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Abstract 

Stochastic models are often economical to generate but 
problematic to render. Most previous algorithms first 
generate a realization of the stochastic mo?el and then 
render it. These algorithms become expensive when the 
realization of the stochastic model is complex, because 
a large number of primitives have to be rendered. In 
stochastic rendering we also model the intensity as a ran­
dom field, and the statistics of the intensity field are re­
lated to the statistics of the stochastic model through 
an illumination model. Stochastic rendering algorithms 
then generate a realization of the intensity field directly 
from these statistics. In other words , a random com­
ponent is shifted from the modelling to the rendering . 
This paradigm is not entirely new in computer graphics, 
so related work will be discussed. The main contribu­
tion of this paper is a stochastic rendering algorithm of 
gaseous phenomena modelled as random density fields 
such as clouds, smoke and fire . A simplified version of 
the scattering eq uation is used to derive the statistics 
of the illumination fi eld. Our algorithm is therefore an 
improvement over similar algorithms both in terms of 
computational speed and generality. 

Le rend u de modeles stochastiques est sou vent 
problematique. La plupart des algorithmes exist ants 
gene rent d 'abord une realization du modeJe stochas­
tique avant le rendu. Ces algorithmes deviennent cou­
teux dans le cas ou le modele est complique a cause 
du grand nombre de primitives qui doivent et re rendues. 
Dans la methode du rendu stochastique nous modelisons 
l 'intensite comme un champs aleatoire, les statistiques 
du champs d'intensite sont calculees a partir des statis­
tiques du modele stochastique en utilisant un modele 
d'illumination . La methode du rendu stochastique genere 
un e realization du champs d 'intensite directement a par­
tir de ces statistiques. En d 'autres termes la composante 
stochas tique est translatee du modellage au rendu . La 
contribu tion majeure de ce papier consiste en un algo­
rithme pour le rendu de phenomenes gazeux t els que les 
nuages, la fum ee et le feu. 

K eywords: stochastic modelling, simulation of gaseous 
phenomena, scattering equation, solid tex­
tures, ray tracing . 

1 Introduction 
The use of stochastic models to capture the complex­
ity of natural phenomena is well established in computer 
graphics. Phenomena such as terrain , oceans and clouds 
have all been successfully modelled using this approach . 
Most research in this area in the past has focused on 
developing algorithms that generate a realization of the 
stochastic model. For example, a realization of a frac­
tal terrain is given by a set of con nected triangl es (4). 
In general , the realization is a set of simple geometric 
primitives which can be rendered using a standard ren­
dering algorithm . The cost of the rendering is therefore 
directly related to the complexity of the realization . For 
complex phenomena this m eans that the renderi ng can 
become prohibitively expensi ve . To avoid this computa­
tional explosion we propose a different approach in ren­
dering stochastic models, based on the observation that 
the intensity field resulting from the interaction of light 
sources with the stochastic model is random. Therefore , 
this random intensity fi eld can also be described by a 
stochastic model. The statistics of the intensity field are 
related to the statistics of the phenomenon through an il­
lumination equation . Thus , an image of the phenomenon 
can be computed by generating a realization of the inten­
sity fi eld directly from its statistics. We call this approach 
stochastic rendering. In other words, instead of perturb­
ing the model, we perturb the intensity in ~ way. wh~ch 
is consistent with both the model and the IllummatlOn 
equat ion. 

We shall apply this paradigm to the efficient render­
ing of gaseous phenomena modelled as random density 
fields: functions that assign a random density to each 
spatial location . Clouds , for example, are modell ed as a 
density of water vapour. Previous algorithms generate 
realizations of the density fi eld by using either procedu­
ral models (14) or spectral methods (20). The realization 
is then sampled on a three-dimensional lattice and ren­
dered using a volume-tracer. Efficient single-scattering 
volume tracers have been developed by Ebert (3) and 
Sakas (16) . The effects of multiple-scattering can be c.al­
culated prior to volume tracing at the expense of an m­
crease in computation time. Rushmeier et al. describe 
a radiosity-based algorithm for density fields having con­
stant scattering properties (1 5). Kajiya et al. describe 
a more general multiple-scattering algorithm based on a 
decomposition of the intensity fi eld into spherical har­
monics [10], however very few details are given about the 
implementation . For scenes containing complex gaseous 
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phenomena such as a typical sky on a partly cloudy day, 
these algorithms become very expensive in terms of both 
computation and storage. Consequently, more efficient 
algorithms are needed. In this work we describe one so­
lution, a stochastic rendering algorithm for random den­
si ty fields. To get a tractable algorithm we separate the 
intensity fi eld into both a direct and indirect component. 
The statistics of the direct intensity field are calculated 
using the scattering equation from radiative transfer. We 
use the fact that indirect intensity usually has low vari­
ance and can therefore be calculated using only average 
properties of the density field . Under these conditions an 
efficient rendering algorithm can be derived . 

This paper will be divided into eight sections. In Sec­
tion 2 we will review the basic theory of random fields 
in order to precisely define the statement "statistical de­
scription". Section 3 describes the stochastic rendering 
paradigm in more detail and refers to related work . In 
Section 4 we will delineate the statistical model used to 
model random density fields . In Section 5 we will briefly 
state the scattering equation and specify our simplifying 
assumptions. Section 6 explicates our new algorithm . In 
Section 7 we will summarize results obtained. Conclu­
sions and further work will be discussed in Section 8. 

2 Random Fields 
In this section we precisely explain the notions of random 
field and statistical description . A random field R(x) is a 
function that assigns a random variable for each spatial 
position x = (x, y , z). Particular instances of the random 
variables defin e a (real) function known as a realization 
of the random field. A random field is entirely defin ed 
if the sequence of distribution probabilities Fn (n ~ 1) of 
its realizations is specified: 

Fn(TI,Xlj . •. jTn, X n ) = Prob(R(xi):::; Tj , i = 1, ... ,n). 

In practice, however , there is neither a way to find this 
sequence, even for finite n, nor a need for this since a 
random field can be described by its statistical moments. 
These moments are obtained by averaging over many re­
alizations R(I ), ... , R (N): 

N 

(R(x)) = lim NI '" R(n\x) . 
N - oo ~ 

n=1 

The most important statistical moments of a random 
field are its m ean R and its covariance K R given by 

R(x) 

KR(x'jx") 

(R (x)) and 

(R(x')R(x")) - R(x')R(x" ). 

The mean is the average value at each point and the co­
variance is the amount of correlation between two points . 
The spread around the mean is given by the variance 
O"k(x) = K R(X; x) . In practice, the mean and the co­
variance are enough to fully characterize a random field . 
It is customary in computer graphics [13] to assume 
that higher-order moments are irrelevant for visual mod­
els. In this paper a statistical desc ription refers to the 
specification of these two moments . In case the covari­
ance depends only on the difference between two points , 
the random fi eld is homogeneous. Homogeneous random 

fields are useful because they have a representation in 
the frequency domain . This is desirable since efficient 
algorithms based on the fast fourier transform exist to 
generate such random fields [20]. The drawback, how­
ever, is that homogeneous random fields have a constant 
mean and variance . Many phenomena that exhibit large 
scale variations cannot therefore be modelled by homo­
geneous random fields. In this work we consider non­
homogeneous random fi elds that are simple transforma­
tions of homogeneous random fields , specifically random 
fields of the form 

R(x) = f(x) + g(x)Q(x) , (1) 

where Q is a homogeneous random fi eld with zero mean 
and covariance K Q(x'j x") = K Q(x" - X' j 0). The deter­
ministic functions f and 9 are used to model a desired 
mean and variance . A simple calculation shows that the 
mean and covariance of the transformed field are equal 
to 

R(x)=f(x) and K R(X' ; x")=K Q(x'~x' )g(x')g(x" ). (2) 

In particular the variance is given by O"k(x) = l(x). A 
random fi eld with an arbitrary mean and variance can 
therefore be modelled by choosing the fun ctions f and 9 
accordingly. We have chosen this particular transforma­
tion as it gives us total control over both the mean and 
variance. We will now discuss the use of random fi elds in 
rendering. The temporal behaviour of the random fi eld 
can be modelled by allowing the functions f and 9 to 
vary over time and by specifying the temporal statistics 
of the homogeneous perturbation Q. 

3 Stochastic Rendering 
In general , the intensity of light at a given poin t is a 
function of the geometry of the scene, the initial light­
ing conditions (light sources), the refl ective properties of 
surfaces and the scattering properties of a participating 
medium [9] . If any of these parts is random, then the 
resulting intensi ty fi eld will also be random. The statis­
tical description of the intensity fi eld is a function of the 
statistical descriptions of the parts (via the illumination 
model used) . In cases when this statistical description 
can be established , a realization of the random inten­
sity fi eld can be computed. In many instances this will 
result in an effici ent rendering algorithm. To our knowl­
edge no work has been devoted in computer graphics to 
calculating these statistics, except for the derivation of 
reflectance models for surfaces. Following is a brief dis­
cussion of these models. 

Many refl ectance models for surfaces are deri ved using 
a statistical description of the surface. Us ually only the 
mean value of the intensi ty refl ec ted from the surface is 
calculated. Torrance and Sparrow model the surface by 
a random distribution of normals [1 9]. Their model has 
been used in many local illumination models. The flu c­
tuations around the mean are usually accounted for by 
adding an arbitrary value through a texture map or by 
perturbing the mean normal of the surface [1] . Recent ly 
He et al. generalized the work of Torrance and Sparrow 
to a wave-physics description of light [7] . The only work 
in computer graphics which addresses th e problem of cal­
culating the covariance of the refl ected intensity fi eld to 
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our knowledge is the work of Krueger [12]. His calcu­
lations become tractable for certain idealized situations 
(e.g., planar surfaces). The inclusion of the covariance 
in a reflectance model remains, however, an unexplored 
area of research in computer graphics. This is due mainly 
to the mathematical complexity of the task. 

In the case of volume rendering, attempts to calculate 
the statistical description of the intensity field have not 
been published. However, Gardner's algorithm to render 
clouds has the semblance of a stochastic rendering algo­
rithm in that he perturbs the transparency rather than 
the density of the clouds [5]. Therefore randomness is 
added in the rendering instead of in the modelling as in 
our algorithm. His model is heuristic and is not based on 
any well established equation that describes the trans­
fer of light in density fields. Instead Gardner's model 
is a modification of a standard illumination model for 
surfaces. Because his algorithm is surface based it has 
some shortcomings. For example, objects cannot disap­
pear smoothly through his clouds. Recently Kaneda et 
al. have used Gardner's model in conjunction with their 
atmospheric illumination model [11]. They have rendered 
the most realistic pictures of clouds to date. 

In this paper we explore only a small set of the pos­
sible applications of stochastic rendering. For example, 
algorithms could be devised to deal with random light 
sources. 

4 Statistical Description of the Den-
sity Field 

Complex gaseous phenomena are conveniently modelled 
by a random density field, a function which assigns a 
random density variable p(x) to each spatial location x. 
In order to define the random density field, both its mean 
and covariance must be specified. 

The mean describes the large scale variations ("global 
shape") of the density field. A natural model for the 
mean is therefore a smooth function. Many choices are 
possible, from splines to interpolation schemes. In this 
work we choose to model the mean as a smooth blending 
of scattered data values, so that the model can be used 
both in design and visualization. In design the data is 
provided by a user, thus allowing control over the global 
features of the density [17]. In visualization the data is 
sampled using a measuring device. More formally, given 
values for the masses mi at n points Xi, the mean is given 
by: 

n 

p(x) = L miW(X - Xi) = LPi(X), (3) 
i=} i=l 

where W is a smooth blending function satisfying 
J W(x) dx = 1. A similar mean is obtained if we model 
the density as a sum of n random fields Pi with each 
having a mean Pi' In other words, the random field can 
be seen as a weighted sum of "random blobs". For our 
purposes this interpretation is very convenient. Conse­
quently, we describe the covariance functions of each blob 
instead of the covariance of the entire density field. We 
want the variance of each blob to be proportional to its 
mean. A natural choice then, is to make the variance 
directly proportional to the mean: O'~,i = (Pi' With this 

53 

AJlA 
choice, variations tend to become too large near the cen­
tre of the blob which is unrealistic. We expect the vari­
ance to drop off with the mean but to not grow to exceed­
ingly large values. We can avoid the latter by "clamping" 
the values of the mean: O'~,i = (Fry(p;). The clamping 
function is defined as: 

if t < 1/ 
otherwise. 

Figure 1 shows the effect of the clamping function on 
the resulting random blob. The cutoff parameter 1/ and 
the magnitude ( are either provided by a user or are esti­
mated from data. We assume that the random blobs are 
transformations of a single homogeneous random field Q 
(see Eq. 1): Pi = Pi + 0' p,iQ. The covariance of each blob 
therefore has the following form: 

Kp,i(X';X") = KQ(x" - X')O'p,i(X')O'p,i(X"). (4) 

We assume that the covariance of the homogeneous ran­
dom field Q is a gaussian with standard deviation a:! 

1 ( IIXII2) K Q(x) = ~ exp ---2 . 
(h)2O'3 20' 

(5) 

Realizations of homogeneous random fields with a gaus­
sian covariance are easy to generate, because the fourier 
transform of a gaussian is well defined [20]. 

5 Illumination Model 
In this section we describe the illumination model that we 
use to derive the illumination field statistics. We begin 
with a brief statement of the scattering equation. 

5.1 The Scattering Equation 
A density field alters the intensity of light using three 
effects: absorption, scattering and emission. To describe 
how these effects alter the intensity of light along a ray, 
consider a ray Xu = Xo - us with origin Xo and direction 
-s. The light at point Xo shining in direction s is the 
sum of two contributions [8]:2 

l(xo,s) = reO, b)l(Xb,S) + lb reO, u)p(Xu)KtJ(xu,s) du o 

(6) 
The first term is the proportion of light emitted at point 
Xb that is not absorbed or scattered in other directions 

! This assumption is significant in Section 5.2 of this paper . 
2 All functions in this section are understood to be wavel ength 

dependent. 
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by the density field. The attenuation factor r is called 
the transparency and is given by 

(7) 

where "t is quantity characterizing the amount of light 
that is absorbed or scattered per unit length. By defi­
nition, the transparency has values between zero (total 
opaci ty) and one (total transparency). The second term 
accounts for the intensity of light due to the density field. 
The function J, the source function, describes the in­
crease in intensity at each point. This is due to both the 
emission and scattering oflight from other directions into 
the direction of the ray : 

J(x,s) = (1 - n)E(x) + E..l p(s,s')I(x,s') dw'. 
411" 4". 

The function E denotes the emission of intensity by the 
density, such as in the case of a fire. This is usually 
proportional to the density. The second term on the 
right hand side is an integration of all incoming intensity 
from all possible solid angles. The function p is called 
the phase function and models the spherical distribution 
of scattered light. The factor n E [0,1] known as the 
albedo gives the fraction of light that is scattered. We 
can rewrite Eq. 6 in terms of the transparency only by 
defining the average source fun ction along the ray by: 

l(xo,s) = JOb r(O , u)p(Xu)"t1 (Xu, s) du 

t r(O , u)p(Xu)"t du 

Job r(O , u)p(Xu)"tJ(Xu, s) du 

1-r(0, b) 
(8) 

With this definition the intensity of light reaching point 
Xo along the ray can be expressed as a linear combination 
of the background illumination I (Xb, s) and the average 
source function along the ray: 

I(xo ,s) = r(O,b)I(xb,s) + (1- r(O,b))l(xo,s). (9) 

Following we describe the statistics of this equation. 

5.2 Statistical Equations 
Because the density field is random, the transparency 
and the average source function in Eq. 9 are also ran­
dom. To derive the statistics of the transparency, we 
make the assumption that all rays originate from the xy 
plane and that their directions are in the positive z di­
rection: Xu = (xo, Ye, u) . In other words , we assume an 
orthographic projection. The integral in the equation of 
the transparency (Eq. 7) then becom es a function of the 
location (xo, yo) in the xy plane: 

T(xo,yo) 
[b n b 

l/(xo , Yo , u) du = L Ipi( xo, Yo, u) du 
° i=1 ° 
n 

LTi(XO , ye). 
i=l 

. . " 

Each integral Ti is a random field which has a well defined 
mean and covariance [6]: 

1'\(xo , ye) = 1b Pi(XO, Yo, u) du , 

b b' 

KT,i(XO, yo; Xl , YI) = 1"1 Kp,i(Xo,yo,U; Xl ,Yl ,Ujdudu'. (10) 

In other words , the mean and covariance of Ti are di­
rectly related to the mean and covariance of the density 
Pi through an integral . Using the fact that the covari­
ance of the homogeneous random field Q is gaussian , the 
covariance of the integral Ti becomes (see Eq. 4):3 

KT,i( XO , Yo; Xl, Yl) = K Q(XI-XO , YI-YO, 0) X 

tr' 1
o 

lo K Q(O, 0, u~ U)O" p,i (xo, Yo , U)O" p, i (XI, YI, u') dudu' 

;::: K Q(Xl-XO, YI-YO , 0)1; p,i (xo,yo, U)O" p,i (XI,y!,u)du. (11) 

Eq. 11 depends on the fact that the support of the covari­
ance K Q is much smaller than the support of the variance 
O'~ , i : 

b' 

1 KQ(O,O,U'-U)O"p,i(XI,YI,U') du';::: O" p,i(XI,YI,U). 

In the limiting case where the covariance is a delta func­
tion the above relation is exact. Equation 11 demon­
strates that the spatial structure of each integral Ti is 
essentially the same as the spatial structure of a "slice" 
of the density field. They differ in t hat they have a dif­
ferent mean and variance. In particular the variance is 
given by : 

In case both the mean and the covariance are com­
putable, then a realization ti°) for each of the integrals 
can be generated: 

ti°)(xo, ye) = 'l\(xo , ye) + O"T,i(XO , yo)Q(O )(xo , Yo, 0) , 
(13) 

where Q ( O) is a realization of the homogeneous random 
fi eld. A realization for the transparency is then equal to 

exp(-"tl:7=1 ti°)(XO , Yo) ). In the next section we will 
describe an efficient computation of the mean and the 
vanance. 

The statistics of the average source function are 
tremendously more complicated to calculate. In this 
work we will assume that the average source func­
tion is only a function of the average of the density 
field. There are good justifications for this assumption. 
First , the average source function is in fact a convolu­
tion of the source fun ction by the "weighting" functi on 
r(O ,u)p(xu)"t along the ray. Second, the source fun c­
tion itself involves an integral accounting for scattering 

3 We use t he multiplicative prope r ty of a gaussian : 
KQ (x, y ,z) = K Q(x,O , O) K Q(O,y , O)KQ(O,O,z) . 

~ 
...... ,-... ..,: . 
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Figure 2: Geometry of Ray and Blob 

from different directions . This scattering acts to smooth 
the intensity field. In fact it is sometimes modelled as a 
diffusion process [8]. The same smoothing phenomenon 
due to indirect illumination is also observed in radiosity 
environments [2]. 

6 Implementation 
In this section we give an efficient algorithm to calculate 
both the mean and the variance of the integrals in the 
transparency. We also give an algorithm to calculate the 
average source function from the mean density field. 

6.1 Calculation of the Transparency 
We assume that the smoothing kernel that defines the 
mean density (see Eq. 3) depends only on the magnitude 
of its argument W(x) = W(lIxll). In this case the integral 
of the mean of each blob only depends on the distance di 
of the ray to the centre of the blob. Refer to Figure 2 for 
the geometry of the situation. Let Ui be the parameter 
value of the point on the ray closest to the centre of the 
blob. The integral is then given by: 

7\ mi1bw(Jd7+(U-uiF) du 

mi (Table[di , b - u;] - Table[di , 0 - Ui]) . 

The table is computed for discrete values prior to render­
ing: 

Table[d, x] = 1% W ( J d2 + u2 ) duo 

The integral can then be evaluated efficiently by interpo­
lating entries in this table. In order to calculate the vari­
ance, a clamped version of the mean density must be inte­
grated (see Eq. 12). Let ui and ut be the two parameter 
values on the ray between which the mean density of the 
blob is clamped, i.e., for which mi W(llxu - xiiI) = 1/ (see 
Figure 3) . These values may not be defined in case the 
maximum of the mean is smaller than the clamping value, 
in which case we set ui = ut = Ui . The integral can be 
computed by integrating over each interval separately: 

r;rlPi(xu)) du =l~~(xu) du +j;tdU + r;i(XU) du = 
lo· 0 "i J~t 
mi (Table[di , ui - u;] - Table[di, 0 - u;] + (ut - Un1/+ 

Table[di, b - u;] - Table[di, u+ - UiJ) . 
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Figure 3: Clamping of the Blob 

distance 

Figure 4: Variance (T~ i versus the distance di for different 
values of the clamping value 1/ 

In Appendix A we give complete equations for the case 
where the smoothing kernel W is gaussian. Realizations 
of the integrals Ti can therefore be generated efficiently 
using Eq. 13: 71°) = '1\ + (TT,iQ(O) (xu ,) . The choice of 
xU; (the point closest to the centre of the blob) guaran­
tees that the perturbation is sampled on a plane for each 
frame and that the samples are chosen coherently from 
frame to frame. The latter is important in animated 
sequences in which the viewing conditions change. In 
Figure 4 we show plots of the variance (T~ i versus the 
distance to the centre of the blob di for different values 
of the clamping value 1/. As expected, the growth of the 
variance becomes smaller for small values of the distance, 
i.e., when the ray is near the centre of the blob. The plain 
line indicates no clam ping and is equal to the mean '1\. 
It is interesting to note that Gardner arbitrarily varied 
the threshold of his transparency function in a similar 
way. To derive the statistical description of the integrals 
Ti , we have assumed that the viewing rays are parallel. 
This is of course not the case in most practical situations. 
However, if the size of each blob is small with respect to 
the image, then the rays emanating from a point are ap­
proximately parallel across each blob. 

6.2 Calculation of the Average Source func­

tion 

As we stated in Section 5.2 we assume that the aver­
age source function 7 (xo , s) (see Eq. 8) depends only on 
the mean density. We can therefore directly use the ren­
dering algorithm described in [18] which renders density 
distributions modelled as a weighted sum of blobs of the 
type given in Eq. 3. The rendering algorithm assumes 
single-scattering. We refer the reader to reference [18] for 
a description of the algorithm. 
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6.3 Overview of the Algorithm 
Following we give an overview of our stochastic rendering 
algorithm. This algorithm can be implemented directly 
into a standard ray tracer. For each ray, the intensity 
of light J (Xb, s) in absence of a densi ty field is calculated 
using a standard ray-tracer. This illumination is then 
attenuated and the light created within the density fi eld 
is added to it as follows : 

T z 0 
Lb = J(Xb, s) 
for each blob intersecting the ray do 

Calculate av_T '" 7\ and sigma_T = UT,; 

Sample Q at midpoint : Q = Q(O) (x".) 
Update integral: T = T + av_T + sigma_T*Q 

end for 
Calculate transparency : tau = exp (-"t*T) 
Calculate av_J '" J(xo,s) from mean density 
field using the algorithm described in [18] 
Combine: I = tau*Lb + (1-tau)*av...J 

In cases when a shadow ray is computed, only the trans­
parency tau must be calculated. The complexity of this 
algorithm is O( n), where n is the number of blobs. Unlike 
volume rendering algorithms, our algorithm is therefore 
independent of the resolution of the random perturbation 
of the density field . On average our algorithm can be im­
proved by an order of magnitude by grouping the blobs 
together into a hierarchical data structure of bounding 
volumes (18). In the next section we describe results ob­
tained using our algorithm. 

7 Results 
We implemented the stochastic rendering algorithm into 
a standard ray-tracer. Prior to rendering, we precom­
pute the tables for the transparency and we generate a 
realization of the homogeneous random field Q. The lat­
ter is generated using an inverse spectral method [20] . 
This method has the advantage that the resulting real­
ization can be defined and is periodic on a regular three­
dimensional lattice. Therefore it can be evaluated effi­
ciently using trilinear interpolation and is defined for all 
points in space. The artifacts caused by the periodicity 
of the field are not visible in our images because the field 
is used only to perturb the illumination. We used a table 
of size 32 x 32 x 32 in all of our results. A user has control 
over the shape of the density field by specifying the po­
sition, centre and mass of each blob of the mean density 
(see Section 4). The perturbation is controlled by provid­
ing the magnitude ( of the variance, the clamping value 
1/ and the co variance function of the homogeneous field 
Q (standard deviation Q', see Eq. 5). The illumination 
properties of the density field are defined by the follow­
ing parameters: the extinction coefficient "t, the albedo 
n and the emission function E (see Section 5.1). In all 
the results we have assumed a constant phase function 
p, i.e., scattering is constant in all directions. Next we 
specify some of our results obtained using the stochastic 
rendering algorithm. 

Clouds. We model clouds in a way similar to Gard­
ner. An individual cloud is generated by randomly plac­
ing blobs in an ellipsoid provided by a user . The size and 

mass of each blob are made inversely proportional to their 
distance from the centre of the ellipsoid to ensure that the 
density is maximum in the centre of the cloud. Clusters 
of individual clouds can be generated by randomly gener­
ating such ellipsoids. In Figure 5 we show four pictures of 
the same cloud with different values for the magnitude ( 
and the clamping value 1/ . Clouds in the left column have 
a lower perturbation than the ones on the right ; and the 
ones on the bottom have a lower threshold value than the 
ones on the top . Figure 6 shows one of the clouds with 
self shadowing, two different clusterings of such clouds 
and an areal view of downtown on a foggy day. Clouds 
are characterized by a high amount of scattering, there­
fore we have set the albedo close to one and have used a 
non zero value for the emission function , in an attempt 
to model multiple-scattering. Figure 7 shows four fram es 
from an animated sequence of a cloud interacting with 
Toronto's CN Tower. This demonstrates that our model 
handles the interaction of clouds with solid objects. This 
is an improvement over Gardner's illumination model. 

Fire. We have used our algorithm to simulate fire. The 
flame in Figure 8 was modelled using 14 blobs with dif­
ferent emission parameters. The emission values drop off 
as a function of the distance of the flame . We have also 
changed the colour of the emission for higher realism. 
The smoke on the top of the flame has zero emission and 
is therefore a perfect absorber. The albedo was set to 
zero . The illumination of the flame onto the walls and 
the floor was modelled by placing 5 point light sources 
within the flam e. Note the random patterns generated 
by the sources. 

The rendering times are of the same order of magni­
tude as the computation of the average source function 
[18]: one to ten minutes for a typical fram e (640 x 480) 
on an Iris Indigo. 

8 Conclusions and Further Work 
In this paper we have presented a new algorithm to ren­
der random density fi elds. Our algorithm is based on 
a new paradigm called stochastic rendering. Instead of 
generating the random density field and then using vol­
ume rendering, we derive the statistics of the intensity 
field from the statistics of the density field . From this 
statistical description we then generate a realization of 
the intensity field directly. This has the advantage that 
only a few random samples have to be evaluated , ver­
sus the many samples needed in the case of volume ren­
dering. Our results demonstrate that many interesting 
density distributions can be modelled and rendered effi­
ciently using our algorithm . Our algorithm is also an im­
provement over similar algorithms since it does not have 
the artifacts and drawbacks of Gardner's surface-based 
model. However, we needed to make certain simplify­
ing assumptions in order to get a tractable algorithm. 
Our algorithm therefore is not as general as the more so­
phisticated volume renderers . Improvements of our algo­
rithm will be the focus of future research. This includes: 
modelling of multiple-scattering, deriving the statistics 
for a perspective projection and calculating the statisti­
cal description of the average source function . Generally 
speaking, the calculation of the statistics of an intensity 
field is a difficult task . The lack of such descriptions for 
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surface reflectance models demonstrates this. There are 
still many other applications of the stochastic rendering 
paradigm which have not yet been explored. For exam­
ple , the illumination from flickering light sources has not 
been studied to our knowledge. 
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A Integrals for a Gaussian Smoothing 

Kernel 
Let W be a gaussian with standard deviation h: 

Wh(X) = 1 exp (_IIXII2) . 
(27r)~ h3 2h2 

The mean integral '1\ for each blob is given by: 

In this case the table is one-dimensional because of the 
multiplicative properties of the gaussian . The function <I> 
is defined as: 

<I>(u) = l u 

exp (-f) dt . 

The values of ui and ut for which the gaussian is equal 
to the clamping factor 1] are given by u~ = u; ± ~u; , 
where: 

~u; = 
(

m; (d; )) 210g "l exp --h2 • 
(211') 2 h31] 2 
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Figure 5: Figure 7: 

Figure 6: Figure 8: 
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