tree leaf node or an interior node that contains 
this point (which is inside the right neighbor of 7) and 
has a single polygon in its list is located. The single 
polygon in the list of this node is a descendant of 
polygon 8 by virtue of its location on the height grid. 
Polygon 8 is located by following the father pointers up 
the partially constructed poly tree to a polygon in the list 
of the current quad tree node. The advantage of this kind 
of search is that it requires only O(log n) time, where n 
is the number of nodes in the quad tree. It is possible to 
search the polygon list of the quad tree node to find X 
without using the poly tree, but this is sequential and does 
not take advantage of available gains. Non-hierarchical 
networks must rely on more complex pointer schemes or 
sequential searches to find neighbors. 

pointer to polygon list 

• father pointers in quad tree 

• ~---->~[.'.'.~..j j D LJ~--~>[J 
leaflevD,....-------------~>: ...... · .. 1 

polytree leaf nodes 
with father pointers 

Figure 3. Relationship between the quad tree and the polytree. 
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Figure 4. The multiresolution polygon array 

When the merge phase is finished, there are two trees in 
memory: the quad tree and the poly tree (Figure 3). The 
quad tree leaves point to the leaves of the poly tree, and 
the poly tree describes the merge process. Following the 
father pointers of a leaf polygon up through the poly tree 
will bring one to a polygon in the list of the root node in 
the quad tree, which contains a list of all the "roots" of 
the poly tree. This list is the final polygonal description 
of the height grid at a given error tolerance. 

The output multiresolution polygon array is shown in 
Figure 4. This output list consists of two a1Tays. The 
first array is an index into the second, where all the 
polygons are stored. For each computed error tolerance, 
an integer stored in the first array specifies the starting 
position of the corresponding list in the second array. 
The second array is an anay of polygon structures. This 
array is filled with the polygon list in the root of the 
quad tree after each merge phase is completed for a 
specified error tolerance. 

2.2 Homogeneity Criteria 
The homogeneity criteria or measure of similarity used 
to merge neighboring polygons into a single, larger 
polygon is a function of the gradient. The X gradient is 
the average difference between the altitudes at the X 
limits of the polygon divided by the X dimension of the 
polygon (xdist) and the Y gradient is computed 
similarly. The difference between two polygons is 
simply the sum of the difference between their X 
gradients and their Y gradients. Any pair of adjacent 
polygons whose difference is less than the error 
tolerance specified by the user is considered mergeable, 
as long as the resulting polygon can still be described by 
only four data points as shown in Fit;ure 5. This means 

that either the X limits or the Y limits of the two 
polygons must be equal. 
The raw gradient measure is modified in such a way that 
critical lines are preserved. Instead of dividing by the X 
and Y dimensions of the polygon to obtain a slope as a 
measure of similarity, the absolute altitude change in the 
X and Y directions is used, as shown in the following 
equations which correspond to Figure 5. 

Xgr = «z2-z1) + (z3-z4» (1) 
Y gr = «z4-z I) + (z3-z2» (2) 
Grad Diff= IXgrl'l- Xgr1'21 + IYgrpI - Ygrpj (3) 

In Figure 5. polygon 1 has an X gradient of 7 and a Y 
gradient of -9. and polygon 2 has an Xgr of 15 and a Y gr 
of -11 . The gradient difference is 10, resulting in a merge 
if the error tolerance is greater than 10. This modi fication 
has little effect on the accuracy of the measure because 
adjacent polygons that satisfy the "X or Y limits equal" 

o(- xd;.'~ 

(3,5,16) (8,5,20) (8,5,20) (15.5,28) 

OI P2 

(3 ,13,12) (8,13,15) (8,13,15) (15,13,22) 

Figure S. Homogeneity I Gradient merge criteria. Polygons P1 and P2 merge to form P3 . 
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rule are usually either very close to or exactly the same 
size. The most important effect of this change is to 
preserve major features at high levels of the tree . This 
happens because not normalizing the absolute 
difference to a slope or surface normal allows large 
polygons whose surface normal directions differ by a 
certain amount to be much less similar than two 
smaller polygons whose surface normal directions 
differ by the same amount. This results in a greater 
resistance to merging already large polygons together, 
especially at low error tolerances. This ensures that 
critical features, such as ridgelines and canyons, do not 
get erased simply because the land surfaces on either 
side are uniform. Also, this procedure prevents the 
formation of large, highly non planar polygons. Of 
course, with sufficiently large error tolerances even 
this extra protection disappears. Even with very high 
tolerances, this algorithm still shows a remarkable 
tendency to preserve major topographic features . 

2.3 The Merge Process 
The merge phase generates a hierarchical description 
of the object surface. This hierarchical structure 
contains sufficient information to describe the object 
surface at varying levels of detail. Each node in the 
quad tree used to generate this structure consists of a 
bounding polygon and a list of contained polygons 
resulting from merges on lower levels, where lower 
levels correspond to higher levels of detail. The merge 
phase consists of applying the merge algorithm to each 
node of the quad tree whose sons have been merged 
until the root node is reached. The merge procedure for 
each node is described in part 2 of the algorithm below. 

At the beginning of the merge phase, the height grid is 
mapped to the leaves of the quad tree. The height grid 
is a surface discretely represented at 65536 points. Each 
quad tree leaf node is assigned four of these points, 
which are represented as four unit (I x I) polygons of 
uniform altitude. It should be noted that larger grids 
such as 120 I x 120 I DEM files are handled by 
subdividing the grid into 256x256 chunks and 
polygonalizing each chunk separately, then combining 
the roots of each of the poly trees as if each root were a 
child node of a larger tree. Likewise, irregular grids are 
handled by embedding them in a 256x256 grid with 
points outside the irregular grid set to zero altitude. 

The goal of the merge phase is to create a tree of 
polygons (poly tree) that allows leaf polygons to be 
merged into as few polygons as possible for a specified 
level of error. The merge algorithm is applied to the 
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height grid for each error tolerance of interest (a). In the 
merge algorithm, part 2 is initially called with the root 
node (b). Recursive calls are made to merge until a node 
is reached whose sons all have nonempty polygon lists 
(c). At the beginning of the merge phase, only the leaf 
nodes have nonempty lists. The root node is the last node 
to be merged. When merging a node, the algorithm first 
gets access to the polygon lists of the sons (d). The 
algorithm then checks the borders of the sons' areas of 
influence for mergeable polygons (e). The algorithm 
proceeds in a specific order when merging polygons 
from the four sons of a node. As shown in Figure 6, the 
first step is to merge polygons common to border A 
between son I and son 2_ Next, the polygons adjacent to 
border B between son 4 and son 3 are merged. Finally, 
the polygons common to border C between sons 1 and 2 
and sons 4 and 3 are merged (12-43 merge). This merge 
algorithm relies on the fact that tb only possible merges 
exist along the boundaries between child nodes (Figure 
6), because all possible interior merges are completed at 
lower levels in the tree. 

The two steps to merging are (1), identify polygons 
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along the boundaries of child nodes, and (2), perform 
the two merge tests on each adjacent pair of boundary 
polygons. Adjoining polygons are merged if they satisfy 
both the bounds check (their combination produces a 
rectangle) and the homogeneity criteria (f). If an attempt 
to merge two polygons fails, a flag is set in the polygons 
to remember this fact for future processing (g). All 
possible combinations of adjacent polygons along the 
borders are tested for mergeability (h). Once all the 
boundaries have been checked for possible merges, the 
current father (node being merged) goes into "child" 
mode so that its father may begin the merge phase. 

1 A 2 

c c 

4 B 3 

~ .~ .~ 
Node before merging After A and B edge merge After C edge merge 

Figure 6. Merge order lor 8 quad Iree node. Dart< lines represenl unmerged boundaries. 

A single pass of the merge algorithm produces a set of 
polygons that describe the surface at a single level of 
detail (i). This algorithm is used to polygonalize at 
multiple levels of resolution. The approach taken is to 
apply the basic merge algorithm for each error 
tolerance, and not re-merge nodes which have only one 
polygon in their lists after the previous merge pass (j). 
This procedure is surprisingly efficient, given that on 
the average over SO distinct levels of error tolerance are 
computed. The algorithm derives its efficiency from the 
fact that if a quad tree node contains a single polygon 
after the merge phase on a given level of error, any 
merges using higher error tolerances will also result in 
a single polygon remaining in the node. This fact makes 
it possible to avoid repeating work already done at 
lower levels of error tolerance and increases the 
efficiency of the algorithm considerably. (It takes about 
2.5 times as long to generate the entire multiresolution 
poly tree as it does to generate the zero tolerance 

structure in the single resolution case). This process 
continues until there is only one polygon in the root after 
a merge. At that point, any higher error tolerances would 
simply generate that same polygon, so further merges are 
pointless. 

2.4 Extension to triangular polygonalization 

When the irregular rectangular polygons are used to 
render the terrain, gaps appear at points where two 
rectangles are adjacent along the side of a third. The 
solution is to triangulate the set of points formed by the 
vertices of the rectangles to form a TIN [BARRS7]. 
Triangulation is simplified considerably by using a data 
set such as this, because no triangle ever crosses a 
boundary of a rectangle. As a result, each rectangle can 
be independently triangulated. Vertices that lie along the 
boundary of each rectangle are located in a local fashion 
using the poly tree and the neighbor finding procedure 
describedin Section 2.1. This means that this 
triangulation is much more parallelizeable than 
triangulation on a standard TIN. The Delaunay 
triangulation is applied to the collection of points found 
for each rectangle. 

Through experimentation, we found that an irregular 
rectangular polygonalization and a triangular 
polygonalization of a given terrain represent that terrain 
to the same level of accuracy with about the same 
number of polygons. This is advantageous, as triangles 
are guaranteed to be planar and occupy less memory per 
polygon. When an irregular rectangular polygon set is 
triangulated, about 3 times as many triangles are 
generated as there were rectangles. Since the accuracy of 
a triangular set is the same as a rectangular set of the 
same size, this means that a triangular polygonalization 
at a given error tolerance can be completely represented 
bya rectangu lar pol ygonal ization that contains about one 
third as many polygons . This is equivalent to a 2.5 : I 
lossless compression of the image, as determined by tests 
on numerous synthetic and actual terrains . 

Most importantly, one of the main problems facing 
conventional algorithms that rely on the Delaunay 
triangulation is the selection of data points that preserve 
important features . The rectangular polygon set 
preserves critical lines automatically by using smaller 
polygons in areas of high curvature. The irregularity of 
the rectangular set allows rich variation in the orientation 
of critical lines, since every 2-edge intersection point in 
the rectangular set provides a vertex for triangulation. 
Therefore, the set of vertices defined by the rectangles 

~
" ' ? 
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provides the type of data set needed by a triangulation 
algorithm, and in a way that allows highly parallel 
triangulation (normally a sequential operation). When 
used in this way, the polygonalization algorithm of 
Section 2 becomes a massively parallel feature detector 
for finding critical lines in an image represented by a 
height grid. This in itself is an important contribution of 
this work. 

Figures 7-9 demonstrate how critical lines are 
preserved even at high error tolerances. While Figure 8 
lacks the surface detail found in Figure 7, major features 
(such as ridges and canyons) are preserved. 
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2.5 Continuous resolution from TIN morphing 

The merge algorithm produces a polygonalization for a 
given level of error tolerance. When two 
polygonaJizations done at different error tolerances are 
rendered, it is easy to see visual differences caused by 
noncoincident polygons. This effect is unavoidable 
unless the error tolerances are close enough to make the 
difference negligible. This solution is not practical, as 
thousands of polygonalizations would have to be stored 
for a single terrain. This problem can be solved by 
interpolating between two meshes of differing error 
tolerance. This process is called TIN morphing. 

After the polylists for each level of error tolerance are 
built in the merge phase, they are linked together from 
low error tolerance to high error tolerance with pointers 
from polygons in polylists of lower error tolerance to 
positionally coincident polygons in polylists of higher 
error tolerances. For example, a polygon with XY 
coordinate (0,0) that is in the polylist of error tolerance 
T will point to the polygon with XY coordinate (0,0) that 
is in the polylist of error tolerance T + 1, as long as no 
polylists with error tolerances between T and T + 1 exist. 
If one polygon in list T coincides with more than one 
polygon in list T + 1, the polygon in list T is split and each 
of the resulting polygons are inserted into the list of T. 
Very few additional polygons are created by this 
operation. 

Once pointers exist between levels T and T + I , a 

Figure 10. Interpolated triangular mesh. 
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Continuous Resolution Rendering Algorithm 
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mapping from the vertices of T to the vertices of T + I 
can be created. This process is also parallel, since no 
vertex from level T that is on the border of or inside a 
polygon of level T + I will map to a vertex outside that 
polygon. This considerably reduces the number of 
possible mappings, resulting in a much faster algorithm. 
The X and Y positions of each vertex are linearly 
interpolated from the low error tolerance mesh to the 
high error tolerance mesh, and the Z position is taken 
from the original height grid. The Delaunay 
triangulation is applied to the collection of points found 
and interpolated for each rectangle on level T. 

This morphing technique provides visually continuous 
resolution, making a limited number of 
polygonalizations do the work of an infinite number of 
polygonalizations . 

3. Results 

3.1 Data Acquisition 

The two datasets used in this paper were acquired from 
topographical maps. The Timpanogos data came from 
USGS 15-minute series maps with 40-foot contour 
intervals, and the Banff data came from the equivalent 
Canadian series with lOO-foot contours. In both cases, 

digitized maps were converted to discrete height grids 
using a morphological contour interpolation program 
[BARRETI 94 (in review)] . These height grids were 
used as input to the polygonalization program to produce 
the results shown here. The Timpanogos grid is a single 
256x256 area (I km x 1 km) along the Timpanogos ridge. 
The Banff data is a 1700x2787 area (17 km x 12 km) 
centered on the northern end of Mt. Rundle. The data 
points in the Banff data are spaced about twice as far 
apart as those in the Timpanogos set, resulting in an 
increased area of coverage and resulting loss of detail. 
Sixty poly trees are merged to form the complete Banff 
mosaic, containing about 4.2 million polygons at the 
lowest level of tolerance. 

3.2 Parallel simulation 

One of the advantages of the polygonalization algorithm 
compared to other approaches is that it is massively 
parallel. This is because the polygonalization procedure 
has been reduced to a local problem by removing global 
geometric constraints on the location of the vertices. The 
quad tree and poly tree structures are used to exploit this 
massive parallelism. 

In the simulations of parallelism, it is assumed that each 
node of the quad tree is replaced by a processor and the 
links of the tree are replaced by dedicated 
communication paths from processor to processor. There 
are no intralevel data dependencies, so no processor 
requires data from another processor on the same level to 
complete its task. Processors can only communicate with 
their fathers or sons, if they exist. This type of 
parallelism is exploitable on almost any type of parallel 
machine, as the problem can be broken down into an 
arbitrary number of modules and communication 
requirements are negligible. Actual speedups would 
depend on memory access latency through the processor 
network and not interprocess communication. The 
algorithm shows a high tendency towards data 
parallelism in the lower levels of the quad tree with 
bottlenecking occurring at the high levels of the quad 
tree. 

The order of complexity of the algorithm depends on the 
type of terrain and the error tolerance. This is because for 
low error tolerances, the algorithm is dominated by 
polygon comparisons along the boundary lines of sons, 
and for high tolerances, the algorithm is dominated by 
the merging of single polygons on each level. For the 
fonner, the time increases by a factor of 2 on each level. 
This is because the length of the mergeable boundaries 
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increases by a factor of 2 on each level. Since the 
number of processors decreases by a factor of 4, this 
results in a low bound of O(";n) where n is the number 
of processors at the base of the tree . For the high error 
tolerance/smooth terrain case, the amount of time spent 
on each level is the same (if the tree merges the terrain 
to one polygon), so the high bound on the order of the 
algorithm is simply the number of processors divided by 
the number of levels in the tree, or nllog n. This 
corresponds well to the values found in the parallel 
simulations. Speedup for most of the tests falls in 
between these two values. 

Figure 11 . View of Banff 

Figure 12. Contours of Mt. Rundle 

3.3 Continuous resolution and critical line 
preservation 

The tendency of the algorithm to preserve critical lines 
is shown in Figures 7 and 8. Both of these figures show 
Mount Timpanogos in Orem, Utah. Figure 7 uses 
101,000 triangles, and Figure 8 uses 1,200. The 
ridgelines in both figures are nearly identical, while less 
important details on the face of the mountain have been 
lost in Figure 8. Continuous resolution is best 

. . ' -

41 

demonstrated using video media. Figure 10 shows an 
interpolated triangular grid. Distortion of the rectangular 
polygons from the lower tolerance level is evident as 
they are transformed to the corresponding polygons in 
the higher tolerance level. 

Figure 11 shows a view looking from the canyon west 
of Mt. Rundle towards Banff. Figure 12 shows part of 
the cleaned contours used to create the height grid of 
Banff. It should be noted that since the input data had 
100-foot contour lines, no details smaller than 100 feet 
are visible in the rendering. 

3.4 Execution time and hardware 

A complex (rough) 256X256 terrain is polygonalized to 
100 distinct levels of error tolerance in about 55 seconds 
on an HP750 workstation. Interpolating between two 
error tolerance levels takes about 12 seconds for an 
interpolation between 100,000 polygons and 40,000 
polygons, and less than a second for interpolations where 
the lower level has less than 8,000 polygons. This time 
includes drawing the polygonal mesh to an X window. 
Rendering 100,000 polygons using StarBase takes 8 
seconds on the workstation, which has no special 
graphics hardware. 

4. Conclusions 

This paper has described a new polygonalization 
procedure which makes essential use of a quad tree to 
construct a polygonal description of a discrete surface at 
multiple levels of detail. This procedure provides 
continuous resolution polygonalizations, is highly 
parallel, extracts and preserves critical lines 
automatically, allows rapid neighbor polygon searches, 
and provides easy access to any level of detail. This 
algorithm can also be used to automatically select the 
correct data points to preserve critical lines for 
triangulation algorithms. While automatic feature 
extraction has addressed this problem to some extent, 
this research presents a massively parallel critical feature 
extractor that extracts a set of points that can be 
triangulated in a highly parallel fashion. 

The hierarchical structure generated when 
polygonalizing the height grid at each level of error 
tolerance possesses distinct advantages over the 
sequential Delaunay triangulation. The most important 
advantage is the ability to select and locate polygons in 
the structure using a tree search (log n) instead of a 
sequential search (n). Modifications to the Delaunay 
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algorithm which rely on hierarchical models 
[DEFLORIANI 89] overcome this limitation, but at the 
expense of non-parallel tree construction. In addition, 
continuous resolution capability requires a hierarchical 
structure (Le., a poly tree) to link and describe the 
changes from level to level. Triangle-based algorithms 
can also do this, except that the result is not as 
accessible in terms of specific locations on the height 
grid. Also, continuous resolution allows interpolation of 
an arbitrary level of detail from a discrete number of 
hierarchically coupled polygonalizations, which avoids 
computation and storage requirements associated with 
conventional polygonalizations. 

The ability to have multiple levels of resolution on one 
display at the same time is a future research topic. Also 
of interest is the extension of this algorithm to three­
dimensional anatomical structures in medical imaging, 
such as skulls. 
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