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Abstract 

Colour image quantization is the process of repre­
senting an image with a small number of well se­
lected colours. Most previous colour quantization 
techniques use a recursive pre-clustering approach. 
These algorithms subdivide the colour space into a 
set of simple geometric regions. Thus, the colour 
map is chosen on the basis of this approximation. 

We propose a new quantization method called 
local K-means (LKM).1t is an iterative post-cluster­
ing technique that approximates an optimal palette 
using multiple subsets of image points. The paper 
also presents ways to speedup the search of the clos­
est colour for a dynamically changing palette. The 
local K-means procedure is compared with popu­
lar pre-clustering algorithms. The LKM method is 
able to generate a high quality palette significantly 
fast er than other quantization techniques. 

Keywords : Colour quantization, image compres­
sion, colour reduct ion, palette, colour map. 

1 Introduction. 

Colour quantization is one of the most frequently 
used operations in computer graphics and image 
processing. Traditionally, quantization is used to 
reproduce 24 bit images on graphics hardware with 
a limited number of simultaneous colours (i.e. frame 
buffer displays with 4 or 8 bit colourmaps). Even 
though 24 bit graphics hardware is becoming more 
common , colour quantization maintains its practi­
cal value. It lessens space requirements for storage 
of image data and reduces transmission bandwidth 
requirements in multimedia app lications. 
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Colour quantization is usually defined as a lossy 
image compression operation that maps a full colour 
image to an image with a smaller palette. The 
mapping substitutes each original image colour by 
the closest colour from the reduced palette. The 
obj ect ive of the research in quantization is to min­
imize the perceived distortion in the resulting im­
age. Mathematically this process can be formu­
lated as an optimization problem (see [Wu92]). 

Usually quantization algorithms take one of the 
two possible approaches: pre- or post-clustering 
[Dek94]. 

Previous colour quantization algorithms use a 
pre-clustering scheme. A colour space is partitioned 
into a set of clusters. The centroids of these clus­
ters define the resulting colour map. 

The median-cut algorithm [Hec82] takes a pre­
clustering approach. The colour space is recur­
sively subdivided into a set of rectangular boxes 
by planes parallel to the space axis. The object ive 
of the split is to place an equal number of colours 
into every rectangular cluster. 

The variance based method [WPW90] follows a 
similar scheme. At each step a box with t he largest 
variance is selected. The partition plane is chosen 
to be perpendicular to the axis with the smallest 
sum of projected variances. The goal of such a 
subdivision is to minimize variance of colour within 
each rectangular cluster. 

The octree algorithm [GP88], [CFM93], [Cri92] 
relies on a tree structured partitioning of the colour 
space. The root of the tree represents the ent ire 
space. Colours of the original image are placed 
into the leaves of the octree. Neighboring leaves 
are recursively merged together. 
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The algorithms described above have a com­
mon flaw . The intermediate clusters are bipar­
titioned one at a time independently from each 
other. As a result the quantization process is not 
able to take into account interrelationships between 
neighbouring colour clusters. Wu [Wu92] recently 
proposed the principal multilevel quantization a l­
gorithm. The performance of the pre-clustering 
scheme is improved by simultaneous optimization 
of multiple cuts. 

Minimization in the pre-clustering techniques is 
tied to approximation of Voronoi clusters. These 
clusters are usually presented by simple geometric 
objects. Post-clustering algorithms try to find rep­
resentative colours first. Voronoi tessellation of the 
colour space is computed using these representative 
colours . Post-clustering techniques have been ac­
tively studied in statistical analysis, data coding, 
signal processing and pattern recognition [LBG80], 
[GraS4], [Fri93], [MG93], [KKL90]. Until now these 
schemes were considered to be computationally ex­
pensive for colour quantization. 

The objective of our research is to make a post­
clustering technique feasible for colour image quan­
tization. We explored the local K-means scheme 
[MG93]. This approach is a combination of a K­
means quantization [LBGSO] and a self-organizing 
map (or Kohonen neural network) [KKL90]. The 
scheme presented in this paper is significantly fast er 
and at least as accurate as previous pre-clustering 
methods: median cut, variance and octree based 
algorithms . 

2 Formulation of the Colour Quantization Prob­
lem. 

Let Ci be a 3-dimensional vector in one of the colour 
spaces (Lu'v' , HSV , RGB , etc. ). The set C = 
{ Ci , i = 1, 2 . . . N } is the set of all colours in the full 
colour image I. A quantized image I is represented 
by a set of J{ colours C = {Cj , j = 1, 2 ... K} , J{ « 
N. The quantization process is therefore a map­
pmg: 

q : C -+ C. (1 ) 

Th e closest n eighbour principle states that each 
colour c of the original image I is going to be mapped 
into the closest colour e from the colour palette C: 

c =q(c): IIC - ell = . min IIc - Cjll· 
)=1 ,2 .. K 

(2) 
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The quantization mapping defines a set of clus-
ters Sk, k = 1, 2 . .. [{ in the image colour space 
C: 

Sk = {c E C : q(c) = cd· (3) 

The goal of quantization is to make the per­
ceived difference between the original image and 
its quantized representation as small as possible. 
Human vision is an extremely complicated and not 
yet fully understood process. It is very difficult to 
formulate a definite solution to the image quantiza­
tion problem in terms of perceived image quality. In 
fact, there is no good objective criterion available 
for measuring the perceived image similarity. 

In the colour quantization literature it is com­
mon to use image dependent distortion measures 
(see [HecS2], [WPW90], [Wu92] and others). Let 
an image I be an array of M pixels (x, y) , then 
C(x,y) is the colour of each image pixel. The aver­
age quantization distortion per pixel can be defined 
as follows : 

1 
fq(C,I) = M L lic( x,y) - q(C(x ,y))II, (4) 

(x, y)EI 

where 11*11 is the Euclidean L2-norm . Wu in [Wu92] 
recommends to use CIE Lu' v' space where the Eu­
clidean norm can approximate a perceived colour 
difference. 

Even though the average distortion measure 
fq(C,I) can give a reasonable estimate of a perceived 
image difference, it can also be very misleading (see 
[WPW90]) . Colours of the original image are of­
ten nonuniformly distributed in the colour space. 
Thus, significant image informat ion is carried by 
some distinct but "rare" colours (e.g. specular 
highlights). If a quantization algorithm approxi­
mates the more popular colours , the average dis­
tortion might be small , but the "rare" colours of 
the original will be lost. 

Rather than using a single measure of quantiza­
tion errors we propose to evaluate approximation 
accuracy by a combination of the average colour 
distortion: 

(5) 
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and the standard deviation of distortion per pixel : 

(Y= 
L (x, Y)EI(ll c(x, y) - q(C(x, y») II- cq(c, I) F 

M 
(6) 

The obj ective of our research is to find an al­
gori thm tha t minimizes both approximation mea­
sures simul taneously. Sma LL va lues of Cq(C) guar­
antee that a quantiza tion process accurately repre­
sents colours of the original image. Unfortunately 
the human visual system is not able to determine 
the absolu te value of a colour . It is more sensi­
ti ve to colour variations . A quantization algorit hm 
that produces sm aLL va lues of (Y introduces almost 
equal colour distortion to every pixel. Therefore, 
the minimization of the standard deviation of dis­
tortion (Y helps us to preserve variations of colours 
in the quant ized image. 

It should be noted that these error measures 
have a significant limita tion . Even though Cq(C,J) 

and (Y are image dependent measures they treat 
each pixel independently. The spatial correlation 
among colours is not taken in to account . Recent 
work [BA9 l] attempts to account for the colour 
context by a pre-quant ization step. Unfortun ately, 
the technique does not provide a m athem atical too l 
that is useful in the quant ization process. 

3 K-means algorithm and its variants. 

K-means algori thm [LBG80] is a post-clustering 
technique that is widely used in image coding and 
pattern recognit ion . A sequence of iterations starts 

wi th some initia l set C<0). At each ite ration tall 
data points c E C are assigned to one of the clus­

ters Sk (t ) as defined in (3). A new center c0 t ) for 
a cluster is computed as foLLows: 

I 

c/ t + l
) = ~ 2:)ci lci E syr»). (7) 

i =1 

The a lgori thm is known to converge to a local min­
Imum . 

The K-means a lgorithm was used to qua ntize 
images in [WPW90]. For the test images it pro­
duced smaller average errors Cq( c .J ) t han the m edian­
cut and variance-based pre-c1 ustering a lgorithms. 
Unfortunately, high cost of computat ion makes K­
means impractical for image quantization . 

- , 

3.1 Kohonen self-organizing maps. 

A self-organizing m ap (SOM) is a post-clustering 
scheme. It was introduced by Kohonen [KKL90] as 
a solu t ion to a general vector quant ization problem. 
The SOM is a neural network that imposes a one or 
two-dimensional topological structure over a set of 
clusters in a higher dimensional space. The adap­
tation process attempts to approximate the density 
fun ction of the input . 

Dekker in [Dek94] studied the use of a one-dimen­
sional self-organizing m ap for image quantizat ion. 
The initial palette is set to equa LLy spaced gray val­
ues . The input values are obtained by mul t iple 
sampling of the image with la rge step sizes. T he 
closest colour c0t

) of the palette is adjusted to bet­
ter comply with the input c( t ). 

The network is considered to be elast ic. Thus, 
when c0t ) is updated the other Ck( t ) : Ik - jl :S 
r are also moved . T he parameter r is t he radius 
of elasticity that decreases with time. T he SOM 
adaptation process is defined as follows: 

where t he adaptation parameter ° < <Xt < 1 is 
exponent ially decreasing. The elasti city coeffi cient 
P(t ,j) ensures that only entries in the r- neighbour­
hood are updated. 

Since the update neighborhoods often overl ap 
the values of Ck tend to be smoothed. In order to 
ensure a fair representat ion of colour regions by t he 
palette C Desieno (see [H N90] p . 69) proposed the 
use of a specia l bi as value byt ). The input colour 

c( t ) updates the palette ent ry Ck ( t) found by the 
following rule: 

The bias factor increases for less frequent ly cho­
sen vectors. Thus a colour t hat was chosen many 
times before wiLL not to be chosen later . 

In the experiments in [Dek94] the self-organizing 
m ap method produced quantized images of a better 
quality than octree and median-cut pre-c1 ustering 
schemes. Unfortunately the SOM qu ant ization is 
signi ficant ly slower than other techni ques. Dekker 
proposed to use only a part of t he im age as an in put 
data to generate the palette. T his approach speeds 
up the palette selection but red uces quant izat ion 
accuracy. 
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3.2 local K-means algorithm. 

In this paper we argue that a Local J(-Means algo­
rithm (LKM) is a suitable approach to the colour 
quantization problem . The method can be consid­
ered a special case of a self-organizing map. Unlike 
the Kohonen network , the adaptation step of the 
LKM process updates only the closest colour: 

j = k; 
otherwise 

(10) 

The LKM is similar to gradient quantization 
techniques used in gray scale image coding [Mat92]' 
[MC;92). These works prove convergence of the pro­
cess to a local minima. Moreover, the gradient 
method converges faster than the K-means algo­
rithm. 

In the case of the Kohonen network the bias 
factor ensures that a distinct small colour cluster 
is represented by a separate palette entry [Dek94). 
We found that the same result can be obtained by 
an improved selection of the initial palette. We 
have chosen to construct the initial palette by in­
cremental insertion of a colour from the original 
image. A new colour is added into the palette if its 
distance from the already inserted entries exceeds 
a specified threshold . 

The input data sets are constructed by sampling 
the image in decreasing step sizes: 1009 , 757 , 499 , 
421 , 307, 239 , 197 , ... We have chosen these step 
sizes to be prime numbers , thus the input sets do 
not intersect too much . The iteration process stops 

when changes to the palette C<t) in a complete im­
age scan become small. In our experience the union 
of input sets does not include more than 10% of all 
image points. 

Even though the proposed algorithm examines 
only a portion of the input image, it is able to 
generate good approximating palettes . This re­
sult may be exp lained by the fact that colours of 
a typical image are clustered in the colour space. 
Therefore, it is enough to use a few colours from 
the cluster to approximate a ll its members . Since 
similar colours are often close to each other on the 
image surface, we hope t hat our input sets contain 
representati ves for most cl usters. 
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4 Fast nearest neighbour search. 

Performance of a quantization method greatly re­
lies on the speed of the nearest neighbour search. 
This search is the basis of the colour mapping op­
eration. Moreover , the described post-clustering 
techniques use the nearest neighbour to determine 
the optimal palette. 

In order to speed up the search Freidman et. al. 
proposed the use of k-d trees [FBF77) . In his soft­
ware Poskanzer implements the search using var­
ious hash functions (see [Pos91)). Unfortunately 
these techniques cannot be used in the framework 
of iterative procedures such as local K-means. Po­
sitions of representative colours Cj are constantly 
changing, therefore a k-d tree or a hash table must 
be recomputed after every iteration . 

Another approach is to use less expensive dis­
tance metric. For example , the Euclidean L2 norm 
can be substituted by the less expensive L1 norm. 
Unfortunately, the nearest neighbour determined 
by L1 norm is not necessarily the nearest neigh­
bour in L2 norm. 

Chaudhuri et. al. [CCW92) proposed the La 
norm as an approximation of the Euclidean metric. 
For a vector x E Rn the La norm it is defined as 
follows : 

Il xll a (1 - 0:)llx111 + o:llxll oo 
n 

(1- 0:) L IXil + o:maxlxil· (11) , 
i=1 

To reduce the computation cost we have chosen 
to use 0: = 1/2. We found that the application of 
the L a =1/2 norm significantly speeds up the search 
(Table 1). Moreover , the introduced misclassifica­
tions do not noticeab ly influence the quality of the 
output image. 

Table 1: 
Influence of different norms on a quantization 
error for image "Lenna' 

1 Norm 11 Time 1 fq(C I) Wrong neighbour 
I 

L1 11.9 sec. 5.56 11% 
L2 59.9 sec. 5.46 

La =1/2 14 .7 sec. 5.47 4% 

The search cost can be further reduced USlllg 
the following considerations [Hod88): 
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Table 2: 
Influence of different stopping rules in the nearest 
neighbour search on the speed of the quantization 

Algorithm Execution time 
16 colours 256 colors 

Direct search 1.74 25 .51 
Lp 1.45 19.44 
Lp and sorting 0.89 2.93 
Lv' sorting and NND 0.76 2.76 
k-d trees 1.41 2.65 

• Calculation of the partial sum. 
Before each addition in the norm calculation 
(11) a partial sum Ep is compared with the 
current minimum distance E min . The norm 
calculation terminates if Ep > Emin 

• Sorting on one coordinat e. 
The palette colours are sorted using one of the 
coordinates. Suppose that the first coordinate 
is chosen. The search selects palette ent ri es in 
the increasing first-coordinate distance order 
starting with the closest colour. This process 
terminates when the first coordinate distance 
between the next palette entry and the input 
is la rger than the current minimum Emin . 

• Nearest neighbour distance (NND). 
The search for the nearest colour should ter­
minate when Emin is less than one half of t he 
distance from the current palette colour to its 
closest palette neighbour. 

These speed optimizations were tested using the 
im age "Lenna". We mapped the 512x400 image 
into 16 and 256 colour palettes. Comp utation time 
can be found in Table 2. The k-d tree colour map­
ping is given as a reference. 

According to the experiments the perform ance 
of our colour mapping algorithm is close to that of 
k-d trees. 

We also studied the app lication of t he described 
optimizat ion techniques to the palette selection phase 
of the LKM algorithm . We believe that NND rule 
is rather hard to use in this case as positions of 
centers change in each iteration step. Fortunate ly, 
the adaptat ion phase does not greatly rearrange a 
sorted order of centers. We found that it is suffi­
cient to sort centers only at the beginning of a new 
sampling set without any noticeable loss of quanti­
zation accuracy. 

Overall the local K-means algorithm is able to 
select a colour map significantly faster than the 
other methods (Table 3) . 

5 Experiments. 

For our experiments we have chosen a set of 24-
bit images that represent various image sources: 
scanned photographs, computer rendered scenes, 
and digitized works of art . 

The local K-means procedure (LKM) was com­
pared to implementations of the popular quanti­
zation algorithms found in public domain image 
processing software: median-cut [Pos9 l]' variance­
based [Th090], octree [Cri92]' SOM [Dek94j. These 
implementations worked in RGB colour space. For 
a fair comparison we also used the RG B space. 
Note , that even though quant ization in perception­
based spaces can give a better visual result , it does 
not change the relative correspondence of numeri­
cal values of quantization accuracy. Therefore, a l­
gorithms that produce small distortions in RG B 
space are expected to perform as well in Lu' v' or 
HSV spaces. 

Figures 1-6 are chosen to represent two typical 
quantization artifacts: the loss of colour inform a­
tion and artifi cial banding. 

A digitized painting by Gustav Klimt "Kiss" 
(Figure 1) was qu antized to 16 colours . The qu an­
tized image produced by the median-cut method 
looks signifi cant ly distorted (Figure 2). Some fine 
details of t he image have disappeared : blue fl ow­
ers on the woman 's head , yellow spots on her dress, 
etc. The variance-based (Figure 3) and octree (Fig­
ure 4) a lgorithms were ab le to preserve most of 
these detai ls , t hough the origin al colour cont rast 
was great ly redu ced. The local K-means quanti­
zation seemed to reprod uce a full chromatic range 
of the origin al image (F igure 5). In fact, t he nu­
merical values of the average distortion per colour 

Tab le 3: 
Execution time in seconds for colour map selection 

Algorithm "Kiss" "Pool Balls" 
612,096 pixels 195,330 pixels 

No. of colours: 16 256 16 256 

Med ian-cut 4 .64 4.93 1.2 1.57 
Oct ree 2.04 3.67 0.65 0.90 
Kohonen SOM 101.81 32.27 
Local K-means 0.65 1.74 0.20 0.38 
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Table 4: 
Quantization errors for image "Kiss" 

1 Method 11 Max 1 Cq( C) 1 Cq( C 1) 1 , 

Median cut 161 29.8 20.77 14.71 
Variance based 146 25.4 17.63 11.57 
Octree 133 26.4 19.41 13 .65 
Local K-means 102 20.4 26.65 9.30 

Table 5: 
Quantization errors for image "Pool Balls" 

1 Method 11 Max 1 tq (C ) 1 Cq( C 1) 1 (j 

Median cut 107 8.1 4.39 2.49 
Variance based 45 6.6 4.27 1.72 
Octree 61 6.4 2.07 2.16 
Kohonen SOM 95 7.9 1.74 2.87 
Local K-means 105 7.42 2.01 2.59 

f q( C) and deviation of distortion per pixel (j are the 
smallest for the LKM method (Table 4). 

A computer rendered image "Pool balls" was 
quantized to 256 colours. All the tested algorithms 
were able to'" preserve the original colour contrast. 
Unfortunately, pre-clustering techniques introduced 
significant artifi cial banding (Figure 6, right col­
umn) . Both LKM and Kohonen map methods were 
able to avoid this artifact (Figure 6, left column). 
It is important to notice that in the case of the 
SOM the palette was chosen using the entire im­
age. The input data of the LKM algorithm covered 
only 8% of the original image. We found that in 
the case of images with large areas of close colours 
the average distortion per pixel Cq(C ,I ) carries the 
most information about the quantization accuracy. 
The values of Cq(C ,I ) are the smallest for LKM and 
SOM algorithm (Table 5) . 

6 Conclusion 

The obj ective of our research was to develop a tech­
nique which is able to produce colour maps for 
quantization with minimum distortion of the orig­
inal image. We presented the local K-means algo­
rithm. This technique follows the post-clustering 
approach . The advantage of the LKM algorithm 
is the ability to select a palette without making 
any simplifying assumptions about the boundaries 
of colour clusters. 
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The performance of the local K-means scheme 
was compared to the quantization results of median­
cut, octree, variance-based and SOM algorithms. 
The resulting images were evaluated using statisti­
cal distortion parameters as well as the perceived 
difference with the original. We found that the 
LKM technique is able to produce high quality 
colour maps significantly faster than other tested 
methods. 

7 Future work 

The adaptive nature of the LKM algorithm can be 
further explored in the future. Verevka in [Ver95) 
shows how the LKM method can be used to im­
prove quantization in the windowing systems. A 
similar approach may be applied to quantize ani­
mation sequences. 

We found that quantization may lead to reduc­
tion of the perceived colour contrast and artificial 
banding. Unfortunately none of the proposed sta­
tistical parameters of image distortion were able to 
capture these artifacts . Better numerical measures 
still have to be defined. 
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Figure 3: Variance based Figure 4: Octree 

Figure 5: LKM Figure 6: Pool balls 
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