
116

System Support for OpenGL Direct Rendering

Mark J. Kilgard David Blytbe Deanna~ohn
Silicon Graphics, Inc.

2011 N. Shoreline
Mountain View, CA 94043-1389

email: mjk@sgi.comblytbe@sgi.comhohn@sgi.com

Abstract

OpenGL's window system support for the X Window
System explicitly allows implementations to support di­
rect rendering of OpenGL commands to the graphics
hardware. Rendering directly to the hardware avoids the
overhead of packing and relaying protocol requests to the
X server inherent in indirect rendering.

The OpenGL implementation available for Silicon
Graphics workstations supports direct rendering using
virtualizable graphics hardware in conjunction with the
kernel and the X server. The techniques described provide
"maximum performance" rendering for OpenGL. Some
of the issues are specific to OpenGL, but most of the
techniques described are appropriate for the implemen­
tation of any high-performance direct rendering graphics
interface.

Keywords: OpenGL, Virtual Graphics, Direct Rendering.

1 Introduction

The OpenGL graphics system [14,11] is a window sys­
tem independent software interface to graphics hardware
for 3D rendering. GLX [8] is the OpenGL extension to
the X Window System that specifies how OpenGL inte­
grates with X. The GLX specification explicitly allows
(but does not require) implementations to support direct
rendering of OpenGL commands to the graphics hard­
ware. Direct rendering allows OpenGL commands to
bypass the normal X protocol encoding, transport, and
X server dispatch. Through sufficient hardware and sys­
tem software support, OpenGL rendering can achieve the
maximum rendering performance from the hardware.

Direct rendering naturally implies that the direct ren­
dering process is running on the local graphics works ta-

tion (as opposed to running over the network). Direct
rendering is not available if the OpenGL process is con­
nected to a remote X server.

For interactive 3D applications, the maximum possi­
ble rendering performance is critical to the success of the
application. When available, direct rendering has a sub­
stantial performance advantage over rendering indirectly
via the X server, i.e., indirect rendering. Instead of using
the X server as a proxy for rendering, rendering com­
mands are sent directly to the graphics hardware. Direct
rendering can be thought of as a means of "cutting out
the middle man." Indirect rendering is still useful (and
required by GLX) because it allows the same network
extensibility and inter-operability of traditional X clients.

This paper discusses how Silicon Graphics, Inc. (SGI)
implements direct rendering in its OpenGL implemen­
tation through a combination of hardware features, op­
erating system support, X server support, and X and
OpenGL library support. SGI implements the described
facilities in IRIX 5.3.1 The next section discusses the
goal of direct rendering, SGI's approach for supporting
virtualized direct rendering, and support for direct ren­
dering by OpenGL's predecessor and other direct ren­
dering graphics systems. Section 3 describes OpenGL's
implementation model and the requirements implied for
implementing direct rendering. Section 4 presents how
SGI virtualizes access to the graphics hardware to sup­
port direct rendering. Section 5 addresses other issues
not strictly related to virtualized direct access rendering
but still important for supporting direct rendering.

1 IRIX is the SGI version of the Unix operating system. Most of the
facilities described were originally developed for IRIX 5.2.

Graphics Interface '95

2 Background

Support for direct rendering was purposefully designed
into OpenGL's GLX specification. While use of the GLX
extension protocol permits interoperability and network­
extensibility of OpenGL rendering, forcing the X server
as an intermediary for OpenGL rendering imposes inher­
ent limitations on OpenGL rendering performance. Per­
mitting direct rendering avoids the unacceptable situation
where expensive, high-performanc~ graphics hardware
subsystems designed to support OpenGL [1,6] have their
graphics performance potential starved by the overhead
incurred by indirect rendering.

Using OpenGL display lists (non-editable sequences of
OpenGL commands that can be downloaded into the X
server and later executed) can ease the burden of indirect
rendering since it minimizes the GLX protocol needed
for rendering. However, use of display lists is often inap­
propriate for many applications, particularly applications
with very dynamic scenes. Such applications favor us­
ing immediate mode rendering that requires much higher
bandwidth for the OpenGL command stream. Measure­
ments of the IRIX 5.2 OpenGL implementation show
indirect immediate mode rendering has inferior perfor­
mance to direct rendered immediate mode [10]. 2 . Even
programs heavily reliant on display lists are slower when
rendering indirectly.

2.1 Direct Rendering Benefits

Table 1 breaks down the overhead of indirect rendering
relative to direct rendering for the extreme and common
cases. The extreme example demonstrates the high-level
steps involved in executing the OpenGL glReadPix­
e1s command used for reading pixels from a window.
The command in question requires data to be returned
to the application. In the indirect case, this requires a
context switch to the X server and back to the OpenGL
program. And the pixel data returned is copied three
times, as opposed to a single copy in the direct render­
ing case. While glReadPixe1s requires a round-trip
to the X server to return the pixel data, most OpenGL
commands return no data.

For most OpenGL commands, the context switch over­
head can be amortized over multiple GLX requests by
streaming protocol requests. The table's gl Vertex3 f

2The presented results showed immediate mode OpenGL graphics
performance using indirect rendering ranging from 34% to 68% of the
direct rendering performance depending on the model of SGI graphics
workstation. The faster the graphics hardware. the higher the relative
penalty for using indirect rendering versus direct rendering due to the
higher relative overhead of indirect rendering.

117

example (whereby OpenGL sends a 3D vertex to the hard­
ware; a very common OpenGL operation) is handled in
this way. Even with streaming, the indirect case incurs
the overhead of encoding, transport, and decoding GLX
protocol for requests and replies.

The direct case can eliminate the overhead associated
with context switching between the OpenGL program and
the X server, protocol encoding, transport, and decoding
when performing OpenGL rendering. Direct rendering
also improves cache and TLB behavior by avoiding fre­
quent context switches and multiple active contexts [3] .

The examples in Table 1 assume the "fast path" of
SGI's OpenGL implementation is taken. Being on the
"fast path" means the system resources for direct render­
ing (discussed in detail later) are already made available.
Unless resources are in contention or resources are being
used for the first time, the "fast path" is the norm.

2.2 "Maximum Performance" 3D Rendering

SGI's OpenGL implementation seeks to achieve "max­
imum performance" OpenGL rendering. For our pur­
poses, "maximum performance" means that when there
is no contention for rendering resources, and once utilized
resources are made available, graphics rendering perfor­
mance is limited only by the system's raw graphics per­
formance and the graphics software efficiency. The max­
imum performance potential of the workstation should be
achievable.

In practice, this means no locks need to be acquired
and released when rendering. Even so, multiple OpenGL
programs should be able to run concurrently. But the
overhead from concurrent use of graphics should only
be introduced when multiple processes are concurrently
using the graphics hardware; performance of the sin­
gle renderer case should not be compromised. Graphics
programs should not be burdened with overhead from
window clipping; in particular, multi-pass rendering for
correct clipping should not be necessary. And the possi­
bility of asynchronous window management operations
such as changing window Clipping or changing the win­
dow origin should not add any overhead to the normal
case when clips and origins are not changing.

2.3 Virtual Graphics

SGI workstations implement virtual graphics [17] to
achieve the goal of "maximum performance" rendering.
Virtual graphics means that every graphics process has
the illusion of exclusive access to the graphics rendering
engine. Many systems allow direct access to the graph­
ics hardware. Virtual graphics not only allows direct

Graphics Interface '95

118

Indirect glReadPixe1 s Direct glReadPixe1s Indirect gl Verte x 3 f Direct gl Ve rtex3 f
I. glReadPixe1s(...) I. g lReadPixe1s (. ..) I. g l Ver t ex3f(...) I. g l Verte x 3 f (...)
2. pack GLX protocol request 2. pack GLX protocol request 2. send vertex to HW
3. write request to kernel 3. return 3. return
4. block client waiting

to read reply additional non-reply
5. deschedule OpenGL client OpenGL requests can be
6. schedule X server batched in protocol buffer
7. read request from kernel
8. request decoded and 4. eventually, flush

dispatched to GLX handler protocol buffer
9. read pixels from 2. read pixels from 5. deschedule OpenGL client

screen to a buffer 6. schedule X server
10. write reply to kernel 7. read request from kernel
11. deschedule X server 8. request decoded and
12. schedule OpenGL client dispatch to GLX handler
13. decode reply header 9. send vertex to HW
14. copy reply data from kernel

to tinal buffer
15. return 3. return

Table 1: A comparison of the "fast path" steps involved implementing glReadPixels for the indirect and direct fast
path cases. The extra steps involve data copying; protocol packing, unpacking, and dispatching; and context switch
overhead.

access, but treats graphics as a virtual system resource.
This virtual view of graphics allows the system to con­
tend with simultaneous direct access by multiple graphics
processes. Virtual graphics also arbitrates the contention
for graphics resources such as screen real estate.

There are three classes of contention that virtualized
graphics for a window system must arbitrate:

Concurrent access contention. When different
graphics processes are using a single graphics engine,
this hardware state must be context switched. With vir­
tual graphics, this context switching is transparent to the
graphics process, much the same way processor context
switches are transparent to Unix processes.

Screen r:eal estate contention. Window systems ar­
bitrate how windows are arranged on the screen. Vir­
tualized graphics must ensure that rendering is properly
clipped to the drawable region of the rendering window.
Clipping should be correct even in the face of asyn­
chronous window management operation by the X server.
Because window systems like X allow arbitrary overlap­
ping of windows, clipping to arbitrary regions must be
possible.

Non-visible resource contention. Modern graph­
ics hardware supports features like double buffering, in
which a front buffer is displayed while the next anima­
tion frame is generated in a non-visible back buffer. When
the frame is complete, a buffer swap effectively copies the
back buffer contents into the front visible buffer. Graphics
hardware can effiCiently perform buffer swaps by tagging
all the pixels belonging to a swapping window with a sin-

gle display mode. The displayed buffer for the window's
display mode can be instantaneously changed. But the
number of display modes is a limited hardware resource
so a virtual graphics system must be ready to virtualize
display modes.

Each of these classes of contention are dealt with by
SGI's virtualized, direct access rendering for OpenGL.

2.4 SGI-style Graphics Hardware

Unlike most low-end workstation and PC graphics
hardware, SGI graphics hardware does not expose a mem­
ory mapped frame buffer. Instead, graphics commands
are issued to a graphics engine through the manipulation
of memory mapped device registers. This interface to
the graphics hardware is often called the graphics pipe
or simply the pipe. Because all rendering operations are
done through the graphics pipe, the pipe's virtual mem­
ory mapping can be used to control access to graphics
rendering, i.e., virtualize graphics.

There is substantial variation in the extent of geome­
try and rasterization processing implemented within vari­
ous SGI graphics hardware configurations. The high-end
SGI graphics hardware [1] implements almost the en­
tire OpenGL state machine within the graphics hardware.
Most pipe commands (called tokens) sent to the graphics
hardware have a fairly direct mapping to the OpenGL
API. The high-end hardware is micro-coded and makes
heavy use of pipelining and parallelism in its various
stages.

The low-end SGI graphics hardware [15] implements

Graphics Interface '95

only the back-end of the OpenGL state machine. Most
high-level operations such as vertex transformation, poly­
gon rasterization, texturing, and lighting are performed
on the host processor inside the OpenGL library. But
low-level operations such as line drawing, shading, span
rendering, dithering, etc. are implemented in the hard­
ware rendering engine.

Despite the variations in hardware across SGI's prod­
uct line, a direct rendering OpenGL program will work
(though perhaps not find the same frame buffer capabil­
ities or achieve the same performance) across the entire
range of SGI OpenGL-capable graphics hardware. All
the rendering code for OpenGL that directly accesses the
hardware is isolated in the OpenGL library which is im­
plemented as a shared library. The shared library on the
system depends on the graphics hardware installed on the
workstation, hiding all device dependencies when direct
rendering.

2.4.1 Virtualized, Direct Rendering Needs

While the degree to which the OpenGL state machine
is supported in hardware varies across the product line,
virtualized direct access rendering requires functionality
across all SGI graphics hardware configurations. The
requirements are:

A context-switchable graphics engine. The state of
the graphics hardware must be context-switchable and the
context switch must be able to be performed preemptively,
including in the middle of a command.

Window relative rendering. A process using virtual
graphics renders using window relative coordinates, so
that the window location need not be tracked if the win­
dow is moved.

Arbitrary window clipping. As mentioned earlier, a
window system supporting arbitrarily overlapping win­
dows, can result in arbitrary window clipping regions, so
the hardware must support arbitrary clipping. And the
window's clip and location can change asynchronously
to the direct rendering process so the window clip must
be able to change without the renderer's knowledge.

Double buffering. Support must exist for per-window
double buffering. Also, OpenGL's front/back relative
naming of buffers must be supported. A direct renderer
should be unaware of the absolute hardware buffer it is
rendering to.

2.4.2 Window Clipping Hardware

Most windows have rather simple clip regions, consist­
ing of a small number of rectangles. For this common

. ', -!o

119

case, the hardware can support a set of clip rectangles to
quickly clip rendered pixels not belonging to the window
[12] . The number of clip rectangles varies with graph­
ics hardware but is typically less than eight. These clip
rectangles are generally part of the graphics hardware
context. The context for each direct renderer can use the
same rectangular clipping hardware.

Arbitrary window clips will require far more clip rect­
angles than is reasonable to support in hardware. A sec­
ond method of clipping is used for such windows. SGI
hardware also supports clipping planes. Clipping planes
are non-visible frame buffer planes used to encode per­
pixel clipping IDs (often called CIDs). If the pixels of a
window all have the same CID (and only pixels belonging
to the window have that CID), the graphics hardware can
clip to an arbitrary window by enabling CID testing. A
pixel rendered into the window is drawn only if the CID
of the pixel being modified matches the CID that is set in
the graphic hardware context.

The number of planes set aside for maintaining CIDs
can be rather small. On low-end SGI hardware, the clip­
ping planes are only 2 bits deep. This means three CIDs
are possible (2 bit planes provide 4 CID values but one
CID value must be used for screen real estate not belong­
ing to the CID assigned windows). As will be explained
later, CIDs may need to be virtualized because they are a
limited resource.

2.4.3 Display Mode Support

Display mode IDs (often called DIDs) are like CIDs,
but instead of providing clipping information, DIDs de­
termine on a per-pixel basis how each pixel value on the
screen should be displayed. The DID for a pixel is looked
up in the hardware display mode table to determine how
the pixel should be displayed. The DID mode indicates
whether the pixel is RGB or color index (Le., the color is
determined by a colormap); if color index, what hardware
colormap to use if there is more than one; the depth of the
pixel (how many bits of the pixel value are significant);
if the pixeI is double buffered, and if so, what buffer (A
or B) should be displayed. Figure 1 gives an example of
how a DID determines how acPixel should be displayed.

Logically, DIDs are stored in a set of non-visible frame
buffer planes. Usually 16 or 32 DIDs are available. In
low-end hardware, devoting 4 to 5 bitplanes per pixel to
store the DID is too expensive. In this case, the DID val­
ues are run-length encoded. This encoding is convenient
becauses the frame buffer is scanned out in horizontal
lines. But logically, there is still a DID per pixel. In
principle, a complex arrangement of display modes on
the screen might be too complex to represent with a run-

~
..... ," ,

. " .

:: .. Graphics Interface '95

120

Pixel Composition

Pixel value

~ B"ff~A
~B"ff~B

--___ _sent to

Color Controller

Display
ID

(DID)

pixel
bits

,r---,

Dis la mode table
o
1
2

29
30
31

DbIBuf,CI,
dis la A buf

Figure 1: Example of display ID hardware for supporting
double buffering. The pixel shown is assigned display ID
5 meaning the pixel should be treated as a double buffered,
color index pixel with buffer A being the displayed buffer.

length encoded table. In practice, run-length encoded
DID tables work extremely well.

Note that many windows can all share the same DID if
their pixels all use the same display mode. For example,
all non-double buffered 8-bit color index windows using
the same colormap can share the same DID.

When a process requests a buffer swap for a window (in
OpenGL, glXSwapBuffers would be called), a dou­
ble buffer window must have an unshared or swappable
DID. This is because the buffer swap is accomplished
by toggling the displayed buffer for the window. If the
pixels for the window (and only the pixels for the win­
dow) are all in the same DID, the buffer swap happens
cleanly. What this means is a double buffered window
that needs to swap must be placed on an unshared DID
before the swap can happen. Like CIDs, the number of
DIDs is limited by hardware so DIDs may also need to
be virtualized.

While DIDs and CIDs are discussed here as distinct
entities, it is possible to combine display mode and clip­
ping information into a single set of bitplanes. This may
be useful because often the Clipping ID planes and dis­
play mode ID planes both have the same regions each
assigned a CID and DID. Combining CIDs and DIDs can
make better use of frame buffer memory. If 32 DIDs
were supported and 4 CIDs were supported, a combined
scheme would support 128 combined DID/CID values!
But combining DIDs and CIDs means DID information
cannot be run-length encoded. This is a graphics hard-

. .
. .

ware design trade off.

2.5 Previous IRIS GL Support

The predecessor to OpenGL is SGI's proprietary IRIS
GL. While OpenGL leaves window system operations to
the native window system (for example, the X Window
System or Windows NT), IRIS GL provides its own win­
dow management routines. OpenGL has a similar 3D
rendering philosophy to IRIS GL, but OpenGL is a dis­
tinctly new interface. The OpenGL state machine is well
defined and the OpenGL API has a cleaner deSign and
regular name space. One of the most important changes
in OpenGL from IRIS GL is the clean separation of ren­
derer state from window state. In IRIS GL, the renderer
and window state were coupled.

Locally running IRIS GL programs use virtualized,
direct access rendering. In fact, most of the experi­
ence in supporting virtualized, direct access rendering
for OpenGL was a result of experience with IRIS GL.
The current IRIS GL direct rendering support actually
uses the same support OpenGL uses.

2.6 Other Approaches

Direct rendering in the manner SGI describes in this
paper is not the only option for implementing direct ren­
dering. And direct rendering is not a necessity for pro­
duction OpenGL implementations. The IBM OpenGL
implementation described in [7] does not utilize direct
rendering. Most currently available OpenGL implemen­
tations do not support direct rendering.

Previous to IBM's support for the OpenGL standard,
IBM licensed IRIS GL from SGI for 3D hardware in the
original RS/6000. Their IRIS GL implementation uses
virtualized, direct rendering much like SGI's IRIS GL
implementation [16, 5].

Hewlett-Packard provides direct rendering support for
their Starbase Graphics Library [2] with an approach
that is different from SGI's direct rendering mechanism.
Hewlett-Packard's approach acquires a fast lock to be held
during rendering to the graphics engine. This locking al­
lows clipping to be coordinated in software via shared
memory window clip serial numbers and proprietary X
requests to query the current clip of a window. While
such a system avoids the complex hardware and operat­
ing system support involved in SGI's virtualized, direct
access rendering mechanism, it forces explicit, fine-grain
locking to arbitrate access to the graphics hardware.

4
·· .. '···,· ,

:;- .. Graphics Interface '95

3 OpenGL Requirements

The OpenGL GLX specification provides the model
used to integrate OpenGL with the X Window System.
Understanding the GLX model motivates how SGI im­
plements virtualized, direct access rendering specifically
for OpenGL and X.

3.1 Context Model

An OpenGL rendering context (or GLXContext) is
logically an instance of an OpenGL state machine. When
a context is created using glXCreateContext, the
creator has the option of requesting a direct rendering con­
text. If the program is running locally and the OpenGL
implementation supports direct rendering, a direct render­
ing context will be created. Everything that can be done
with a direct context can be done with an indirect context
(the reverse is not true) so requesting a direct context but
being returned an indirect context is acceptable.

Once a context is created, that context can be bound
or "made current" to a drawable (either a window or
pixmap) supporting OpenGL rendering by calling glX­
MakeCurrent . Not only is the context bound to the
drawable, but also to the thread calling glXMakeCur­
rent. Once bound, any OpenGL calls issued by the
thread are issued using the current context and affect the
current drawable. Only one thread can be bound to a
given context at a time; but multiple contexts (bound to
different threads) can be bound to a single drawable. Sub­
sequent calls to g lXMakeCurren t rebind the thread to
the newly specified drawable and context.

3.2 Sharing of Window State

GLX explicitly allows the sharing of window state.
For example, all OpenGL renderers bound to a double
buffered window share the same notion of front and back
buffer state. This means if one client calls glXSwap­
Buf fers on a window bound to by other OpenGL ren­
derers, the other renderers maintain the same view of
which buffer is front and which is back.

One requirement of GLX that proves difficult to meet is
the sharing and management of ancillary buffer contents
for multiple renderers bound to the same window. An­
cillary buffers are non-visible buffers used by rendering
operations. Examples are stenCil , depth, and accumula­
tion buffers. Sharing ancillary buffers is straightforward
if they are supported in hardware, but sharing of buffers
implemented via software is more difficult to correctly
support.

. .

121

3.3 Per Window Double Buffering

OpenGL supports per-window double buffering using
the glXSwapBuffers call. A side effect of calling
g lXSwapBu f f ers on a window that the calling thread
is currently bound to is that further rendering to the win­
dow will not execute until the buffer swap completes.
Double buffer hardware usually times the buffer swap to
occur during vertical retrace. The glXSwapBuffers
may return before the buffer swap completes, but the
OpenGL implementation is then responsible for delaying
any further OpenGL rendering to the window until the
buffer swap actually occurs.

4 Virtualizing SGI Graphics

When an OpenGL process creates a direct OpenGL
rendering context, the process opens the graphics device.
The process allocates an IRIX kernel resource known as
a rendering node. A rendering node is a virtual graph­
ics hardware context and permits the graphics pipe to be
mapped into or "attached to" the process's address space
so a process can directly access the graphics hardware.
Every direct rendering OpenGL context has an associated
rendering node. Note that rendering nodes are completely
hidden from OpenGL programs. The allocation and use
of rendering nodes is purposefully not made available for
use by applications. They exist only to support imple­
menting the OpenGL and IRIS GL APIs.

The SGI X server [9] also uses a rendering node to
access the graphics pipe. But the X server's rendering
node is marked as being the board manager rendering
node. The board manager rendering node is allowed to
call a number of special board manager ioctls used
for validating and invalidating resources associated with
other rendering nodes. By acting as the board manager,
the X server must process messages sent by the kernel
indicating the needs of rendering nodes to have their vir­
tual graphics resources validated. The X server receives
the messages through a shared memory input queue (or
shmiq) also used by the kernel to effiCiently pass input
device events to the X server. The purpose of the kernel
messages and how the X server responds to them are dis­
cussed shortly. The X server also uses its rendering node
for standard X server rendering.

4.1 Making Current to a Window

Before a direct rendering process can begin referenc­
ing the graphics pipe through the rendering node's pipe
memory mapping, the rendering node must be bound to

4
······

:;". Graphics Interface '95

122

a window. For OpenGL, this happens at glXMakeCur­
rent time via a graphics driver ioctl.

The kernel manages a cache of bound and recently
bound windows. The cache, known as the pane cache,
allows OpenGL threads to quickly bind and rebind to
windows. If the window being bound to is not found
in the pane cache, a currently unbound pane cache entry
is selected and reused for the window, and a message is
sent to the X server notifying it that a direct renderer is
interested in rendering to the specified X window ID. This
message allows the X server to initialize data structures
for the window to keep track of direct rendering.

A new entry in the pane cache will have two important
resources marked invalid. The first resource is the clip re­
source. When valid, this means the X server has properly
informed the kernel of the proper window origin and clip
rectangles or CID to be used for clipping rendering to the
window. The second resource indicates if the window is
assigned a swappable DID.

4.2 Context Switching

Access to the graphics pipe is mediated using virtual
memory techniques. The graphics pipe is physically
mapped to only one process at a time. Other processes
using the graphics pipe will have invalid virtual mem­
ory mappings for their pages corresponding to the pipe.
If a process without valid mappings accesses a pipe ad­
dress, a page fault is generated. The kernel graphics
driver handles this page fault. If the graphics pipe pages
can be physically mapped immediately (there are reasons
access to the pipe might temporarily be denied that are
discussed later), the kernel will save the graphics context
of the current process and mark that process's graphics
pipe pages invalid. Then the kernel restores the graphics
hardware context for the faulting process and validates
that process's memory mapping for the pipe.

The context switching sequence is transparent to the
processes involved. If a single process is using the pipe,
the pipe does not need to be context switched. Graphics
pipe context switching only occurs when there is con­
tention for the pipe. Preemptive scheduling by the kernel
ensures graphics processes get a fair allocation of time to
access the graphics pipe. On multi-processor machines,
the scheduler needs special modifications to prevent two
simultaneously scheduled graphics processes from con­
tinually stealing the graphics pipe from each other.

4.3 Clip Validation

As hinted above, the graphics pipe mapping is not
always immediately validated when a process faults on a

pipe access.
Each rendering node has a clip resource which is either

valid or invalid. When valid, the graphics kernel driver
has up-tO-date window clipping parameters in the pane
cache for the window that can be loaded into the rendering
node's graphics hardware context (either a set of clip
rectangles or a CID value to use). When the Clip resource
is valid and there is no other reason for the pipe to be
invalid, the kernel graphics page fault handler validates
the graphics pipe pages after loading the correct clipping
information into the graphics hardware context.

If the rendering node's Clip resource is invalid, the
faulting process is suspended and a clip validate mes­
sage is sent to the X server. The X server receives the
message through the shmiq and issues a board manager
reserved "clip validate" ioc t 1 to the graphics driver in­
forming the kernel of the correct clipping parameters for
the window. When the pane cache entry for the win­
dow is updated with the new clip information, then any
processes waiting for the clip resource of the window to
be validated are awakened. The result is that a graphics
process can asynchronously have its clip updated without
any knowledge on the part of the process. An example of
the clip validation process is described in Figure 2.

Clip resources are possibly invalidated by the X server
whenever the window tree is manipulated by X window
management operations. The X server tracks which win­
dows are being used for direct rendering, and if the clips
of any of these windows change the X server uses a board
manager reserved "clip invalidate" ioc tl to tell the ker­
nel to invalidate the clip resource of any rendering nodes
bound to the windows. The invalidation of a clip happens
asynChronously to the direct rendering program and can
happen at any time the X server needs it to. The next
time a direct rendering program attempts to render to the
window, the clip validation process ensures a new, correct
clip is loaded into the direct renderer's graphics hardware
context.

The other reason the clip resource of a window might
be invalidated is if too many windows that need CIDs as­
signed to them are being directly rendered to. Remember
there are a limited number of CIDs in the hardware. The
X server can virtualize clips by invalidating the clip of
one window assigned a CID, reusing the CID by repaint­
ing another window with the newly freed CID, and then
validating the clip of a window and assigning it the newly
reassigned CID. The X server makes no attempt to handle
thrashing or starvation due to repeated CID invalidations
and validations, but in practice, because most windows
use clip rectangles, CID thrashing is not a problem.

Notice that clip validation happens lazily. Not until
a direct renderer actually touches the pipe does a clip

4
::····

. .
:; .. Graphics Interface '95

123

GL IRIX x
program ,kernel server

• : tJi':
A) GL program with invalid clip resource faults when accessing

graphics registers.

~l ~ ~~ ~
B) Kernel trap handler determines fault caused by invalid clip for the

rendering node.

~""""r"'~(i!)
C) Message put in shrniq telling X server to validate the rendering

node's clip.
D) X server generates a clip list for the rendering node's window.
E) X server performs ioctl to inform kernel of new valid clip list.

C!i) ~""r"""'~"'~""
F) Kernel updates the rendering node to reflect its new clip, validates

the node ' s clip resource, maps in the graphics registers, and
restarts the program where it stopped.

G) GL program continues running with no knowledge of the
interruption.

Figure 2: RRM clip validation assisted by the X server.

validation begin. Often when clips on the screen change,
they change repeatedly (a window manager using opaque
move is a good example of this). So it makes sense to
validate clips only on demand.

The pane cache minimizes clip validation costs when
an OpenGL process repeatedly binds and rebinds to dif­
ferent windows (an operation expected to be common for
OpenGL programs). A rendering node can be bound to a
previously bound window, and if the window is still in the
pane cache and the clip is still Valid, immediately have a
valid clip resource.

4.4 Fast Buffer Swaps

A continuously animated application swaps buffers fre­
quently enough that the operation should be optimized.
As explained earlier, SGI implements a buffer swap by
toggling the display mode table entry for the unshared
DID assigned to the window during vertical retrace.

If the glXSwapBuffers command is called on the
currently bound window, the buffer swap is considered to
be in the OpenGL command stream. This allows a direct
renderer to provide a buffer swap without contacting the
X server. The graphics driver provides a "buffer swap"
ioctl which can be issued by direct renderers. The
result is to schedule a buffer swap at the next vertical
retrace for the thread's currently bound window. If the
glXSwapBuffers command is not for the currently
bound window, the OpenGL library generates a GLX
protocol request to swap the buffers and lets the X server
perform the buffer swap.

The i oc t 1 returns immediately. This is good because
waiting for the vertical retrace could cause a delay equal
to the vertical retrace interval (typically at the rate of 60
times per second). But further drawing to the window
must be held off until the buffer swap completes. To do

this, the graphics driver invalidates the "allow rendering"
resource and invalidates the virtual memory mapping to
the graphiCS pipe. Any further access to the pipe by the
rendering node will stall the process until the buffer swap
completes. When the buffer swap completes, the "allow
rendering" resource will be revalidated so rendering can
continue.

Because which buffer is front and which is back is win­
dow state shared by all OpenGL direct renderers bound to
the window, the kernel will also update the absolute sense
of what buffer is front and back for any other rendering
nodes bound to the window being swapped. The graphics
hardware provides a means to switch what buffer is the
front and back buffer without the knowledge of the direct
renderer.

The advantage of not immediately stalling the process
until the buffer swap completes is that most animation
applications have a certain amount of computation to do
before the next image (typically called a frame) can be
rendered. By not immediately stalling the process, this
computation can be overlapped with waiting for the buffer
to swap.

4.5 Window Display Mode Validation

In the discussion of buffer swapping so far, it was
assumed that the window to be swapped was indeed on
an un shared DID. Since DIDs are a limited hardware
resource, this may not necessarily be true. In this case,
DIDs must be virtualized.

Similar to a rendering node's clip resource, rendering
nodes also have a "swappable window" resource. The
resource is valid if the X server has placed the window
on an unshared DID. It is invalid if the window's DID
is shared by other windows or the X server has revoked
the ability to swap (this need is made clear when mixing

Graphics Interface '95

124

IIIII DID 0 8-bil Colorlndex

;:'o.:0JDlO 1 12-bil RGB double buffered,
buffer A visible (shared)

//,;0102 24-bil RGB

Now a glXSwapBuffers happens on window 2 ...
The X server must:

111110100 8-bil Colorlndex

12-bil RGB double buffered,
buffer A visible

0. DID 2 U-bil RGB

'xx DID 3 12-bil double buffered,
buffer A visible (unshared)

Figure 3: Example of a glXSwapBuffers being per­
formed on window 2 which shares the same display ID
(DID l)with window 4. Before the buffer swap can be
performed, the X server must rewrite the display IDs such
that window 2 is on an unshared display ID (DID 3).

OpenGL and X rendering is discussed) .
If a process issues the "swap buffer" ioctl and the

process's current rendering node does not have its "swap­
pable window" resource valid, a message is sent to the
X server requesting the X server place the window on an
un shared DID and validate the rendering node's "swap­
pable window" resource. The X server complies with
the request and validates the "swappable window" for
the window via a board manager reserved ioctl. Once
validated, the buffer swap can then be scheduled.

As in the virtualization of CIDs, unshared DIDs may be
stolen from windows already on an unshared DID to val­
idate the resources of rendering nodes attempting buffer
swaps. When a DID is stolen, the window previously
on an unshared DID will have to find another window
to share a DID with that has the identical display mode
(because a window should never be assigned a DID with
a display mode not matching the correct display mode
for the window). Forcing a window to share a DID with
another window may force that other window to have its
"swap buffer" resource invalidated since it might have
previously had an unshared DID allocated to it. Figure
3 is an example of a window needing to be assigned an
unshared DID.

4.6 Shared Software Buffers

OpenGL's GLX specification requires implementa­
tions to support various types of ancillary buffers. When
there is no hardware support for these various types of
buffers, OpenGL implementations are expected to sup-

port these buffers in software by allocating host memory.

GLX requires the contents of ancillary buffers to be
shared between renderers binding to a window and the
contents of these buffers to be retained even when no
renderers are bound to the window. For hardware buffers,
these requirements are typically straightforward to meet
since the ancillary buffers exist in the hardware frame
buffer.

OpenGL indirect rendering could easily allow ancillary
buffers to be shared between renderers since all the buffers
would exist in the X server's address space and the X
server has immediate knowledge of the changing state of
windows.

Combining direct rendering with retained, shared soft­
ware ancillary buffers is difficult to achieve without
compromising performance. The SGI direct rendering
OpenGL implementation does not currently support the
correct sharing of ancillary buffers between renderers in
different address spaces. Each OpenGL library instance
allocates software ancillary buffers for its own address
space. These buffers can be shared between renderers
in the same address space. Also, the contents of these
buffers are retained only for the lifetime of the address
space.

Incorrectly supporting software buffers is strictly
speaking a violation of what OpenGL requires. But few
programs rely on sharing buffers across address spaces.
Sharing software buffers is an area where SGI's OpenGL
implementation does not properly isolate window state
from rendering state. Further work needs to be done to
support ancillary buffer sharing.

One problem that must be solved is the de-allocation of
software ancillary buffers when windows are destroyed.
The OpenGL library has no obvious way to find out when
an X window it is maintaining software ancillary buffers
for is destroyed so it can know to deallocate those buffers.
Since the buffers tend to be quite large, leaking ancillary
buffers is extremely expensive.

SGI solves the problem by adding a private extension
to the X server that requests the X server to generate a
SpecialDestroyNotify when a specified X win­
dow is destroyed. The first time an OpenGL rendering
context is bound to a window, this request is made for the
new window. Hooks in the X extension library (libX­
ext) allow SpecialDestroyNotify events to trig­
ger a call back into OpenGL to deallocate the associated
software buffers. The event is never seen by an X pro­
gram. Other mechanisms such as using the standard X
DestroyNoti fy event proved unreliable since the X
client might not be selecting for that event.

.~ ,.~~ Graphics Interface '95

4.7 Cursors

Logically, a window system cursor "floats" above the
windows on the screen. Standard dumb frame buffer
graphics hardware for window systems requires special
software support for managing the window system cursor.

The standard "software cursor" technique [13] used to
manage the window system cursor is to save the pixels
under the cursor when the cursor is rendered. When the
cursor's image might interfere with rendering or frame
buffer read back, the cursor must be undrawn (restor­
ing the saved pixels) and redrawn on completion of the
rendering or read back.

The undrawlredraw technique described above is rea­
sonable if the window system server is the only ren­
derer and the window system server manages the cursor.
But using direct rendering, asynchronous direct renderers
need to render into windows containing the cursor but do
not have immediate knowledge of the cursor to utilize
the undraw/redraw technique. Techniques for integrating
software cursors with direct rendering have been imple­
mented [2], but they require a graphics hardware locking
strategy that is incompatible with SGI's goal of "maxi­
mum performance" rendering.

The alternative to a software cursor is hardware sup­
port for a cursor. Normally, this consists of support in
the video back end that merges in the cursor image into
the video output. Using a hardware cursor eliminates
both the rendering overhead and flicker of the software
technique. All SGI graphics hardware supports hardware
cursors, thereby decoupling direct renderering from win­
dow system cursor management.

5 Other Issues

There are other issues that do not relate directly to
supporting virtualized, direct access rendering, but that
still are important to the implementation of SGI's direct
rendering support.

5.1 Overlays and Underlays

OpenGL supports overlay and underlay planes. Over­
lays are frame buffer image planes that are displayed
preferentially to the normal frame buffer image planes.
A special transparent pixel value can be used to "show
through" to the contents of the normal planes. Underlay
planes are like overlays but are displayed deferentially
to the normal planes. Overlays and underlays are useful
for text annotation , rubber banding, transient menus, and
animation effects. While a simple frame buffer has a sin­
gle layer, graphics hardware supporting overlays and/or

125

---- viewable clip drawable Clip

Figure 4: The difference between the drawable clip and
visible clip of a window occluded by a window in the
overlay planes.

underlays can be thought of as having multiple, stacked
frame buffer layers.

As mentioned previously, OpenGL treats windows in
the overlay and underlay planes as first class windows
in the X window hierarchy which is the convention for
handling overlays in X [4]. IRIS GL had a simpler notion
where frame buffer layers all existed in a single win­
dow spanning each frame buffer layer. Windows in non­
normal layers are just like other windows excepting trans­
parency effects and potentially fewer expose events being
generated.

The most important insight into the support for frame
buffer layers in a window system is that the drawable Clip
and the visible region of a window are no longer always
identical . Figure 4 demonstrates this point.

SGI found that its older hardware which supported a
single layer of integrated CIDs and DIDs made it impos­
sible to support direct OpenGL rendering into the overlay
planes. This old hardware is sufficient to implement IRIS
GL's simpler model for layered frame buffers, but a single
layer of DIDs combined with CIDs makes it impossible
to perform CID clipping for overlay plane windows while
keeping the display modes correct for the normal plane
windows.

The current high-end SGI hardware supports separate
DID information per frame layer to solve this problem (to
support multiple display modes for the overlays). With
separate CIDs and DIDs, the CID planes can generally be
used for both overlay and normal planes clipping. Using
CIDs for clipping does not change how the display modes
are arranged. But using CIDs for both overlay and normal
planes Clipping could contribute to CID thrashing since
the drawable region for an overlay window might overlap
the drawable region of a normal plane window. Separate

Graphics Interface '95

126

clipping planes for each frame buffer layer could remedy
the problem, but CID thrashing due to sharing clipping
planes between layers has not proven to be a problem in
practice.

5.2 Synchronization Issues

GLX treats the OpenGL command stream and the X re­
quest stream as two independent sequences of commands.
These streams may execute at different rates. GLX sup­
ports glXWai tX and glXWai tGL that allow the X and
OpenGL command streams to be explicitly synchronized.
glXWai tGL prevents subsequent X requests from exe­
cuting until any outstanding OpenGL commands have
completed. glXWai tX prevents subsequent OpenGL
commands from executing until any outstanding X re­
quests have completed. When using indirect rendering,
these calls force their appropriate sequentiality without
the cost of a round-trip. These calls can be thought of as
synchronization tokens actually embedded in the X pro­
tocol stream. When direct rendering, a glXWai tX does
require a XSync to ensure an X requests have completed.

5.3 Correct Front Buffer Rendering for X

Support for double buffering introduces a new compli­
cation to mixing non-OpenGL X rendering with OpenGL
rendering for SGI. When X rendering is done to an X win­
dow, the render operations should affect the front buffer
of the window. So X rendering must be directed into the
correct relative buffer, i.e. , the front buffer.

As discussed earlier, rendering nodes virtualize the rel­
ative access to front and back buffers when using double
buffering. But the X server renders all non-OpenGL ren­
dering to all windows through a single rendering node.
The X server does not rely on its rendering node for cor­
rect window clipping or to determine correctly the front
or back buffer. In part this is because the X server does
not bind to particular windows the way OpenGL does.

Because the X server has full knowledge of the window
tree, it does its clipping in software (and sometimes with
hardware assist). The use of virtualized clipping within
the X server is difficult for two reasons:

• The X server renders to many more windows than
OpenGL programs do. Using virtualized clipping
would quickly exhaust the hardware clipping re­
sources.

• Because the same thread in the X server does core
rendering as does the validation of virtual clip re­
sources, use of virtualized clipping would deadlock
the X server.

Ensuring X rendering always goes into the front buffer
cannot be done using the relative access allowed through
rendering nodes. Instead, the X server makes sure it
renders into the correct absolute buffer (buffer A or B, as
opposed to front or back).

But as discussed before, buffer swaps can be scheduled
by direct renderers without the attention or knowledge of
the X server. If the X server has validated the swappable
DID resource of a window, it can no longer ensure render­
ing goes into the front buffer. The X server could query
the hardware to determine state of the buffer. Query­
ing the current front buffer would require a query per­
rendering operation. Worse yet, the query's information
is only valid for the instant of the query.

If the X server wants to render into the window of
a double buffered window that has its swappable DID
resource validated, the X server invalidates the unshared
DID resource for the window. A graphics driver ioctl
is used to perform the invalidation. This invalidation
accomplishes two things:

• Revokes the permission of direct renderers to swap
the buffer. Further attempts to swap the window
will be held off and result in a message to the X
server to revalidate the unshared DID resource. The
swap will be delayed until the X server revalidates
the resource.

• And, returns the current state of the buffer.

While this operation is heavy-handed, it lets the X server
render correctly into the front buffer. With stable knowl­
edge of which absolute buffer is being displayed, the X
server can render correctly.

The overhead of the scheme is minimized because
the X server only checks if it needs to revoke a dou­
ble buffered window's shared DID resource during the
validation of a graphics context (GC) and window. Se­
rial numbers determine when the window and a given
GC are validated with respect to each other. When the
shared DID resource is validated, the serial number of the
window is updated with a unique value, forcing any pre­
viously valid GCs to become invalid. Any X rendering
will then force a GC validation, at which time the shared
DID resource can be revoked.

5.4 X Server Multi-rendering for Indirect Ren­
dering

Indirect rendering is still required by the GLX spec­
ification so even the best direct rendering support still
requires that indirect rendering be supported. SGI's
OpenGL implementation treats indirect rendering as a
special case of direct rendering.

Graphics Interface '95

Independently scheduled threads within the X server
execute indirectly rendered OpenGL commands. A
distinct thread is created for each X connection using
OpenGL indirect rendering. This thread within the X
server's address space executes the same OpenGL ren­
dering code that direct renderers use and utilizes the same
system support for direct rendering. One can think of the
OpenGL rendering threads within the X server as prox­
ies that execute OpenGL commands on behalf of an X
client using indirect OpenGL rendering. The OpenGL
rendering threads within the server only coordinate with
the main X server thread to hand off commands to exe­
cute and return results. Otherwise, these threads do not
manipulate any X server data structures. This technique
is called multi-rendering and is discussed in greater detail
in [10].

Acknowledgments

Much of the understanding for supporting direct ren­
dering of OpenGL came from the implementation of its
predecessor, the IRIS GL. The work of Jeff Doughty, John
Giannandrea, Luther Kitahata, Paul Mielke, Jeff Wein­
stein, and others on IRIS GL's resource management laid
the basis for the facilities described here. We would like to
acknowledge all those at Silicon Graphics who helped en­
sure OpenGL's successful implementation, notably Kurt
Akeley, Peter Daifuku, Simon Hui, Phil Karlton, Mark
Stadler, Paula Womack, and David Yu.

References

[1] Kurt Akeley, "RealityEngine Graphics," SIG­
GRAPH 93 Conference Proceedings, August 1993.

[2] Jeff Boy ton, et.al., "Sharing Access to Display
Resources in the Starbase/X 11 Merge System,"
Hewlett-Packard Journal, December 1989.

[3] Bradley Chen, "Memory Behavior of an XII Win­
dow System," USENIX Conference Proceedings,
January 1994.

[4] Peter Daifuku, "A Fully Functional Implementa­
tion of Layered Windows," The X Resource: Pro­
ceedings of the 7th Annual X Technical Conference,
O'Reilly & Associates, Issue 5, January 1993.

[5] Edward Haletky, Linas Vepstas, "Integration of GL
with the X Window System," Xhibition 91 Proceed­
ings, 1991.

127

[6] Chandlee Harrell, Farhad Fouladi, "Graphics Ren­
dering Architecture for a High Performance Desk­
top Workstation," SIGGRAPH 93 Conference Pro­
ceedings, August 1993.

[7] Chandrasekhar Narayanawami, ecal., "Software
OpenGL: Architecture and Implementation," IBM
RISC Systeml6000 Technology: Vol. 11, 1993.

[8] Phil Karlton, OpenGL Graphics with the X Window
System, Ver. 1.0, Silicon Graphics, April30, 1993.

[9] Mark J. Kilgard, "Going Beyond the MIT Sample
Server: The Silicon Graphics X 11 Server," The X
Journal, SIGS Publications, January 1993.

[10] Mark J. Kilgard, Simon Hui, AlIen A. Leinwand,
Dave Spalding, "X Server Multi-rendering for
OpenGL and PEX," The X Resource: Proceedings
of the 8th X Technical Conference, O'Reilly & As­
sociates, Issue 9, January 1994.

[11] OpenGL Architecture Review Board, OpenGL Ref­
erence Manual: The official reference document for
OpenGL, Release 1, Addison Wesley, 1992.

[12] Desi Rhoden, Chris Wilcox, "Hardware Accelera­
tion for Window Systems," Computer Graphics, As­
sociation for Computing Machinery, Vol. 23, Num.
3, July 1989.

[13] David Rosenthal, Adam de Boor, Bob Scheifler,
"Godzilla's Guide to Porting the X VII Sample
Server," X11R5 Documentation, Massachusetts In­
stitute of Technology, April 12, 1990.

[14] Mark Segal, Kurt Akeley, The OpenGL™ Graph­
ics System: A Specification , Ver. 1.0, Silicon Graph­
ics, April 30, 1993.

[15] Silicon Graphics, "Indy Graphics," IndyT M Techni­
cal Report, Ver. 1.0, 1993.

[16] C. H. Tucker, C. J. Nelson, "Extending X for High
Performance 3D Graphics," Xhibition 91 Proceed­
ings, 1991.

[17] Doug Voorhies, David Kirk, Olin Lathrop, "Virtual
Graphics," Computer Graphics, Vol. 22, Num. 4,
August 1988.

Graphics Interface '95

