
92

Improvements on the Pixel-tracing Filter: Reflection/Refraction,
Shadows, and Jittering

Mikio Shinya
NTT Human Interface Laboratories

3-9-11 Midori-cho, Musashino-shi, Tokyo 180 Japan
email: shinya@cg.mrb.ntt.jp

Abstract

Pixel-trace filtering is an efficient anti-aliasing tech­
nique for sequence animation because its computa­
tion cost is constant regardless of scene complexity.
Although it works well in simple cases, it has short­
comings with steady objects, moving shadows, re­
flective/refractive objects, and deforming objects.

This paper significantly improves pixel-trace fil­
tering and eliminates all these restrictions. Jittered
sampling is introduced to eliminate the aliasing ex­
perienced with steady objects. Beam/pencil trac­
ing techniques are applied to reflective/refractive
objects. The G-buffer scheme is adopted to deal
with moving shadows and deforming objects. Sev­
eral experiments demonstrate that our improve­
ments successfully eliminate the restrictions. It is
also shown that the temporal-filtering feature of
pixel-trace filtering is advantageous for flicker re­
duction, and an appropriate filter size is suggested
based on human flicker perception.

With these improvements, pixel-trace filtering
becomes a powerful anti-aliasing method, and we
believe that it can be a standard anti-aliasing tech­
nique for computer animation.

Keywords: Anti-aliasing, Spatio-temporal
filtering, Computer Animation, Flicker Perception

1 Introduction

Because sampling techniques are used in computer
image synthesis, aliasing artifacts are unavoid­
able whenever the sil-mpling rate is insufficient.
A simple, but successful anti-aliasing technique
is stochastic super-sampling [DIPPE, COOK86],
where several stochastically selected points are
sampled in each pixel area.

A major problem of this technique is its high
computational cost, which is proportional to scene
complexity (e .g., the number of polygons) and the
number of samples. Ironically, complex scenes usu­
ally contain high frequency information, which re-

quires a high sampling rate. This makes the tech­
nique extremely expensive for complex scenes.

The author proposed a constant-time anti­
aliasing algorithm with respect to scene complexity
for animation sequences [SHINYA931 . The algo­
rithm traces image points through the image se­
quence using animation information, and collects
sub-pixel information for filtering. It works well in
simple cases, such as walk-through scenes without
reflection/refraction, but involves several restric­
tions, as pointed out in [SHINYA93].

Correlated motion When object motion is cor­
related with the sampling pattern, aliasing ar­
tifacts cannot be removed. A typical example
is an object that remains at the same screen
position.

Refraction/reflection In the case of refrac­
tion/reflection, the basic algorithm cannot
trace the image points because conventional
ray traces do not provide transformation be­
tween the screen and the object space.

Temporal change of object brightness
Since the algorithm assumes constant object
brightness over time, brightness changes cause
some artifacts. For example, shadows of mov­
ing objects become blurred by the filtering .

Object Deformation Since the basic algorithm
relies on a simple linear motion, deforming ob­
jects cannot be managed.

These limit the practical application of the pixel­
tracing filter .

This paper provides practical solutions to the
above eroblems. First, the jittered sampling tech­
nique lDIPPE, COOK86] is applied to the algo­
rithm to eliminate the correlation between motion
and sampling. Second, the beam and pencil tracing
approach [HECKBERT, SHINYA87] is adopted to
trace refracted/reflected image points . Third, the
G-buffer scheme [SAITO] is introduced to handle
temporal brightness changes. Theoretical studies
and experiments confirm the efficiency of the algo­
rithm. Finally, we will discuss human flicker per­
ception and flicker reduction by the pixel-tracing
filter .

Graphics Interface '95

2

x

r-4-~~~-r--r-~+--L0~~O yt
o 0

I---+--+--I---+--+--l------l-- t=to+ 1

t=to
fo(x)

(a) Animation sequence.

__ +---ll..l.=.z..:::="-''-1)

(b) Collected samples.

Figure 1: Basic idea of the pixel-tracing filter.

Review of the pixel tracing
filter

This section briefly reviews the basic idea and theo­
ries of the pixel tracing filter . Details can be found
in [SHINYA93J.

2.1 Basic idea

Animation sequences usually have strong correla­
tion between successive frames. The most typical
situation is that image points in a frame move along
a velocity field, called an optical flow. Through
such sequences, the same images are repeatedly
sampled at slightly different points in different
frames. This allows us to reduce aliasing artifacts
by spatio-temporal filtering.

Consider the situation shown in Figure 1, where
the initial image fo is moving through the sequence.
In the figure, the grids show pixel areas and the
circles indicate sample points. The image motion
can be described by flow function X. When the

.-'

93

image point Xo at to moves to Xl at tb flow X is
defined as

X(t1; Xo, to) = Xl ·
Using X, the image sequence can be represented by

f(x,t) = fo(x(to;x,t)). (1)

Eq. 1 also means that sample (x, t) is identical
to sample (X(to; X, t), to). Thus, sampling at i j at
t = to + j is equivalent to sampling at X(to; ij , to + j)
at t = to. In the example, all Xj = X(to; ij, to + j)
are located at the same pixel area, and their average

n

j j

reduces aliasing just as super-sampling with box
filtering does.

A bil$ advantage in computer generated an­
imation 1S that we can calculate exact image
motion from animation data, which allows effi­
cient anti-aliasing, as well as image compression
[WALLACHJ.

2.2 Theories

The basic idea can be formulated in the following
way. We assume that the image sequence is a de­
formed pattern of the initial image, as defined by
Eq. 1. Pixel-tracing filtering can be then repre­
sented as

h(xo, to) = JT

/

2 ! f . (x, t)g(x, t)dxdt,
-T/2

(2)

where f s(x, t) is the sampled image sequence of
f(x, t), and g(x, t) is the spatio-temporal filter ker­
nel, described by

g(x, t) = (1/T)w(xo - X(to; X, t))(8xI8x),

where w(x) is a desirable anti-aliasing filter. The
filtering result can be calculated as

n,m

hn,m ! w(xo - x')fo(x')dx'

J
T / 2

x exp(m3x(t'; x', to))
-T/2

x exp(zmOt')dt' IT,

where 3 and 0 are the spatial and temporal sam­
pling frequency, respectively.

Obviously,

ho,o = ! w(xo - x')fo(x')dx'.

4
.. · .. ··

:~. Graphics Interface '95

94

When the filter size T tends to infinity,

lim hn f1l
T-+ oo I

J w(xo - x')fo(x')dx' (3)

x (lim(l/T)Kn(mll; x'», (4)

where Kn is the Fourier transform of the function
kn'

kn(t; x') = exp(m:=:x(t; x', to».

When Kn(mll; x') is not singular for all m, n(# 0)
integer, i.e.,

IKn(mll; x)1 < 00, (5)

the motion flow X is not correlated with sampling,
and the aliasing pattern tends to zero,

h(xo, to) -+ J w(xo - x')f(x')dx' .

This theory itself is solid, but involves some
practical problems with the assumptions and com­
putability:

Image sequence model (Eq. 1) Most
three-dimensional image sequences do not sat­
isfy Eq. 1 because of occlusion and temporal
brightness changes.

Correlated motion (Eq. 5) When object mo­
tion is correlated with the sampling pattern,
Eq. 5 does not hold, and aliasing artifacts are
not removed. This happens when, for example,
objects remain at the same screen position, in
which case X == o.

Computation of motion flow Rigid body mo­
tion can be simply represented by a 4 x 4 ma­
trix for each object . With deforming objects,
however, transformation is generally a compli­
cated non-linear mapping. Reflection and re­
fraction also makes the calculation of motion
flow X difficult.

The occlusion problem can be solved by sep­
arating multiple (occluding) flows based on flow
vector comparison and by alpha-blending the fil­
tering results [SHINYA93). In this paper, we focus
on the remaimng problems: correlated motion, re­
fraction/reflection, deforming objects, and tempo­
ral brightness change.

3 Improvements

3.1 Breaking motion correlation

Stochastic sampling is a very powerful tool for anti­
aliasing, and we introduce it to the pixel-tracing
technique to break the correlation between motion
and sampling. If we jitter the sample position in

0°0° 0°0°0 °0°

o 0

o 0

o 0

0°0°0°0°0°0°

Figure 2: Temporal jittered sampling and steady
objects.

each frame, the pixel-tracing filter acts as a purely
spatial jittered sampling filter for steady objects ,
as shown in Figure 2. More generally, we can prove
that random jittering eliminates the correlation be­
tween object motion and sampling.

We denote the displacement of sample points
by Xj (t), and the flow due to object motion by
Xo (t; xo, to). The total motion flow X is represented
by their sum,

X(t; Xo, to) = Xo (t; xo, to) + Xj (t).

Assuming that the jitter is a stationary noise and
independent of object motion, Eq. 4 becomes

lim hn m
T- oo '

J w(xo - x')fo(x')dx'

jT/ 2

x [lim exp(m:=:x(t'; x', to »
T -+oo -T/2

X exp(tmnt')dt' /T),

J w(xo - x')fo(x')dx' J exp(mXj:=:)dP(Xj)

j
T/2

X lim (l/T) exp(m:=:xo(t'; x', to»
T-+ oo -T/2

X exp(tmllt')dt',

where dP(Xj) represents the probability density
function of Xj. The third integral can be evaluated

Graphics Interface '95

as

jT/2

J exp(t(n3x(t' ; x', to))
-T/2

j
T / 2

X exp(tmOt')dt'J ::::: dt = T .
-T/2

When Xj is a uniform noise on [-7r /3, 7r3],

/ exp(mxj3)dPr(Xj) = 0,

for all n i:- O. Thus,

h(xo, to) = L hn,m --+ / w(x - x')fo(x')dx'.

This completes the proof.

3.2 More general Image sequence
model

When object brightness changes, the fundamental
assumption of Eq. 1 does not hold any more . The
most typical example is that shadows of moving
objects are blurred by filteringl , as shown in Figure
10. In some sense, shadow blurring may not sound
terrible. However, the blurring size depends on the
velocity of the motion, and, for example, when a
moving object suddenly stops, its shadows start to
shrink, which looks pretty strange.

To deal with temporal brightness changes, we
generalize the filtering operation given by Eq. 2.
First, we introduce the luminance function C,
which calculates pixel colors from geometric and
lighting parameters, such as the object position,
normal vector, shading properties of object points,
and so on. By setting these parameters as u, image
fo can be written as

f o(xo) = £w(u(xo, to)) .

For rigid bodies, these parameters do not change
over time , so parameters u(x, t) can be described
by

u(x, t) = u(X(to; x, t) , to),

and image sequence f(x , t) by

f(x , t) = £t(u(X(to; x , t), to)). (6)

The image sequence described by Eq. 6 is
a fairly general model, and allows any temporal
brightness changes . When the luminance function

1 This is different from the motion blur induced by fi­
nite (sub-frame) exposure time since the filter interval T is
considerably larger than a frame (typically, more t han 16
frames) .

I

95

I Animation data I llumination data I

G-buffcr

(Filtering)

Figure 3: Pixel-tracing with G-buffer.

£t is constant over time, Eq. 6 is identical with
Eq. 1.

Instead of filtering equation Eq. 2, we generalize
the filtering as

h(xo, YO) = / / g(x, t)£w(u(X(to; x, t), to))dxdt,

(7)
It is obvious that this filter acts as an ideal anti­
aliasing filter for image sequences Eq. 6.

The actual calculation can be illustrated as
shown in Figure 3. The parameters u necessary
for the luminance function are stored in a G-buffer .
During filtering, pixel colors are evaluated by the
current luminance function £w.

The luminance function £t consists of shad­
ing and shadowing calculation, which can be very
expensive. However, when shadow information is
stored, for example, in the form of shadow buffers
[REEVESl or radiosities, process £ is inexpensive
and is stilt independent of scene complexity.

3.3 Computation of motion flows

3.3.1 DeforInation

For rigid body motion, tracing the object position
xo(t) from the screen space is straightforward. It
can be calculated using

where X(t) is the transformation matrix from the
world coordinates to the object local coordinates, S
is the transformation from the world to the screen
coordinates, and Xi is the image point.

However, the transformation varies non­
linearly over space for deforming ob~ects, such as
free form deformation [SEDERBERGJ, hierarchical
deformation [FORSEYJ and physically-based de­
formation [TERZOPOULOSJ. Fortunately, these
transformations generally assume parameterization
of surfaces (objects), and object points are easily
evaluated from the parameters. Thus, we store the

Graphics Interface '95

96

Figure 4: Beam tracing.

surface parameter s(Xi, t) of each pixel for deform­
ing objects, and trace motion by

(8)

where (J' represents the parameterized deforming
surface.

Another advantage of storing parameter s is
that most parameters required by .c (e.g., the sur­
face normal, position) can be also calculated from
s. This allows us to apply the generalized filter
Eq. 7 to deforming objects.

3.3.2 Beam/pencil tracing

Although conventional ray tracers cannot provide
transformation between the screen space and ob­
ject spaces for reflected/refracted rays, beam trac­
ing [HECKBERT] and pencil tracing [SHINYA87]
exphcitly performs this transformation. For planar
reflection, beam tracing is more convenient, while
pencil tracing is applied to general cases.

Beam tracing Images reflected from a planar
surface are simple mirror symmetric images of the
original scenes, as shown in Figure 4. Conse­
quently, reflection can be represented by the mir­
ror symmetric transformation M. For the plane
nlx + n2Y + n3z = d, the transformation M is rep­
resented by

2nln2

1 + 2n~
2n2n3

o

2nln3
2n2n3

1 + 2n5
o

When the transformation from the world coordi­
nate to the screen coordinate is Tp , the transfor­
mation for the reflected image is

(9)

where x, and Xw are the screen and world coordi­
nates, respectively.

" X l

X paraxial ray __ XI

axialt·ay

Figure 5: Ray coordinate.

" z

Pencil tracing General reflection and refraction
are not as simple as planar reflection. However, the
paraxial theory provides the first order approxima­
tion of the transformation.

To specify paraxial rays,2 we define a ray co­
ordinate, shown in Figure 5. In the coordinate
system, the z-axis is the direction of the axial ray
(the center ray), and the axial ray passes through
the origin. Since a ray can be defined by its direc­
tion and a point through which it passes, paraxial
rays are defined by their intersection with the Xl-X2
plane (x) and the projection of their direction onto
the plane (e).

When rays are refracted or reflected, their di­
rection and position changes in a complicated way.
However, as a first order approximation, the change
can be represented by matrix T, called the system
matrix, such that,

For convenience, we can also denote a system ma­
trix by four 2 x 2 sub-matrices, as

The initial rays emitted from the eye can be
represented by only their directions as (0 ee)t. Af­
ter reflection/refraction, the ray vector becomes

xre! Beet

ere! Dee·

When the ray hits the object point (x 0, zo) after
reflection/ refr action,

X o = xre! + Zer e! = (B + zD)ee,

or
(10)

2The rays that are near to a given axial ray are called
paraxial rays and are said to form a pencil.

Graphics Interface '95

t = /'
t=t ' +a

;']H[j ':~i;t: Xo(t ' + 1)
........ . .. - .. ~

xu(t ') ""

Xo(O) Xp(O) --_ :

Figure 6: Tracing reflected image point.

Using Eq. 10, we can trace image points after re­
fraction/reflection.

The system matrices can be calculated either in
an analytical way ([SHINYA87]) or from the sam­
pled rays. When the reflected/refracted ray for
pixel (i, j) is known to be (Xi ,j, ~i ,j), matrices B
and D can be calculated from these samples as

B

D

(Xi-1 ,j - Xi+1 ,j)/2

(~i-1,j - ~i+l ,j)/2

(Xi ,j-1 - Xi ,j-d/2) ,

(~i,j-1 - ~i ,j -d/2) .

Tracing image points We store the beam ma­
trix M or system matrix R at each pixel containing
a refracted/reflected ray. To efficiently trace image
points through the sequence, we take advantage of
temporal coherence.

At t = 0, the object point xo(O) is projected
to pixel xp(O) (Figure 6), Assume that we know
xp(t') for xo(t') . The projection for t' + 1 (or -1) is
calculated by the matrix stored for pixel xp(t') as

in the case of pencil tracing,

Since the system matrix is an approximation,
we should make a confirmation . We calculate

and check

for a certain threshold th (e.g., 0.5 pixels). If not
satisfied, this process is repeated. When we fail to
find a solution after several iterations, we conclude
that there is no corresponding projection point at
t' + 1, and the filter treats such cases as if the sam­
ple is clipped from the screen. Because of temporal
image coherence, this searching process is very ef­
ficient. For beam tracing, on the other hand, the
transformation is exact , and iteration is not neces­
sary,

. .

97

rel1cction/rcfraction

s bado w bit matrix

J
system/beam matrices

Figure 7: Data structure,

3.4 Data

For each ray, we store the rgba values, the z-value,
the face-id, the surface parameter (u,v). For effi­
ciency, we also store shadow-bits, where each bit
represents whether the sample point is lit or not
from the corresponding light.

For refracted/reflected rays, the pointer to the
system matrix or the beam matrix is also stored, To
trace each image point as described in Section 3,2, a
data field is also prepared to record the latest image
point (ix, iy). To represent a ray-tree structure,
each data set has pointers for reflection/refraction
rays . The data structure is illustrated in Figure 7.

3.5 Procedure

We implemented the algorithm described in Sec­
tion 3 using two ideas. First, we avoid random ac­
cess among frames, which can be fatal if not all the
necessary data can be loaded into the main mem­
ory. Second, shading and shadowing were com­
puted only if the shadow-bit patterns were different
from that of the corresponding flow.

The procedure for frame to can be summarized
as follows:

1) Initialize all data for to ,

2) For all t in the filter kernel, do the following.

2.1) (If the data for t is not loaded, remove
unnecessary data, and load the data for

2.2)

t).

For the ray-tree at each pixel (x, y), do
the following .

2.2.1) Calculate the image point (xO,yO)
at to, according to Eqs. 9, 10 and 8.

~
"' '''-' ' ' -''

. .
.. ;". Graphics Interface '95

98

(a) Original.

2.2.2) If the shadow_bits of (x,y, t) are
different from those of (xO, yO, to),
calculate shading and shadowing us­
ing the illumination data at to.

2.2.3) Set the color in the appropriate
flow for (xO,yO,tO).

3) For all pixels at to, do the following.

3.1) Normalize the filtered result of each flow.

3.2) Apply alpha-blending.

In this procedure, Step 2.1 is executed only
when the available memory is not sufficient . The
handling of flows (the flow separation, normaliza­
tion, and alpha-blending) is almost the same as
in the previous method. In the current imple­
mentation~ we adopted the shadow-buffer technique
[REEVESJ to keep the shadowing calculation cost
at a reasonable level. We store beam matrices
for planar reflection and system matrices for other
cases.

4 Another criterion: flicker-

In animation sequencies, spatial aliasing appears
as annoying flicker, and thus, flicker reduction is a
major aspect of anti-aliasing. In this section, we
consider a new anti-aliasing criterion based on vis­
ible flicker reduction.

One of the advantages of the pixel-tracing fil­
ter over purely spatial super-sampling is its tem­
poral feature of low-pass filtering , which directly
reduces flickering due to aliasing. To demonstrate
the difference, we applied the pixel-tracing filter
and a spatial super-sampling filter to a moving one­
dimensional Fresnel pattern, defined by

f(x ,Yjt) = sin(k(x - vt)2).

Note that this pattern has a constant power spec­
trum over the entire frequency.

Figure 8-a shows the result of spatial filtering.
We can clearly observe aliasing patterns even with

:" :\

(b) Spatial filtering.

(c) Pixel-trace filtering.

Figure 8: One-dimensional Fresnel pattern.

64 samples per pixel3 . In an animation, these pat­
terns become even more noticeable because of flick­
ering. Figure 8-b shows the result from the pixel­
tracing filter. Due to the temporal-filtering feature ,
flicking is largely eliminated, and the visual quality
is much improved .

In the pixel-tracing filter, this flicker criterion
can also estimate the appropriate number of sam­
ples per pixel, or the temporal filter size. In terms
of the sampling theory, it is hard to determine the
super-sampling rate because the frequency band
of information is generally unknown in computer
graphics applications. Fortunately, we do know the
basic human flicker perception characteristics, and
from these we can estimate the necessary filter size.

It is well-known that human flicker perception
has band-pass temporal characteristics, and that
we are not so sensitive to low frequency flicker. The
pixel-tracing filter acts as a temporal low-pass fil­
ter and, roughly speaking, its cut-off frequency is
approximately the inverse of the filter size. Thus,
if the cut-off frequency is lower than the sensitive
flicker frequency band, visible flicker can be suc­
cessfully reduced. To demonstrate this flicker sen­
sitivity, we conducted a simple psychophysical ex­
periment to measure flicker thresholds . The details

3These patterns are caused by the finitely supported filt er
kernel , a one-pixel Fourier window in this case. If we adopt
the ideal anti-aliasing filter (a sinc function over the whole
image space) , this can be eliminated . However , functions
with a small support are generally used in practice, and this
artifact is difficult to avoid.

~
.. -.... -

:: ... Graphics Interface '95

1.0,----- ---- ______ ___ _ ~

~MS

~ FA

oo~--------~---------~

Frequ ency (Hz)

Figure 9: Flicker threshold.

of the experiment are described in the Appendix.

The obtained flicker thresholds are plotted in
Figure 9. Each plot is the average of ten trials, and
the standard deviation is presented by vertical lines
for Subject FA, whose variance was the largest . The
flicker sensitivity is high (i .e., the threshold is low)
between 3 and 8 Hz , and is low for 1 to 0.5 Hz . The
experiment is not precise given the limitation of the
display unit, and it is difficult to extract quantita­
tive values from just this result. However, it seems
reasonable to assume that one or two seconds (30
or 60 frames) would be sufficient for the filter.

5 Experiments

Example scenes The proposed algorithm was
applied to the sequence shown in Figure 10-a, to
yield the result shown in Figure lO-c. As shown in
the figure , the blurring artifact observed in 10-b is
completely removed. The filter size is 16 frames.

In Figure lO-c, however, since the base plate
remains at the same screen position, aliasing arti­
facts are not removed for the plate, including the
shadow on it. This situation can be more clearly
seen in Figure 11-b. The image of the moving ob­
jects (bamboo branches) is improved while aliasing
of the shadow and the trunk remains. To reduce
aliasing of steady objects, we applied jittered sam­
pling. Figure 11-c shows the result. The aliasing
of the shadow is completely removed by jittered
sampling. The motion of the bamboo was calcu­
lated b>.: a modal analysis and a stochastic wind
model lSHINYA92]. The leaves are rigid but the
trunk and the branches are modeled by deformable
beams.

Figure 12 shows a reflection example, where a

99

thin tube is moving above a mirror. The original
image sequence is shown in Figure 12-a. The blur­
ring problem in Figure 12-b has been solved in Fig­
ure 12-c. Since the mirror is planar, a beam matrix
is used for filtering. Figure 13 shows a refraction
example, wherein system matrices were used. Anti­
aliasing is successfully performed in the sequence.
Figure 14 shows a more complicated example. Both
the reflected bamboo and the shadows are effec­
tively anti-aliased.

Computation time The required CPU time for
anti-aliasing was measured on the IRIS Crimson
R4400, and the results are listed in Table 1. As
shown in the table, the extra cost for shading calcu­
lation with shadow buffers is very modest (Figs. 10
and 11) . Actually, shading all (200 x 200) pixels
only took 1.6 seconds for Figure 11. Shadow­
bit comparison also allows further acceleration by
avoiding unnecessary shading calculation.

The additional computational cost for re­
flection/refraction calculation is also reasonable
(Figs. 12, 13, and 14) . Since each node of the stored
ray tree is individuafly traced and filtered , the com­
putational cost is proportional to the average num­
ber of ray tree nodes per pixel.

The computational cost of the pixel tracing al­
gorithm is independent of scene complexity, hence
its efficiency is significant for complex environ­
ments. For example, the scene in Figure 14 con­
tains about 115K polygons. Our ray tracer took
6.3 minutes to create a one-sample-per-pixel im­
age, and thus, super-sampling at 16 samples/pixel
would take 100.8 minutes. The pixel tracing only
took 1.6 minutes for almost equivalent anti-aliasing,
thus, acceleration rates of over 50 were achieved in
this example .

6 Conclusion

We have made several significant improvements to
pixel-trace filtering, and so removed the restrictions
imposed by the previous algorithm. Jittered sam­
pling was introduced for the anti-aliasing of steady
objects. Beam/pencil tracing techniques were ap­
plied to reflective/refractive objects. The G-buffer
scheme was adopted to deal with moving shadows
and deforming objects. Several experiments con­
firmed that these improvements successfully elim­
inate the previous restrictions. We also demon­
strated the advantages of the pixel-tracing filter in
terms of flicker reduction, and suggested an appro­
priate filter size based on human flicker perception.

This paper focuses on spatial anti-aliasing, but
temporal anti-aliasing (motion blur) is also impor­
tant in certain applications . It is also possible to
apply the method to spatio-temporal anti-aliasing
by calculating sub-frame images from image flows ,
as discussed in [SHINYA95].

Graphics Interface '95

100

(a) Original. (b) Previous method. (c) Proposed method.

Figure 10: Blurred shadow of a moving teapot .

(a) Original. (b) Regular sampling. (c) Jittered sampling.

Figure 11: A swaying bamboo.

(a) Original. (b) Previous method . (c) Proposed method.

Figure 12: Blurring artifacts in reflection images.

4
···"· ; :\

::-. Graphics Interface '95

101

Table 1: CPU time.

unage Fig. 10 I Fig. 11 I Fig. 12 Fig. 13 Fig. 14

(a) previous method 25 .7 sec 29.3 sec 38.3 sec 41.7 sec 43.4 sec
(b) + shading 26.9 sec 30.3 sec - - -

+ reflection - - 49.3 sec 51.9 sec 96 .7
(b)/(a) 1.05 1.03 1.29 1.24 2.23
resolution 256 x 256 200 x 200 256 x 256 256 x 256 256 x 256

Acknow ledgments

The author would like to thank Tomio Kishimoto
for his administrative supports, Atsushi Kajiyama
for his help in making the animation sequences, and
Toki Takahashi and Takafumi Saito for their helpful
discussion.

References

[COOK86] R. L. Cook, 'Stochastic Sampling in
Computer Graphics' , ACM Trans. Graphics ,
5 , No.1, pp.51-57, 1986.

[DIPPE] M. A. Dippe, ' Anti-aliasing through
Stochastic Sampling' , Proceedings of SIG­
GRAPH '85, No.3, pp.69-78 , 1985.

[FORSEY] D. Forsey and R. Bartel, ' Hierarchi­
cal B-spline Refinement,' Proceeedings of SIG­
GRAPH '88, pp. 205-212, 1988.

[HECKBERT] P. S. Heckbert, P. Hanrahan, 'Beam
Tracing Polygonal Objects,' Proceedings of
SIGGRAPH'84, pp.119-128, 1984.

[REEVES1 W. Reeves, D. Salesin, and R. Cook,
'Rendering Antialiased Shadows with Depth
Maps,' Proceedings ofSIGGRAPH'87, pp.283-
291, 1987.

[SAITO] Takafumi Saito and Toki Takahashi,
'Comprehensible Rendering of 3-D Shapes ' ,
Proceedings of SIGGRAPH'90, pp.197-206,
1990.

[SHINYA87] M. Shinya, T. Takahashi, and S.
Naito, ' Principles and Applications of Pencil
Tracing,' Proceedings of SIGGRAPH'87, pp.
45-54, 1987.

[SHINYA92] M. Shinya and A. Fournier, 'Stochas­
tic Motion - Motion Under the Influence of
Wind, Proceedings of Eurographics'92, pp. C-
119-128, 1992.

[SHINYA93] M. Shinya, 'Spatial anti-aliasing for
animation sequences with spatio-temporal fil­
tering,' Proceedings of SIGGRAPH'93, pp.
289-296, 1993 .

[SHINYA95] M. Shinya, 'Spatio-temporal anti­
aliasing by the pixel-tracing method,' To ap­
pear in Trans. of IEICE, D-II (In Japanese).

[SEDERBERG] T. Sederberg and P . Scott, 'Free­
form deformation of Solid Geometric Models,'
Proceedings of SIGGRAPG'86, pp. 151-160,
1986.

[TERZOPOULOS] D. Terzopoulos, J. Platt, A.
Barr, and K. Fleischer, 'Elastically deformable
models', Proceedings of SIGGRAPH'87, pp.
205-214, 1987.

[WALLACH] D. Wallach, S. Kunapalli, and M. Co­
hen, 'Accelerated MPEG Compression of Dy­
namic Polygonal Scenes', Proceedings of SIG­
GRAPH'94, pp. 193-196, 1994.

Appendix: Flicker experiment

We used two white noise patterns Io(x , y) and
Idx, y) to make a sinusoidal flicker field

l(x, y; t) = 10(x, y) + m sin(27r ft)11 (x, y),

where f is the frequency of the flicker. The pattern
was displayed on the monitor of a graphics work­
station. The flicker was realized by updating the
lookup table at the frame rate (60 Hz) according to
the sampled and discretized value of msin(27rft).
The pattern was displayed at 256 x 256 pixels, about
6.5 cm, on the screen. The viewing distance from
the subjects was about 1 meter . Subjects binoc­
ularly viewed the pattern and adjusted m so that
the flicker was just noticeable.

. ~ "1~ Graphics Interface '95

102

(a) Original. (b) Proposed method.

Figure 13: A glass sphere.

(a) Original. (b) Proposed method.

Figure 14: A pound in Take Tera.

Graphics Interface '95

