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Abstract

In this paper we propose an extension to the work of
Lischinski et al [1] on combining hierarchical radiosity
method and discontinuity meshing. The extension pro-
posed here supports higher order radiosity function at
the estimation step itself. We have carried out this ex-
tension using Multi-Wavelet basis functions. Unlike the
multi-wavelet radiosity work of Gortler et al [2] which
uses regular quad-tree subdivision, we carry out the
subdivision along the discontinuity boundary. In other
words, instead of deriving the finer basis functions by
uniform parametric dilations of a mother basis function,
we derive the finer basis by mapping the mother basis
to arbitrary subdomains created during the subdivision
along the discontinuity boundary. To carry out push
and pull operations, which are crucial to the hierarchi-
cal algorithm, we compute the necessary filter functions.
Our method combines the advantages of wavelet radios-
ity and discontinuity meshing. The preliminary result
shows significant computational improvement.

1 Introduction

As of today, hierarchical method is the state of the art
method of solving radiosity in any general environment.
This method was first introduced in [3, 4] to estimate ra-
diosity as piecewise constant functions over the environ-
ment. Subsequently by using multi-wavelet basis func-
tions with higher vanishing moments (> 1) the method
was extended [2] to directly estimate radiosity as piece-
wise higher order polynomial functions. Directly com-
puting higher order functions implies lesser amount of
discretisation and hence lesser overall effort in the illu-
mination computation. These methods require a regular
discretisation of surfaces. The surfaces needing subdivi-
sions were subdivided by half in each of their paramet-
ric dimensions. This type of subdivision gives the best
average performance when it is not at all possible to de-
rive the complexity of the underlying radiosity function.
However, in certain cases it may be possible to derive
some information on the complexity of the function. In
such case, instead of carrying out the regular subdivi-
sion to finally focus on the complex region, it will be
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Figure 1: Discontinuity and Wavelet Dilation Functions.

most appropriate to use the derived complexity informa-
tion to directly localise the complexity. We shall take
an example of a shadow discontinuity shown in figure
1. Localising this discontinuity by regular subdivision
will require a very large number of subdivisions. How-
ever, if the discontinuity can be known by some other
extraneous method (say discontinuity meshing) then a
single subdivision of the surface will be sufficient to cap-
ture the complexity. This example tends to suggest that
at the preprocessing stage we carry out the subdivision
of the environment using a discontinuity mesher. How-
ever, such preprocessing approach are extremely expen-
sive because,

e in the absence of the knowledge of the actual illumi-
nation distribution in the environment, the predis-
cretisation step is likely to create far more number
of discrete surfaces than actually required, and
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o prediscretisation would mean an increase in the
number of individual interacting elements in the
environment, hence a quadratic increase in the il-
lumination computation time.

To overcome this problem Lischinski et al[1] introduced
the discontinuity driven hierarchical radiosity method
in which they combined the advantages of hierarchical
radiosity and discontinuity meshing. They carried out
the normal hierarchical radiosity algorithm to compute
interaction between surfaces in the environment, but at
the subdivision step of the hierarchical algorithm, in-
stead of using the regular quad-tree subdivision, they
used irregular subdivision of surfaces along discontinu-
ity boundaries. However, they restricted their method
to the estimation of piecewise constant radiosity func-
tions. For better visual reconstruction of the estimated
radiosity function, only in a post-processing step they
carried out higher order (quadratic) interpolation.

We extend the work of Lischinski et al by directly es-
timating piecewise higher order radiosity function. This
work combines the advantages of wavelet-radiosity and
discontinuity meshing. As in Gortler et al [2] we have
used Multi-wavelet basis function to carry out the ex-
tension.

The organisation of the paper is as follows. We briefly
introduce the function approximation and hierarchical
radiosity. Then we derive the filters to carry out the
crucial push/pull operation. Finally we demonstrate its
successful application to a simple test environment.

2 Radiosity Function Approximation
and Hierarchical Algorithm

In an environment with diffusely reflecting and/or emit-
ting surfaces the radiosity of any surface p can be ex-
pressed using the following equation:

N
By(2) = Bp(2) + / Kamp(8,9) Ba(@)dg (1)

where N is the number of surfaces in the environment,
z and g are points and Bp(Z), B,(g) the radiosity func-
tions over the surfaces p and ¢ respectively, Ep(Z) is
the emittance function over the surface p and xq—p, the
kernelof the integral operator, represents the interaction
between surfaces ¢ and p and can be expressed as

Kamp(8,8) = pp(D) =220y G 5) ()
T
where p is the diffuse reflectivity at a point, r the dis-
tance between z, g, V the visibility between z, g, and 6.,
0, respectively are the angles between the line joining z
and g, and the surface normals at those points.
Solution of this type of equation is often carried out by
using function approximation technique. This method
seeks for the exact solution by projecting the involved
functions onto a finite dimensional space, i.e. the radios-
ity function B is approximated by a linear combination
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of basis functions:
B(z) = B(u,v) = »_ bk Ni(u, )
k=1

where n is the number of basis functions, bx’s are un-
known approximation coefficients and Ni’s are the cho-
sen basis functions.

A set of linear equations [5] of the type

N nq
bpi = epit Z Z Kq—p,isbq,; (3)

q=1 )=1

where i = 1..np and np, ng are the number of approxi-
mation coefficients for By(u,v) and By(s,t), and

1 1
/ / Ni(u,v)Bp(u,v)dudv,
u=0 Jv=0

1
€pr = / / N.‘(u,v)Ep(u,v)dudv,
u=0 Jv=0

1 1 1 1
Kqopi; = / / Kq"P(uvvvs?t)
u=0 Jv=0 J s=0 J t=0

Ni(u,v)N;(s,t) ”6—15/ X i—ﬂ dsdtdudv.

bpi =

ad
Q
<

I

are then derived from equation 1 by using orthogonal
basis functions and Galerkin error minimisation tech-
nique. The solution is carried out by following an it-
erative method such as Gauss-Seidel method or South-
welll relaxation method till convergence. The complex-
ity of solving this system for the whole environment is
(’)(ZP np)?. The accuracy of the resulting solution de-
pends on how correctly the radiosity function on each
surface has been approximated to arrive at the linear
equation. The brute force method of improving the ac-
curacy is to increase the number of basis function n, for
the approximation of radiosity function of each surface
p. However, as the complexity of the technique indi-
cates the quadratic increase in computation time with
the increase in the number of basis function, one must
make optimal use of the number of basis function for
any approximation.

Hierarchical algorithm [4] addresses this problem by
making some crucial observations. They are :

e To write an expression for the unknown radiosity
function of surface p of the type given in equation
(3), we need the expression of radiosity function
of all other surfaces ¢ which are fully or partially
visible to p.

e It is possible to decide on the maximum discretisa-
tion of each surface for any given accuracy in the
solution of the radiosity function.

e If a particular accuracy in computation of radiosity
of surface p requires a finer discretisation of surface
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Figure 2: Push-Pull operation.

q, then it is not necessary that for the same com-
putational accuracy in radiosity of another surface
r will require the discretisation of ¢ to the same
fineness. Probably a coarser discretisation or much
finer discretisation may be required.

The last observation is very crucial because if we can use
different levels of discretisation of a particular surface to
set up the system of equations of the type (3) then the
overall complexity of the solution is bound to be much
less than O(Y__np)? where ny, is the maximum discreti-
sation of the surface p. Making use of this observation
demands that one must

e associate a hierarchy of subdivisions with each sur-
face and

e at any time during the iterative solution of radios-
ity, maintain with each level of the hierarchy the
radiosity information commensurate to the level.

Maintaining radiosity function at different levels during
the iteration requires 2 operations known as push and
pulloperations. In the next section we describe the basic
ingredients necessary for these operations.

3 Push/Pull Operation

Let us consider the simplest case of an one-level surface
discretisation shown in figure 2. Unlike the quad-tree
uniform subdivision, here the subdivision is binary and
non-uniform. Given the approximation of a function,
B(z), defined over the level 0, the push operation com-
putes the approximation of the the function at level 1.
And similarly, given the approximation at level 1, the
pull operation computes the approximation of the func-
tion at level 0. Let us define three sets of orthonormal
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basis functions Ni,?)(i), N,(,:)(:E) and N$?)(z) such that
they are zero outside the domains Qq, 2, and €2 respec-
tively, and if we assume that a unit square in parametric
domains (u,v), (u',v') and (u"”,v") span €, Q1 and Q2
respectively, then

N,(,?)(u,v) = Mmn(u,v)
N,(nl)(ul,v/) = My(d,2")

N’(j) (un’vu - Mm(uII,U“)
where M,,’s are the scaling function of a multiwavelet
basis of vanishing moment M.

With these definitions we can write the approxima-
tion of the radiosity function at the given two levels as
follows:

Approximation at Level 0 :

MxM
B(u,v) = Y bDND(u,v) (4)
m=1

where

o[ [

Approximation at Level 1 :

(u, v) NS (u, v)dudv

MxM
B(u,v) =~ Y WIND(@ (wv),v'(w0)  (5)
m=1
MxM
+ 3 NP (W (u,0), 0" (1w, )
m=1
where

1 1
) - / / B(u(u',v"),v(u',v"))
u'=0 Jv'=0

N (' v )du'do',

1 1
b2 = / / B(u(u",v"),v(u",v"))
u/'=0 Jv'"=0
N,(nz)(u” v”)du”dv”.

Push Filters :
to computing the approximation coefficients L)

As explained above, pushing amounts
s and

bg)’s from the approximation coefficients b2)s. We de-
rive them as follows.

1 1
p) = / / B(u(u',v"),v(u',v"))
u'=0Jv'=0

N,(n”(u’ v Ydu'do'
/ * Using approx of B from eq.4 we get, */
Mx M

/ / Z bO)N,(lO w(u', v "y o(u v")
u'=0

n=1

)
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NP (@', v )du'do’
MxM

= LW / / O (u(w', '), o(a',0))
v/=0
N,(,:)(u ,v")du'dv’
MxM
= 2 (6)
n=1

where

1 1
= / / N (u(w',0"), v(w',0"))
uw'=0 Jv'=0

N (' v )du' do’

and similarly

MxM
=Y e
n=1
where
(0—»2) / / N(O) ) (un‘ vn))
u'’=0 Juv!'=0
NS,?’(u Lo Ydu' do”
The coeflicients c(,g n D5 and c(o 2)’5 make the push fil-
ter.
Pull Filters These filters are responsible for comput-
ing b( ’s from b(n],)’s and b 2)’5 Similar to the derivation

of push filters we derive them as follows.

By = / / B(u,v) N (u, v)dudv
u=0 Jv=0

/ * Using approx of B from eq.5 we get, */
MxM

_ / / E KO ND (o' (u, v), v (u, v))

N,(,?)(u,v)dudv
Mx M

; / / 3 BN o) o o)

N (u, v)dudv
MxM

_ Zw/:/ N (' (2, 0), 0'(u, )

Nﬁ,?)(u,v)dudv
MxM

1
+ Z b(2)/ / N,(Qz)(u”(u,v),v”(u,v))
v=0

NS (u, v)dudv
MxM
= 3, [0 4 o]

n=1
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where
SR = / / NP (u

vv), 0" (u,0))

N(o)(u v)dudv,

c(,,zl,_n'o) / / N(z) (u,v),v"(u,v))
N (u, v)dudv.
The coefficients ¢ %’s and ¢\ 7%’s make the push fil-

ter.

Relation Between Push and Pull Filters: As we are us-
ing orthogonal basis functions, it may be worthwhile to
see if there exists any relationship between the push/pull
filters, which can reduce the computational effort for
evaluating these filter coefficients. We shall first try to

find a relationship between ch no) and c(,,‘i,:”.

170 = / / N (' (u, ), v (u, v))

N (u, v)dudv

v’ v/
/ / NP (')
u'=0 Jv'=0

N (u(u', "), v(u', v") A, v")du'do’

where the point (0,0) in the (u,v) domain maps to (0,0)
in the (u’,v") domain and (1,1) maps to (U’, V') and as
Q1 C Qo, both U’, V' are greater than 1. A(u’,v") gives
the quantitative area relationship between a differential
area in (u,v) domain and a differential are in (u’,v") do-
main.

From the definition, N,(ll)() is zero outside the paramet-
ric unit square. So we can reduce the integration limit
in the above equation to arrive at:

/ / v') ™

N(O) (u(u',v"), v(u v))A(u',v’)du'dv'

(1=0)

From the equation 7, we see that only when A(u',v’) is a
constant function (C), we can find a simple relationship
between the push and pull filters as follows:

1 1
C/ / N @', v')
=0 Jv'=0

N (u(v’, v}, o(u’,v'))du' do’

(1—0)
cm,n

= cdinY

For example, when we have subdivision by uniform di-
lation of a factor 2, as in [4, 2] then we have A(u’,v’) is
constant and is equal to 0.25. So c(,rlb_,{o =:0.25 c(no;{l).
However, for arbitrary subdivisions, it will not be possi-
ble to ﬁnd any such simple rela.tionship. Thus one has to
compute the push filters and the pull filters separately.
So far we have discussed the operation from the top
most level to the next level.

(&
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Figure 3: Re-parametrisation Issue.

be extended to any pair of levels. For every level of
discretisation we have to compute the equivalent filter
function. It must be noted here that similar filters were
also required for the push/pullusing multi-wavelets with
uniform dilation. But this uniform dilation allowed one

e to use predefined filter coefficients, and

o the filter coefficients were same between any pair
of consecutive discretisation levels.

Whereas, in the push/pull operation with arbitrary dis-
cretisation

o the filter function is likely to vary for every pair of
consecutive discretisation level, and

o these must be computed at each level during the
discretisation process.

4 Re-parameterisation

Subdivision of a biparametric surface along an arbitrary
boundary may lead to patches which are difficult to
directly parameterise (example: figure 3(a)). All our
above discussion assumes that we are able to map the
mother multi-wavelet basis function to the domain of the
subdivided patch, we must find a mechanism of repa-
rameterisation. To do this, we use a very simple ap-
proach. The approach is demonstrated in figure 3(b)
which avoids the parameterisation problem posed int
figure 3(a). We make sure that each discretisation step
leads to discretisation of only one parametric dimension.
If it is not so, we introduce another extra step to guar-
antee this discretisation.

5 Results

We show here the advantages of applying higher or-
der approximation with subdivision across discontinu-
ity boundary using a simple test scene given in figure 4.
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Figure 4: A typical scene.

Figures 5, 6, 7 and 8 compile the results obtained with
various strategies. The strategies are respectively:

(a) uniform subdivision with constant basis function
(1776 patches, with subdivision limited to maximum 6
levels of quad-tree),

(b) subdivision at discontinuity boundary with constant
basis function (1019 patches),

(c) uniform subdivision with multi-wavelet basis func-
tion with 4 vanishing moments (262 patches), and

(d) subdivision at discontinuity boundary with multi-
wavelet basis function with 4 vanishing moments (3
patches).

In each of the cases the total number of patches resulting
in the process has been given to show the performance
improvement. The decision, of whether to subdivide or
not, has been taken by consulting an oracle similar to
the one used in [2] i.e. by trying to find if it is possible
to get a polynomial fit, of the necessary degree (which in
our case is between 0 to 3) within a predefined threshold,
for the integration kernel of equation 1. The threshold
has been kept same for all the above experiments.

Note that working with multi-wavelet basis function
(with M=4) involves up to 16 times more effort for each
patch in the given case, as compared to effort using con-
stant basis -function at the same level. So if we com-
pare uniform subdivision results (i.e. (a) and (c)), even
though higher order basis functions results in a smaller
number patches, still then the overall effort far exceeds
that due to constant basis function. However, the re-
sult due to arbitrary subdivision with higher order basis
function performs much favourably compared to all the
strategies.

It is a coincidence that in the example given the
patches resulting after discontinuity meshing did not re-
quire any further subdivision. However, in general fur-
ther subdivisions may be required. In such case, one
can go back to the normal quad-tree subdivision and
use the predefined push/pull filters. It is simply a mat-
ter of keeping a flag in the hierarchy, which indicates
whether the level below is due to uniform meshing or
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due to discontinuity meshing.

6 Conclusion

We believe that our proposed technique can be used in
the complex environments with substantial benefits. We
are carrying out these tests. In the discussion of the
paper, we have emphasised on the subdivision along the
discontinuity boundary. However, the method is not
limited to this. As long as one is able to decide on a
best boundary of subdivision one can apply the above
method. We are planning to extend the method to the
adaptive mesh generation work of Campbell and Fussel

[6).
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Figure 5: Uniformm meshing 4+ Constant Basis. Figure 7: Uniform meshing + Higher Order Basis.

Figure 6: Discontinuity meshing + Constant Basis. Figure 8: Discontinuity meshing + Higher Order Basis.
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