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Abstract 

Pixel-trace filtering is an efficient anti-aliasing tech­
nique for sequence animation because its computa­
tion cost is constant regardless of scene complexity. 
Although it works well in simple cases, it has short­
comings with steady objects, moving shadows, re­
flective/refractive objects, and deforming objects. 

This paper significantly improves pixel-trace fil­
tering and eliminates all these restrictions. Jittered 
sampling is introduced to eliminate the aliasing ex­
perienced with steady objects. Beam/pencil trac­
ing techniques are applied to reflective/refractive 
objects. The G-buffer scheme is adopted to deal 
with moving shadows and deforming objects. Sev­
eral experiments demonstrate that our improve­
ments successfully eliminate the restrictions. It is 
also shown that the temporal-filtering feature of 
pixel-trace filtering is advantageous for flicker re­
duction, and an appropriate filter size is suggested 
based on human flicker perception. 

With these improvements, pixel-trace filtering 
becomes a powerful anti-aliasing method, and we 
believe that it can be a standard anti-aliasing tech­
nique for computer animation. 

Keywords: Anti-aliasing, Spatio-temporal 
filtering, Computer Animation, Flicker Perception 

1 Introduction 

Because sampling techniques are used in computer 
image synthesis, aliasing artifacts are unavoid­
able whenever the sil-mpling rate is insufficient. 
A simple, but successful anti-aliasing technique 
is stochastic super-sampling [DIPPE, COOK86], 
where several stochastically selected points are 
sampled in each pixel area. 

A major problem of this technique is its high 
computational cost, which is proportional to scene 
complexity (e .g., the number of polygons) and the 
number of samples. Ironically, complex scenes usu­
ally contain high frequency information, which re-

quires a high sampling rate. This makes the tech­
nique extremely expensive for complex scenes. 

The author proposed a constant-time anti­
aliasing algorithm with respect to scene complexity 
for animation sequences [SHINYA931 . The algo­
rithm traces image points through the image se­
quence using animation information, and collects 
sub-pixel information for filtering. It works well in 
simple cases, such as walk-through scenes without 
reflection/refraction, but involves several restric­
tions, as pointed out in [SHINYA93]. 

Correlated motion When object motion is cor­
related with the sampling pattern, aliasing ar­
tifacts cannot be removed. A typical example 
is an object that remains at the same screen 
position. 

Refraction/reflection In the case of refrac­
tion/reflection, the basic algorithm cannot 
trace the image points because conventional 
ray traces do not provide transformation be­
tween the screen and the object space. 

Temporal change of object brightness 
Since the algorithm assumes constant object 
brightness over time, brightness changes cause 
some artifacts. For example, shadows of mov­
ing objects become blurred by the filtering . 

Object Deformation Since the basic algorithm 
relies on a simple linear motion, deforming ob­
jects cannot be managed. 

These limit the practical application of the pixel­
tracing filter . 

This paper provides practical solutions to the 
above eroblems. First, the jittered sampling tech­
nique lDIPPE, COOK86] is applied to the algo­
rithm to eliminate the correlation between motion 
and sampling. Second, the beam and pencil tracing 
approach [HECKBERT, SHINYA87] is adopted to 
trace refracted/reflected image points . Third, the 
G-buffer scheme [SAITO] is introduced to handle 
temporal brightness changes. Theoretical studies 
and experiments confirm the efficiency of the algo­
rithm. Finally, we will discuss human flicker per­
ception and flicker reduction by the pixel-tracing 
filter . 
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Figure 1: Basic idea of the pixel-tracing filter. 

Review of the pixel tracing 
filter 

This section briefly reviews the basic idea and theo­
ries of the pixel tracing filter . Details can be found 
in [SHINYA93J. 

2.1 Basic idea 

Animation sequences usually have strong correla­
tion between successive frames. The most typical 
situation is that image points in a frame move along 
a velocity field, called an optical flow. Through 
such sequences, the same images are repeatedly 
sampled at slightly different points in different 
frames. This allows us to reduce aliasing artifacts 
by spatio-temporal filtering. 

Consider the situation shown in Figure 1, where 
the initial image fo is moving through the sequence. 
In the figure, the grids show pixel areas and the 
circles indicate sample points. The image motion 
can be described by flow function X. When the 
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image point Xo at to moves to Xl at tb flow X is 
defined as 

X(t1; Xo, to) = Xl · 
Using X, the image sequence can be represented by 

f(x,t) = fo(x(to;x,t)). (1) 

Eq. 1 also means that sample (x, t) is identical 
to sample (X(to; X, t), to). Thus, sampling at i j at 
t = to + j is equivalent to sampling at X( to; ij , to + j) 
at t = to. In the example, all Xj = X(to; ij, to + j) 
are located at the same pixel area, and their average 

n 

j j 

reduces aliasing just as super-sampling with box 
filtering does. 

A bil$ advantage in computer generated an­
imation 1S that we can calculate exact image 
motion from animation data, which allows effi­
cient anti-aliasing, as well as image compression 
[WALLACHJ. 

2.2 Theories 

The basic idea can be formulated in the following 
way. We assume that the image sequence is a de­
formed pattern of the initial image, as defined by 
Eq. 1. Pixel-tracing filtering can be then repre­
sented as 

h(xo, to) = JT

/

2 ! f . (x, t)g(x, t)dxdt, 
-T/2 

(2) 

where f s(x, t) is the sampled image sequence of 
f(x, t), and g(x, t) is the spatio-temporal filter ker­
nel, described by 

g(x, t) = (1/T)w(xo - X(to; X, t))(8xI8x ), 

where w( x) is a desirable anti-aliasing filter. The 
filtering result can be calculated as 

n,m 

hn,m ! w(xo - x')fo(x')dx' 

J
T / 2 

x exp(m3x(t'; x', to)) 
-T/2 

x exp( zmOt')dt' IT, 

where 3 and 0 are the spatial and temporal sam­
pling frequency, respectively. 

Obviously, 

ho,o = ! w(xo - x')fo(x')dx'. 
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When the filter size T tends to infinity, 

lim hn f1l 
T-+ oo I 

J w(xo - x')fo(x')dx' (3) 

x (lim(l/T)Kn( mll; x'», (4) 

where Kn is the Fourier transform of the function 
kn' 

kn(t; x') = exp(m:=:x(t; x', to». 

When Kn(mll; x') is not singular for all m, n(# 0) 
integer, i.e., 

IKn(mll; x)1 < 00, (5) 

the motion flow X is not correlated with sampling, 
and the aliasing pattern tends to zero, 

h(xo, to) -+ J w(xo - x')f(x')dx' . 

This theory itself is solid, but involves some 
practical problems with the assumptions and com­
putability: 

Image sequence model (Eq. 1) Most 
three-dimensional image sequences do not sat­
isfy Eq. 1 because of occlusion and temporal 
brightness changes. 

Correlated motion (Eq. 5) When object mo­
tion is correlated with the sampling pattern, 
Eq. 5 does not hold, and aliasing artifacts are 
not removed. This happens when, for example, 
objects remain at the same screen position, in 
which case X == o. 

Computation of motion flow Rigid body mo­
tion can be simply represented by a 4 x 4 ma­
trix for each object . With deforming objects, 
however, transformation is generally a compli­
cated non-linear mapping. Reflection and re­
fraction also makes the calculation of motion 
flow X difficult. 

The occlusion problem can be solved by sep­
arating multiple (occluding) flows based on flow 
vector comparison and by alpha-blending the fil­
tering results [SHINYA93). In this paper, we focus 
on the remaimng problems: correlated motion, re­
fraction/reflection, deforming objects, and tempo­
ral brightness change. 

3 Improvements 

3.1 Breaking motion correlation 

Stochastic sampling is a very powerful tool for anti­
aliasing, and we introduce it to the pixel-tracing 
technique to break the correlation between motion 
and sampling. If we jitter the sample position in 
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Figure 2: Temporal jittered sampling and steady 
objects. 

each frame, the pixel-tracing filter acts as a purely 
spatial jittered sampling filter for steady objects , 
as shown in Figure 2. More generally, we can prove 
that random jittering eliminates the correlation be­
tween object motion and sampling. 

We denote the displacement of sample points 
by Xj (t), and the flow due to object motion by 
Xo (t; xo, to). The total motion flow X is represented 
by their sum, 

X(t; Xo, to) = Xo (t; xo, to) + Xj (t). 

Assuming that the jitter is a stationary noise and 
independent of object motion, Eq. 4 becomes 

lim hn m 
T- oo ' 

J w(xo - x')fo(x')dx' 

jT/ 2 

x [ lim exp(m:=:x(t'; x', to » 
T -+oo -T/2 

X exp( tmnt')dt' /T), 

J w(xo - x')fo(x')dx' J exp(mXj:=:)dP(Xj) 

j
T/2 

X lim (l/T) exp(m:=:xo(t'; x', to» 
T-+ oo -T/2 

X exp( tmllt')dt', 

where dP(Xj) represents the probability density 
function of Xj. The third integral can be evaluated 
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jT/2 

J exp(t(n3x(t' ; x', to)) 
-T/2 

j
T / 2 

X exp( tmOt')dt'J ::::: dt = T . 
-T/2 

When Xj is a uniform noise on [-7r /3, 7r3], 

/ exp(mxj3)dPr(Xj) = 0, 

for all n i:- O. Thus, 

h(xo, to) = L hn,m --+ / w(x - x')fo(x')dx'. 

This completes the proof. 

3.2 More general Image sequence 
model 

When object brightness changes, the fundamental 
assumption of Eq. 1 does not hold any more . The 
most typical example is that shadows of moving 
objects are blurred by filteringl , as shown in Figure 
10. In some sense, shadow blurring may not sound 
terrible. However, the blurring size depends on the 
velocity of the motion, and, for example, when a 
moving object suddenly stops, its shadows start to 
shrink, which looks pretty strange. 

To deal with temporal brightness changes, we 
generalize the filtering operation given by Eq. 2. 
First, we introduce the luminance function C, 
which calculates pixel colors from geometric and 
lighting parameters, such as the object position, 
normal vector, shading properties of object points, 
and so on. By setting these parameters as u, image 
fo can be written as 

f o(xo) = £w(u(xo, to)) . 

For rigid bodies, these parameters do not change 
over time , so parameters u(x, t) can be described 
by 

u(x, t) = u(X(to; x, t) , to), 

and image sequence f(x , t) by 

f(x , t) = £t(u(X(to; x , t), to)). (6) 

The image sequence described by Eq. 6 is 
a fairly general model, and allows any temporal 
brightness changes . When the luminance function 

1 This is different from the motion blur induced by fi­
nite (sub-frame ) exposure time since the filter interval T is 
considerably larger than a frame (typically, more t han 16 
frames) . 
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Figure 3: Pixel-tracing with G-buffer. 

£t is constant over time, Eq. 6 is identical with 
Eq. 1. 

Instead of filtering equation Eq. 2, we generalize 
the filtering as 

h(xo, YO) = / / g(x, t)£w(u(X(to; x, t), to))dxdt, 

(7) 
It is obvious that this filter acts as an ideal anti­
aliasing filter for image sequences Eq. 6. 

The actual calculation can be illustrated as 
shown in Figure 3. The parameters u necessary 
for the luminance function are stored in a G-buffer . 
During filtering, pixel colors are evaluated by the 
current luminance function £w. 

The luminance function £t consists of shad­
ing and shadowing calculation, which can be very 
expensive. However, when shadow information is 
stored, for example, in the form of shadow buffers 
[REEVESl or radiosities, process £ is inexpensive 
and is stilt independent of scene complexity. 

3.3 Computation of motion flows 

3.3.1 DeforInation 

For rigid body motion, tracing the object position 
xo(t) from the screen space is straightforward. It 
can be calculated using 

where X(t) is the transformation matrix from the 
world coordinates to the object local coordinates, S 
is the transformation from the world to the screen 
coordinates, and Xi is the image point. 

However, the transformation varies non­
linearly over space for deforming ob~ects, such as 
free form deformation [SEDERBERGJ, hierarchical 
deformation [FORSEYJ and physically-based de­
formation [TERZOPOULOSJ. Fortunately, these 
transformations generally assume parameterization 
of surfaces (objects), and object points are easily 
evaluated from the parameters. Thus, we store the 
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Figure 4: Beam tracing. 

surface parameter s( Xi, t) of each pixel for deform­
ing objects, and trace motion by 

(8) 

where (J' represents the parameterized deforming 
surface. 

Another advantage of storing parameter s is 
that most parameters required by .c (e.g., the sur­
face normal, position) can be also calculated from 
s. This allows us to apply the generalized filter 
Eq. 7 to deforming objects. 

3.3.2 Beam/pencil tracing 

Although conventional ray tracers cannot provide 
transformation between the screen space and ob­
ject spaces for reflected/refracted rays, beam trac­
ing [HECKBERT] and pencil tracing [SHINYA87] 
exphcitly performs this transformation. For planar 
reflection, beam tracing is more convenient, while 
pencil tracing is applied to general cases. 

Beam tracing Images reflected from a planar 
surface are simple mirror symmetric images of the 
original scenes, as shown in Figure 4. Conse­
quently, reflection can be represented by the mir­
ror symmetric transformation M. For the plane 
nlx + n2Y + n3z = d, the transformation M is rep­
resented by 

2nln2 

1 + 2n~ 
2n2n3 

o 

2nln3 
2n2n3 

1 + 2n5 
o 

When the transformation from the world coordi­
nate to the screen coordinate is Tp , the transfor­
mation for the reflected image is 

(9) 

where x, and Xw are the screen and world coordi­
nates, respectively. 

" X l 

X paraxial ray __ XI 

axialt·ay 

Figure 5: Ray coordinate. 

" z 

Pencil tracing General reflection and refraction 
are not as simple as planar reflection. However, the 
paraxial theory provides the first order approxima­
tion of the transformation. 

To specify paraxial rays,2 we define a ray co­
ordinate, shown in Figure 5. In the coordinate 
system, the z-axis is the direction of the axial ray 
(the center ray), and the axial ray passes through 
the origin. Since a ray can be defined by its direc­
tion and a point through which it passes, paraxial 
rays are defined by their intersection with the Xl-X2 
plane (x) and the projection of their direction onto 
the plane (e). 

When rays are refracted or reflected, their di­
rection and position changes in a complicated way. 
However, as a first order approximation, the change 
can be represented by matrix T, called the system 
matrix, such that, 

For convenience, we can also denote a system ma­
trix by four 2 x 2 sub-matrices, as 

The initial rays emitted from the eye can be 
represented by only their directions as (0 ee)t. Af­
ter reflection/refraction, the ray vector becomes 

xre! Beet 

ere! Dee· 

When the ray hits the object point (x 0, zo) after 
reflection/ refr action, 

X o = xre! + Zer e! = (B + zD)ee, 

or 
(10) 

2The rays that are near to a given axial ray are called 
paraxial rays and are said to form a pencil. 
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Figure 6: Tracing reflected image point. 

Using Eq. 10, we can trace image points after re­
fraction/reflection. 

The system matrices can be calculated either in 
an analytical way ([SHINYA87]) or from the sam­
pled rays. When the reflected/refracted ray for 
pixel (i, j) is known to be (Xi ,j, ~i ,j ), matrices B 
and D can be calculated from these samples as 

B 

D 

(Xi-1 ,j - Xi+1 ,j)/2 

(~i-1,j - ~i+l ,j)/2 

(Xi ,j-1 - Xi ,j-d/2 ) , 

(~i,j-1 - ~i ,j -d/2 ) . 

Tracing image points We store the beam ma­
trix M or system matrix R at each pixel containing 
a refracted/reflected ray. To efficiently trace image 
points through the sequence, we take advantage of 
temporal coherence. 

At t = 0, the object point xo(O) is projected 
to pixel xp(O) (Figure 6), Assume that we know 
xp(t') for xo(t') . The projection for t' + 1 (or -1) is 
calculated by the matrix stored for pixel xp(t') as 

in the case of pencil tracing, 

Since the system matrix is an approximation, 
we should make a confirmation . We calculate 

and check 

for a certain threshold th (e.g., 0.5 pixels). If not 
satisfied, this process is repeated. When we fail to 
find a solution after several iterations, we conclude 
that there is no corresponding projection point at 
t' + 1, and the filter treats such cases as if the sam­
ple is clipped from the screen. Because of temporal 
image coherence, this searching process is very ef­
ficient. For beam tracing, on the other hand, the 
transformation is exact , and iteration is not neces­
sary, 

. . 
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Figure 7: Data structure, 

3.4 Data 

For each ray, we store the rgba values, the z-value, 
the face-id, the surface parameter (u,v). For effi­
ciency, we also store shadow-bits, where each bit 
represents whether the sample point is lit or not 
from the corresponding light. 

For refracted/reflected rays, the pointer to the 
system matrix or the beam matrix is also stored, To 
trace each image point as described in Section 3,2, a 
data field is also prepared to record the latest image 
point (ix, iy). To represent a ray-tree structure, 
each data set has pointers for reflection/refraction 
rays . The data structure is illustrated in Figure 7. 

3.5 Procedure 

We implemented the algorithm described in Sec­
tion 3 using two ideas. First, we avoid random ac­
cess among frames, which can be fatal if not all the 
necessary data can be loaded into the main mem­
ory. Second, shading and shadowing were com­
puted only if the shadow-bit patterns were different 
from that of the corresponding flow. 

The procedure for frame to can be summarized 
as follows: 

1) Initialize all data for to , 

2) For all t in the filter kernel, do the following. 

2.1) (If the data for t is not loaded, remove 
unnecessary data, and load the data for 

2.2) 

t ). 

For the ray-tree at each pixel (x, y), do 
the following . 

2.2.1) Calculate the image point (xO,yO) 
at to, according to Eqs. 9, 10 and 8. 

~
"' '''-' ' ' -'' 
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(a) Original. 

2.2.2) If the shadow_bits of (x,y, t) are 
different from those of (xO, yO, to), 
calculate shading and shadowing us­
ing the illumination data at to. 

2.2.3) Set the color in the appropriate 
flow for (xO,yO,tO). 

3) For all pixels at to, do the following. 

3.1) Normalize the filtered result of each flow. 

3.2) Apply alpha-blending. 

In this procedure, Step 2.1 is executed only 
when the available memory is not sufficient . The 
handling of flows (the flow separation, normaliza­
tion, and alpha-blending) is almost the same as 
in the previous method. In the current imple­
mentation~ we adopted the shadow-buffer technique 
[REEVESJ to keep the shadowing calculation cost 
at a reasonable level. We store beam matrices 
for planar reflection and system matrices for other 
cases. 

4 Another criterion: flicker-

In animation sequencies, spatial aliasing appears 
as annoying flicker, and thus, flicker reduction is a 
major aspect of anti-aliasing. In this section, we 
consider a new anti-aliasing criterion based on vis­
ible flicker reduction. 

One of the advantages of the pixel-tracing fil­
ter over purely spatial super-sampling is its tem­
poral feature of low-pass filtering , which directly 
reduces flickering due to aliasing. To demonstrate 
the difference, we applied the pixel-tracing filter 
and a spatial super-sampling filter to a moving one­
dimensional Fresnel pattern, defined by 

f(x ,Yjt) = sin(k(x - vt)2). 

Note that this pattern has a constant power spec­
trum over the entire frequency. 

Figure 8-a shows the result of spatial filtering. 
We can clearly observe aliasing patterns even with 

:" :\ 

(b) Spatial filtering. 

(c) Pixel-trace filtering. 

Figure 8: One-dimensional Fresnel pattern. 

64 samples per pixel3 . In an animation, these pat­
terns become even more noticeable because of flick­
ering. Figure 8-b shows the result from the pixel­
tracing filter. Due to the temporal-filtering feature , 
flicking is largely eliminated, and the visual quality 
is much improved . 

In the pixel-tracing filter, this flicker criterion 
can also estimate the appropriate number of sam­
ples per pixel, or the temporal filter size. In terms 
of the sampling theory, it is hard to determine the 
super-sampling rate because the frequency band 
of information is generally unknown in computer 
graphics applications. Fortunately, we do know the 
basic human flicker perception characteristics, and 
from these we can estimate the necessary filter size. 

It is well-known that human flicker perception 
has band-pass temporal characteristics, and that 
we are not so sensitive to low frequency flicker. The 
pixel-tracing filter acts as a temporal low-pass fil­
ter and, roughly speaking, its cut-off frequency is 
approximately the inverse of the filter size. Thus, 
if the cut-off frequency is lower than the sensitive 
flicker frequency band, visible flicker can be suc­
cessfully reduced. To demonstrate this flicker sen­
sitivity, we conducted a simple psychophysical ex­
periment to measure flicker thresholds . The details 

3These patterns are caused by the finitely supported filt er 
kernel , a one-pixel Fourier window in this case. If we adopt 
the ideal anti-aliasing filter (a sinc function over the whole 
image space ) , this can be eliminated . However , functions 
with a small support are generally used in practice, and this 
artifact is difficult to avoid. 

~ 
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Figure 9: Flicker threshold. 

of the experiment are described in the Appendix. 

The obtained flicker thresholds are plotted in 
Figure 9. Each plot is the average of ten trials, and 
the standard deviation is presented by vertical lines 
for Subject FA, whose variance was the largest . The 
flicker sensitivity is high (i .e., the threshold is low) 
between 3 and 8 Hz , and is low for 1 to 0.5 Hz . The 
experiment is not precise given the limitation of the 
display unit, and it is difficult to extract quantita­
tive values from just this result. However, it seems 
reasonable to assume that one or two seconds (30 
or 60 frames) would be sufficient for the filter. 

5 Experiments 

Example scenes The proposed algorithm was 
applied to the sequence shown in Figure 10-a, to 
yield the result shown in Figure lO-c. As shown in 
the figure , the blurring artifact observed in 10-b is 
completely removed. The filter size is 16 frames. 

In Figure lO-c, however, since the base plate 
remains at the same screen position, aliasing arti­
facts are not removed for the plate, including the 
shadow on it. This situation can be more clearly 
seen in Figure 11-b. The image of the moving ob­
jects (bamboo branches) is improved while aliasing 
of the shadow and the trunk remains. To reduce 
aliasing of steady objects, we applied jittered sam­
pling. Figure 11-c shows the result. The aliasing 
of the shadow is completely removed by jittered 
sampling. The motion of the bamboo was calcu­
lated b>.: a modal analysis and a stochastic wind 
model lSHINYA92]. The leaves are rigid but the 
trunk and the branches are modeled by deformable 
beams. 

Figure 12 shows a reflection example, where a 
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thin tube is moving above a mirror. The original 
image sequence is shown in Figure 12-a. The blur­
ring problem in Figure 12-b has been solved in Fig­
ure 12-c. Since the mirror is planar, a beam matrix 
is used for filtering. Figure 13 shows a refraction 
example, wherein system matrices were used. Anti­
aliasing is successfully performed in the sequence. 
Figure 14 shows a more complicated example. Both 
the reflected bamboo and the shadows are effec­
tively anti-aliased. 

Computation time The required CPU time for 
anti-aliasing was measured on the IRIS Crimson 
R4400, and the results are listed in Table 1. As 
shown in the table, the extra cost for shading calcu­
lation with shadow buffers is very modest (Figs. 10 
and 11) . Actually, shading all (200 x 200) pixels 
only took 1.6 seconds for Figure 11. Shadow­
bit comparison also allows further acceleration by 
avoiding unnecessary shading calculation. 

The additional computational cost for re­
flection/refraction calculation is also reasonable 
(Figs. 12, 13, and 14) . Since each node of the stored 
ray tree is individuafly traced and filtered , the com­
putational cost is proportional to the average num­
ber of ray tree nodes per pixel. 

The computational cost of the pixel tracing al­
gorithm is independent of scene complexity, hence 
its efficiency is significant for complex environ­
ments. For example, the scene in Figure 14 con­
tains about 115K polygons. Our ray tracer took 
6.3 minutes to create a one-sample-per-pixel im­
age, and thus, super-sampling at 16 samples/pixel 
would take 100.8 minutes. The pixel tracing only 
took 1.6 minutes for almost equivalent anti-aliasing, 
thus, acceleration rates of over 50 were achieved in 
this example . 

6 Conclusion 

We have made several significant improvements to 
pixel-trace filtering, and so removed the restrictions 
imposed by the previous algorithm. Jittered sam­
pling was introduced for the anti-aliasing of steady 
objects. Beam/pencil tracing techniques were ap­
plied to reflective/refractive objects. The G-buffer 
scheme was adopted to deal with moving shadows 
and deforming objects. Several experiments con­
firmed that these improvements successfully elim­
inate the previous restrictions. We also demon­
strated the advantages of the pixel-tracing filter in 
terms of flicker reduction, and suggested an appro­
priate filter size based on human flicker perception. 

This paper focuses on spatial anti-aliasing, but 
temporal anti-aliasing (motion blur) is also impor­
tant in certain applications . It is also possible to 
apply the method to spatio-temporal anti-aliasing 
by calculating sub-frame images from image flows , 
as discussed in [SHINYA95]. 
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(a) Original. (b) Previous method. (c) Proposed method. 

Figure 10: Blurred shadow of a moving teapot . 

(a) Original. (b) Regular sampling. (c) Jittered sampling. 

Figure 11: A swaying bamboo. 

(a) Original. (b) Previous method . (c) Proposed method. 

Figure 12: Blurring artifacts in reflection images. 

4
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Table 1: CPU time. 

unage Fig. 10 I Fig. 11 I Fig. 12 Fig. 13 Fig. 14 

(a) previous method 25 .7 sec 29.3 sec 38.3 sec 41.7 sec 43.4 sec 
(b) + shading 26.9 sec 30.3 sec - - -

+ reflection - - 49.3 sec 51.9 sec 96 .7 
(b)/(a) 1.05 1.03 1.29 1.24 2.23 
resolution 256 x 256 200 x 200 256 x 256 256 x 256 256 x 256 
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Appendix: Flicker experiment 

We used two white noise patterns Io(x , y) and 
Idx, y) to make a sinusoidal flicker field 

l(x, y; t) = 10(x, y) + m sin(27r ft)11 (x, y), 

where f is the frequency of the flicker. The pattern 
was displayed on the monitor of a graphics work­
station. The flicker was realized by updating the 
lookup table at the frame rate (60 Hz) according to 
the sampled and discretized value of msin(27rft). 
The pattern was displayed at 256 x 256 pixels, about 
6.5 cm, on the screen. The viewing distance from 
the subjects was about 1 meter . Subjects binoc­
ularly viewed the pattern and adjusted m so that 
the flicker was just noticeable. 
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(a) Original. (b) Proposed method. 

Figure 13: A glass sphere. 

(a) Original. (b) Proposed method. 

Figure 14: A pound in Take Tera. 
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