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Abstract 
This paper describes a physically-based model for 
animating cloth objects, derived from elastically de­
formable models, and improved in order to take into 
account the non-elastic properties of woven fabrics . 
A cloth object is first approximated to a deformable 
surface composed of a network of masses and springs, 
the movement of which is evaluated using the numer­
ical integration of the fundamental law of dynamics. 
We show that when a concentration of high stresses 
occurs in a small region of the surface, the local de­
formation becomes unrealistic compared to real de­
formations of textiles . With such an elastic model , 
the only solution to decrease these deformations has 
been so far to increase the stiffness of the deformed 
springs, but we show that it dramatically increases 
the cost of the algorithm. We present therefore a 
new method to adapt our model to the particularly 
stiff properties of textiles, inspired from dynamic in­
verse procedures. 

R esume 
Cet article decrit un modele physique d'animation 
des tissus, variante des modeles elastiques deforma­
bles, et ameliore de fa<;on a prendre en compte les 
proprietes non elastiques des textiles . Nous mode­
lisons tout d 'abord une piece de tissu par une sur­
face deformable, constituee d 'un reseau de masses 
et de ressorts. Son mouvement est evalue grace a 
I'integration numerique de la loi fondamentale de 
la dynamique. Nous montrons que lorsqu'une forte 
concentration de contraintes apparait a certains en­
droits de la surface, la deformation locale y de­
vient irrealiste comparee aux deformations rencon­
trees dans les tissus reels . A vec un tel modele elas­
tique, la seule solution permettant d'attenuer cette 
deformation etait jusqu'a present d 'augmenter la 

raideur des ressorts deformes, mais nous montrons 
que ceci faisait croitre dramatiquement le cout de 
I'algorithme. Nous presentons donc ici une nou­
velle methode permettant d 'adapter notre mode le 
aux proprietes particulierement rigides des textiles, 
inspiree des procedures de dynamique inverse. 

Keywords: Physically-based models, deformable 
surfaces, cloth animation, rigid behavior. 

1 Introduction 

1.1 Background 

Woven fabrics have been widely studied in com­
puter graphics in order to find appropriate models 
describing their particular properties, namely their 
static behavior (e.g. drape) and their dynamic be­
havior (e.g. buckling propagation). Early studies 
can be found in [1, 2, 3, 4], but regarding cloth 
animation with which we were most ly concerned, 
physically-based models have proved to be both the 
most efficient and realistic . Among the physically­
based models used in cloth animation, elastically de­
formable models have been used successfully in order 
to give a representation of the behavior of various 
cloth objects such as flags, tablecloths , or even gar­
ments dressing synthetic actors [5, 6, 7]. 

1. 2 R ealism 

However, one of the problems encountered in this 
kind of modelization is that woven fabrics are far 
from having ideal elastic properties. This is why, 
under certain conditions and stresses, these elas­
tic models behave more like sheets of rubber, or 
gum, than like textiles . This behavior occurs espe­
cially when the elastic model is subject to high con­
straints, and therefore to high "super- elastic" defor­
mation rates . Such high constraints do not appear in 
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many of the normal uses of textiles (tablecloth, am­
ple clothes, ... ), and this is why the use of an elastic 
model for cloth animation is valid. But this is not the 
case for flags, or hanging sheetsl, where constraints 
are often concentrated at the hanging point(s) of the 
piece of cloth. 

In these cases, when high contraints should lead 
to lower deformation rates, cloth animation models 
should be much stiffer than the elastic models that 
have been implemented so far. But the numerical so­
lution of these models is evaluated by the means of 
a sampling rate in time which increases when stiff­
ness increases-the higher the stiffness, the higher 
the cost of the algorithm. 

This is why some attempts have been made to 
give up elastically deformable models and to use 
instead a network of rigid rods of fixed length [9], 
the movement of which can be computed thanks to 
the advances in constraint problems. This compu­
tation remains nevertheless costly when the number 
of rods increases, and the method gives free course 
to uncontrolled shear deformations unlikely to occur 
in woven fabrics . This could be handled by adding 
springs, but then the same "super-elastic" problem 
would remain, though this time only for shear de­
formation. From a different viewpoint, D. E. Breen 
also proposes, in [8], to use particle systems. But he 
only applies this method to the static behavior (the 
drape) of cloth objects, and not to cloth animation. 
Besides the computational speed of his algorithm is 
very slow. 

1.3 Preview 

In our approach, we start in section 2 with a model 
composed of masses and springs, which can be con­
sidered as a variant of elastic models. The specificity 
of this approach is that, unlike in [5, 6, 7], the model 
is not considered as a continuous surface that will 
have to be discretized, but rather as a discrete struc­
ture of elements where each mass-point and each 
spring can be handled individually. In sections 3 and 
4, we describe the inconvenient "super-elastic" prop­
erty of this model and why this problem cannot be 
solved by increasing stiffness. In section 5, we then 
introduce constraints on the deformation rates of the 
springs in order to avoid this "super-elastic" effect , 
and we take these constraints into account using a 
low-cost heuristic method inspired from classical dy­
namic inverse procedures. Results are discussed in 
section 6. 

1 also : coat hanging on a peg, banner , curtain, .. 

2 The Mass-Spring Model 

2.1 The Mesh 
Our elastic model is a mesh of m x n virtual masses, 
each mass being linked to its neighbors by massless 
springs of natural length non equal to zero. The 
linkage inbetween neighbors is achieved in three dif­
ferent ways (figure 1) : 

• springs linking masses [i, j) and [i + 1, j], and 
masses [i, j) and [i, j + 1], will be referred to as 
"structural springs"; 

• springs linking masses [i , j) and [i + 1, j + 1), and 
masses [i+ 1,j) and [i,j + 1), will be referred to 
as "shear springs"; 

• springs linking masses [i, j) and [i + 2, j), and 
masses [i, j) and [i, j + 2), will be referred to as 
"flexion springs" . 

Indeed, under pure shear stresses, only the "shear 
springs" are constrained; under pure flexion stresses 
(i .e. bending), only the "flexion springs" are con­
strained; whereas under pure compression or trac­
tion stresses (i .e. stretching), only the "structural 
springs" are constrained. 

m= 1 m=2 m=3 

mass : 0 

spring: 

Figure 1: Regular mesh of masses and springs used 
for our model. 

2.2 D ynamics and Forces 

The system under study is the mesh of the m x n 
masses, each mass being positioned at time t on the 
point Pi ,j(t), where i = 1, ... , m and j = 1, ... , n. 
The evolution of the system is governed by the fun­
damental law of dynamics: 

where J..£ is the mass of each point Pi,j and a i ,j is 
its acceleration caused by the force F i ,j. Fi,j can 
be divided between the internal and external forces . 

. ~ 
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The internal force is the resultant of the tensions of 
the springs linking Pi,j to its neighbors: 

F int(Pi ,j) = 

- " K · . k 1 [1 · k 1 - lO ~ ] (1) L-(k,l)E'R ',] , , ' ,] , , i ,j ,k,l IIL ,j ,k,dl 

where: 

• n is the set regrouping all couples (k, l) such as 
Pk ,l is linked by a spring to Pi,j, 

• lO. k 1 is the natural length of the spring linking t,) , , 

Pi,j and Pk ,l, 

• Ki ,j,k, l is the stiffness of the spring linking Pi ,j 
and Pk,l ' 

The external force is of various nature according to 
the kind of load to which we wish the model to be 
exposed. Omnipresent loads will be gravity, a vis­
cous damping and a viscous interaction with an air 
stream (or wind). Let g be the acceleration of grav­
ity, the weight of Pi ,j is given by: 

Fgr(Pi ,j) = /-Lg 

The viscous damping will be given by: 

F diB (Pi ,j) = - C,lis V i ,j 

where Cdis is a damping coefficient, and Vi ,j is the 
velocity of point Pi ,j ' The role of this damping is 
in fact to model in first approximation the dissipa­
tion of the mechanical energy of our model. It is 
introduced as an external force, but could actually 
be considered as an internal force as well. Finally, 
a viscous fluid moving at a uniform velocity Ufluid 
exerts, on the surface of a body moving at a velocity 
v, a force F vi = Cvdn' (Utluid - v)]n, where n is 
the unit normal on the surface. In our case: 

F "i(Pi,j) = C"dni,j '(Utl1Jid - Vi ,j)]ni ,j 

where ni,j is the unit normal on the surface at point 
Pi ,j ' 
2.3 Integration 
All these considerations allow us to compute the 
force Fi ,j(t) applied on point Pi ,j at any time t . The 
fundamental equation of dynamics can therefore be 
explicitly integrated through time by a simple Euler 
method: 

! 
ai ,j(t + 6.t) = ~Fi ,j(t) 

Vi, j(t + 6.t) = Vi ,j(t) + 6.tai ,j(t + 6.t) 

Pi ,j(t + 6.t) = Pi,j(t) + 6.tvi ,j(t + 6.t) 

(2) 
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where 6.t is a chosen time-step2, 

2.4 Dynamic Inverse Procedures 

There are some cases where the movement of a cloth 
object is not entirely caused by analytically com­
putable forces . This occurs for all contact problems. 
A simple example of this situation is given by the 
case of a hanging curtain . Each hanging point of 
a mass-spring curtain is subject to internal forces 
and gravity which all tend to pull it downward. But 
the rod from which the curtain hangs is exerting a 
counter-balancing force which is not directly com­
putable as a function of the positions and the ve­
locities of the vertices of the mesh. Nevertheless, 
this counter-balancing force can be indirectly deter­
mined. 

The integration of the fundamental law of dynam­
ics allows us to compute the displacement of a point 
from the knowledge of the force applied to it. But in 
our case, we can solve the inverse problem: we know 
the displacement of the hanging point (it is equal to 
o if the rod is fixed) , and hence we can compute its 
actual velocity and the actual resulting force applied 
to it (also equal to 0 if the rod is fixed) . All happens 
as if we did not take into account the results of the 
integration of equation (2) for the hanging points. 
Whatever the result found, the displacement of the 
hanging points is re-set to its a priori known value. 

In cloth animation, dynamic inverse procedures 
are also used to deal with collisions of the cloth 
object with other objects, and to deal with self­
collisions of the cloth itself. Such procedures are 
described by Carignan et al. in [7], but we did not 
focus on this point in this paper. 

3 The "Super-Elastic" Effect 

After having implemented this algorithm, we have 
tested it in various situations, which led to more 
or less realistic results. We have been particularly 
interested in finding the manifestations of the lack 
of realism of our model, and then in understanding 
its causes. We will study here the case of a sheet 
hanging by two adjacent corners, subject to gravity, 
but in a scene where there is no wind (Utluid = 0). 
The sheet is modeled by a mesh composed of 17 x 17 
vertices. The two corners are immobile and held into 
place by a dynamic inverse procedure, as described 
in section 2.4. Figure 2(a) shows the initial position 
of the "structural" springs (represented by cylinders) 
of the sheet model. Figure 2(b) shows the resulting 

2More details about how C:!.t must be chosen are presented 
in section 4. 
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deformation computed by the algorithm after 200 
steps. 

This example clearly shows one of the problems­
the elongation of the springs directly tied to the cor­
ners is very high compared to all the other springs. 
The deformation of the sheet is therefore very locally 
concentrated around the corners, and the deforma­
tion rate3 decreases very rapidly with the distance 
between the vertices and the corners. The value of 
the deformation rate of the most elongated springs 
exceeds 100 % ! 

(a) Initial position 

(b) After 200 iterations 

Figure 2: Deformation of the elastic model of a sheet 
hanging by two adjacent corners. 

Such a local deformation never occurs in woven 
fabrics. In fact it can be sometimes encountered in 
very loose knitted fabrics, but it is rather infrequent. 
In the field of the physics of polymers, a similar phe-

3In the following, we will speak of the "deformation rate" 
of the springs, which will be defined as: r = T where 10 
is the natural length of a spring, and l is its length at any 
time t. 

. : ' \, 

nomenon can be observed and it is called "super­
elasticity" , since it concerns materials which can be 
subject to very high elastic deformation rates. 

The reason for this difference between our model 
and real woven fabrics is that woven fabrics are not 
super-elastic at all. Their elasticity is non-linear, 
and their "stiffness" increases very rapidly when the 
deformation rate increases. The deformation rate is 
thus always limited to a very low amount, and when 
very high loads are applied, rupture occurs before 
any large deformation can take place. However, our 
goal was not to model the phenomenon of rupture, 
but only to limit unlikely large deformations. The 
maximum deformation rate of most woven fabrics 
is around 10 %, and it is even lower for some linen 
cloths, calicos or denims, for instance. 

Another lack of realism can be seen during the an­
imation of the sheet: this "super-elongation" does 
not come to stabilization easily, and leads to a high 
amplitude oscillation around the equilibrium posi­
tion of the sheet. To avoid this oscillation, it is 
therefore necessary to increase the damping coeffi­
cient Cdi • . Though this operation can indeed sup­
press any oscillation, one of its shortcomings is that 
the sheet then looks like it had been immersed in 
some oily fluid and its movement loses realism. 

4 Increasing Stiffness 

To avoid the "super-elastic" effect, we have tried to 
adjust the parameters of the model. This consists 
in increasing the stiffness of the springs. For a same 
level of constraints (same gravity in our case), the 
deformation rate should be lower for stiff springs. 
This result can indeed be attained, but not as simply 
as it seems. 

Experience shows that, for a given time-step f':lt 
and a given mass /-L, there is a critical stiffness value 
Kc above which the numerical resolution of the sys­
tem is divergent . In fact , this result is well known in 
the case of linear differential equations4 . The math­
ematical results concerning such linear equations 
show that their numerical solving is ill-conditioned if 
f':lt is greater than the natural period of the system 
[11], given by: 

To ~ 7r1* 
T,2 

==} Kc ~ m-% 
7r 

(3) 

Therefore, if we want to increase stiffness, we have 
to decrease f':lt below the new decreased value of To. 

40ur model can be reduced to this case provided the nat­
urallengths of the springs are supposed equal to zero [12]. 

4
,···' 
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For a same animation time, the number of iterations 
needed will then be greater, and the algorithm will 
be more costly5. 

In our model, all springs have a natural length non 
equal to zero, but they remain nevertheless intrin­
sically linear springs. However, these springs once 
coupled lead our model to lose its linearity: it cannot 
be reduced to linear matricial differential equations. 
However, experience shows that the result given by 
equation (3) is still (at least qualitatively) true in 
our case. 

This is why we have tried to find a new method 
to avoid the super-elastic effect, without having to 
decrease 6.t . 

5 Dynamic Inverse Constraints on 
Deformation Rates 

Our idea has been to apply an ad hoc dynamic 
inverse procedure to the "super-elongated" springs 
(see below for their characterization) so as to reduce 
their elongation. At each given time-step, the nu­
merical integration is achieved using equation (2). 
Then the deformation rates of all springs are com­
puted . If, and only if, the deformation rate of a 
spring is greater than a critical deformation rate T c, 

then a dynamic inverse procedure is applied to the 
two ends of the spring so that its deformation rate 
exactly equals T c . This means that, if we choose 
T c = 0.1, we want the length of the springs not to 
exceed their natural length by more than 10 % (for 
many fabrics, it could even be less than that). 

The underlying reasoning which helped us build 
this procedure was the following: we assume that the 
position of the spring computed using equation (2) is 
correct regarding its direction, but not regarding the 
distance between the two ends of the spring; the only 
thing to do is then to reduce this distance so that the 
deformation rate does not exceed T c while keeping 
the computed direction of the spring unchanged . 

The distance reduction is done differently whether 
the ends of the spring are loose or are fixed by a 
new dynamic inverse procedure. If both ends are 
loose (figure 3(a)) , both are evenly "brought closer" 
to their middle so that the "shrunk" spring reaches 
T c. If only one end is loose (figure 3(b)), then it is 
"brought closer" to the fixed end so as to reach T c. 

If both are fixed, they are left unchanged . 
Thus, in a single computation, all the springs with 

5It must be mentioned that even if on ly the stiffness of a 
few springs (e.g . the most elongated ones) is increased, the 
time-step t,t must be decreased: the lowest value of Jlo and 
the highest value of K have to be used in equation (3). 

. , 
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(a) Adjustment of a "super-elongated" spring 
linking two loose masses . 

Pij(filCcJ ) 

PUll) 

.................. • \. 

~ 
"'.1(<1 ~~~\. "'.~ , •• ') 

Pld(t-+- odt) 

(b) Adjustment of a "super-elongated" spring 
linking a fixed mass and a loose mass. 
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Figure 3: Principle of our ad hoc dynamic inverse 
procedure: adjustment of the "super-elongated" 
springs. 

a deformation rate exceeding T c after the numerical 
integration are adjusted to a more "reasonable" de­
formation rate. Of course, at this point , this opera­
tion has modified the position of many vertices, and 
may have over-elongated other springs. But, if the 
deformation is very locally concentrated, the springs 
affected by the operation should be less elongated 
than the ones which had been detected before the 
operation. One of the effects of the procedure is to 
help the deformation propagate through the struc­
ture, instead of remaining in a concentrated area. 

We did not take into account the order in which 
the super-elongated springs are adjusted at each 
step. In our procedure, this order depends entirely 
on our data structure. This is acceptable only be­
cause we restricted our method to situations in which 
constraints are locally distributed, that is situations 
in which only a few springs are super-elongated at 
each step. If high constraints were globally extend­
ing to the whole cloth object, then the adjustment 
order of the springs would probably have more im­
portance, and should be studied. 

There are still mathematical investigations to be 
carried out in order to prove the properties of our 
procedure. However, we decided to test it , and our 
results show that it is valid in all the situations we 
have implemented so far. 

4
,·-' 
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6 Results and Discussion 

We applied this procedure to the case of the hang­
ing sheet described in section 3. A critical deforma­
tion rate T c = 10 % has been chosen, first only for 
"structural" springs, and then for both "structural" 
and "shear" springs. We never put any constraint on 
"fiexion" springs because fiexion, unlike elongation 
and shear deformation, is almost not limited at all 
in real cloth objects-they are easily folding . 

Ca) Our method applied to "structural" springs 

Cb) Our method applied 
to "structural" and "shear" springs 

Figure 4: Deformation of our model of a sheet hang­
ing by two adjacent corners (after 200 iterations) . 

Figures 4( a) and 4(b) show the results we have 
obtained, and are to be compared with figure 2(b). 
On figure 4(a), the "super-elastic" effect is totally 
suppressed, and all springs have a reasonable defor­
mation rate. The sheet does not seem to be made 
out of some kind of rubber anymore. On figure 4(b), 
the shear deformation is also successfully controlled, 
and the sheet model is forced to undergo a greater 

folding deformation in order to reach a low energetic 
position, since now its shear deformation is limited. 

Finally, everything happens as if the springs were 
classical springs up to a certain deformation rate, 
and quasi rigid rods above this deformation rate. 
But this quasi rigid behavior is performed using 
a low-cost dynamic inverse procedure instead of a 
more costly solving of a constraint problem. At a 
given stiffness, the computational cost of the new 
algorithm is indeed only 15 % greater than that of 
the classic elastic model6 . But to reach an equiv­
alently stiff behavior with the latter, stiffness and 
time sampling have to be increased. Therefore, for 
two equivalently stiff behaviors, we have measured 
that our algorithm is 90 % fast er that the classic 
elastic algorithm. 

Figure 5: On the left: a stiff elastic model computed 
in 9 mn . On the right: our model computed in 1 mn. 

Regarding the animation sequence, the amplitude 
of the oscillation of the falling sheet is also much 
lower than in the initial model, and it disappears 
more quickly since many springs are kept from be­
having like ideal elastic springs. The damping co­
efficient can be lowered, and the movement is less 
"oily" . 

The same results have been obtained with a 33 x 33 
mesh . We have noticed in some tests that the results 
were even better when we performed the dynamic 
inverse procedure twice in a row at each iteration, 
and this makes us think that the procedure, when 
repeated, is converging. 

6Here, the two models do not include any procedure de­
signed to avoid self-collision . If such a procedure was added 
and since it increases the computational cost a lot , the cost 
added by our procedure would be even less significant in 
proportion. 

4
· .. ···_·, 
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We have also successfully applied the method to a 
flag in a strong wind . Besides leading to extravagant 
elongations of the springs, increasing the velocity of 
the wind is indeed another factor which makes the 
purely elastic algorithm unstable, and hence which 
requires lower time-steps. But with our model, the 
elongations were totally controlled, and the move-

(a) Elastic flag and our "semi-rigid" 
flag when stiffness is low. 

(b) Increasing stiffness: elastic flag becomes 
chaotic and "semi-rigid" flag remains stable. 

Figure 6: Comparison for the case of a flag. 

ment of the flag was very realistic. With the same 
wind velocity, time-step and stiffness, the purely 
elastic model was totally unstable and chaotic (fig­
ure 6(b)). We must also mention that this time, a 
critical deformation rate of only 5 % had been chosen 
for our model. Though this leads to a more "rigid" 
behavior, it does not decrease neither the efficiency 
of our method, nor its cost. 

At a lower stiffness 7 , we have been able to make 

7The value of the acceleration of gravity was also lowered . 

. ; " . ~!: 
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a comparison between the purely elastic model and 
our model. As is shown on figure 6(a), the quali­
tative observations mentioned above for the hanging 
sheet are still significantly true. Though the flag was 
designed to be a square of cloth, its elastic model de­
forms to an elongated rectangle shape, and the shear 
deformation at the attaching points is high . On the 
contrary, the square shape of our controlled model 
is much less deformed and there is hardly no shear 
deformation. 

In these examples, local super-elongations were 
concentrated around only two hanging points. But 
our method is also efficient for the case of the sail of 
the "drakkar" in figure 7 which hangs by 8 points on 
the upper rod and is tied to 2 points on the lower 
rod. 

Figure 7: Wind blowing in a sail. 

7 Conclusion 

We have presented an elastically deformable model 
of cloth objects and we have studied its unrealis­
tic behavior compared to that of real woven fab­
rics. We have shown that this behavior, known as 
"super-elasticity" , could not be improved by merely 
adjusting the model's parameters without signifi­
cantly increasing the cost of the algorithm. We 
have therefore proposed another method to avoid the 
"super-elastic" effect, based on a low-cost dynamic 
inverse procedure. We have shown how this heuris­
tic method could help us model a realistic cloth ob­
ject in situations in which constraints had not been 
adequately handled before . Using this more realistic 
model, it is likely that our next step will be to deter­
mine our model's parameters (including maximum 
deformation rate Tc) so that our model's behavior 

4 
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identifies with that of real cloth samples of various 
nature. This could be done using the image process­
ing of an animation sequence of real cloth samples. 
We hope that this work will contribute to the field of 
cloth animation in computer graphics so that cloth 
models stick closer to reality. This is one of the con­
ditions necessary to further consider the potential 
application of these cloth models to garment indus­
try. 
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