
171

Through-the-Lens Camera Control
with a Simple Jacobian Matrix

Min-Ho Kyung*, Myung-Soo Kim*'o, and Sung Je Hong*
* Department of Computer Science, POSTECH, Pohang 790-784, South Korea

° Dept. of Computer Science, Purdue University, W . Lafayatte, IN47907, USA

Abstract

This paper improves both the computational effi­
ciency and numerical stability of the through-the­
lens camera control [5). A simple 2m x 7 Jaco­
bian matrix is derived. The matrix equation is
then solved using an efficient weighted least squares
method while employing the singular value decom­
position method for numerical stability.

Keywords: virtual camera control, quaternion cal­
culus, Jacobian matrix

1 Introduction

In computer graphics, virtual camera models are
used to specify how a 3D scene is to be viewed on the
display screen. For example, the 3D viewing param­
eters look-at/look-from/view-up represent one of the
most popular virtual camera models [4). The cam­
era status is usually described by three parameters:
focus , position, and orientation. The focus is repre­
sented by a single value, i.e., the focal length. Each
position and rotation has three degrees of freedom
(DOF). Then the user controls the virtual camera
with seven DOFs. However, it is not easy to con­
trol all the seven camera parameters simultaneously;
most user interfaces (e.g., mouse) do not support all
the required seven DOFs at the same time.

Gleicher and Witkin [5) suggested the thmugh-the­
lens camera control scheme to provide a general solu­
tion to the virtual camera control problem. Instead
of controlling the camera parameters directly, the
2D points on the display screen are controlled by
the user. The required changes of camera parame­
ters are automatically generated so that the picked
screen points are moved in the way the user has spec­
ified on the screen. That is, when the user selects
some 2D points and moves them into new positions,
all the camera parameters are automatically changed

: " '"

Figure 1: Through-the-Iens Camera Control

so that the corresponding 3D data points are pro­
jected into the new 2D points. In Figure 1, the vir­
tual camera is in the position Eye1 and the given 3D
point is projected into the 2D point A in the viewing
plane. When the user moves the projected point A
into a new position at B, the camera parameters are
automatically changed so that the given 3D point is
now projected into the new position B with the new
virtual camera at the position Eye2.

The through-the-Iens camera control provides a
very powerful user interface to the virtual camera
control. However, the constrained nonlinear opti­
mization technique of Gleicher and Witkin [5) has
limitations in both computational efficiency and nu­
merical stability. For an overconstrained case with
m image control points (with m :2: 4), the Lagrange
equation is formulated as a 2m x 2m square matrix
equation, which takes O(m3) time to be solved. (The
square matrix is also singular when m :2: 4.)

In this paper, we suggest some improvements .
First of all, a simple 2m x 7 Jacobian matrix is de­
rived using the quaternion calculus [7, 8, 11) . Instead
of using a nonlinear optimization technique, we use

4
'·· .. ····

. .
:; .. Graphics Interface '95

172

an efficient weighted least squares method while em­
ploying the singular value decomposition for numeri­
cally stability [6, 10, 13). The time complexity grows
only linearly, i.e., O(m) time for m control points.

The rest of this paper is organized as follows. In
Section 2, we review the previous method [5). Sec­
tion 3 introduces a simple Jacobian matrix. In Sec­
tion 4, matrix equations are derived for the through­
the-lens camera control. They are solved in Section 5
using the weighted least squares method. The imple­
mentation details and experimental results are dis­
cussed in Section 6. Finally, Section 7 concludes this
paper.

2 Previous Work

2.1 Review on the Previous Work

Most virtual camera models have seven degrees of
freedom: i.e., one for the focal length, and three for
each position and orientation. In representing the
orientations, the unit quaternions are quite useful
since they are free of singularities such as gimbal
lock [8, 11, 14). Each unit quaternion consists offour
parameters (qw,qx,qy,qz) with the constraint: q! +
qi + q~ + q; = 1. When quat ern ions are used, a total
of eight parameters instead of seven parameters are
required to represent the status of a virtual camera.

Given m points Pl, . .. ,Pm E R 3 and eight cam­
era parameters (J,tx,ty,tz ,qw,qx,qy,qz) E R 8

, the
perspective projection in the viewing transformation
for the m points, V : R8 -+ R 2m, is defined by:

V(J,tx,ty,t z , qw,qx,qy,qz) = (hl, ... , hm) E R 2m,

where each hi = (Xi, Yi) E R2 (i = 1, . .. , m) is
the perspective projection of Pi onto the 2D dis­
play screen. The perspective projection V produces
a nonlinear relationship between the · camera con­
trol parameters and the projected 2D image points.
Thus , it is very difficult to construct even a local
inverse map from the image space to the camera pa­
rameter space.

Gleicher and Witkin [5) solved this inverse prob­
lem by approximating the nonlinear inverse problem
with a sequence of linear inverse problems. Each lin­
ear equation is obtained by differentiating the non­
linear equation between the camera parameters and
the 2D image points; the linear equation gives the
relationship between the velocities of the camera pa­
rameters and the velocities of the control points in
the image space. That is, let J be the 2m x 8 Ja­
cobian matrix of the perspective transformation V,

and furthermore, let x = (J, tx , ty , t z, qw, qx, qy , qz) E
R 8

, and h = (Xl, '}Il, .. . , X m, Ym) E R2m. The rela­
tionship between h and x can now be represented by
a simple matrix equation

h= Jx

Given an initial velocity ha E R2m for the m
control points in the image space and a specified
value of xa E R 8 , Gleicher and Wit kin [5) solved the
non linear optimization problem which minimizes the
quadratic energy function :

(1)

subject to the linear constraint:

ha = Jx (2)

That is, the problem is converted into a Lagrange
equation:

for some value of the 2m-vector A of Lagrange mul­
tipliers. The Lagrange equation is then converted
into

T . .
JJ A=ha-Jxa, (3)

and this matrix equation is solved for the value of A.
The value of x is obtained by

It is then used to update the virtual camera param­
eters x . For example, using the Euler's method, x is
updated as follows:

x(t + 6.t) = x(t) + 6.t x(t) .

The Jacobian matrix J of the perspective trans­
formation V plays an important role in the computa­
tion of the Lagrange equations; it is the most critical
factor that determines the overall performance of the
whole algorithm. The Jacobian matrix J should be
re-evaluated each time the value of x is updated .
When the Jacobian matrix J is very complex, it
would disimprove the overall performance of the al­
gorithm. In this paper, we present a simple 2m x 7
Jacobian matrix, which can be easily derived by a
technique based on the quaternion calculus [7,8,9).

Graphics Interface '95

2.2 Rank Deficiency of the Jacobian
Matrix

In computing the Jacobian matrix J for the perspec­
tive transformation V, the parameters (/, t x , tv, tz)
are free variable~. This means that they can be
differentiated without considering any constraints.
However, the unit quaternions (qw, qx , qv, qz) have a
constraint for the unit length (i.e., q~ +q; +q; +q; =
1) and it is somewhat difficult to differentiate the
unit quaternions with the constraint. To eliminate
this constraint, Gleicher and Witkin [5] derived the
rotation matrix R by using q/lql instead of a unit
quaternion, and then computed the differential of
this rotation matrix. That is , for a unit quaternion
q = (qw, qx, qy, qz) E S3, the rotation matrix is given
by (see [ll]) :

qxqy + qwqz
! - q; - q;

qxqz - qwqy
qwqx + qyqz

qyqz - qwqx
o

! - q; - q;
o

For a general quaternion q = (qw, qx, qy, qz) E R4
, by

inserting q/lql into the above rotation matrix , Gle­
icher and Witkin [5] obtained a new rotation matrix:

W:_ q 2 _ q 2
2 Y z

qxqy - qwqz
qwqy + qxqz

o

qxqy + qwqz
W:_ q 2 _ q 2

2 x z
qyqz - qwqx

o
qxqz - qwqy
qwqx + qyqz
~_q2_q2

2 x y

o ~ 1 w:
2

This method defines a rotation matrix for any non­
zero quaternion and eliminates the constraint for a
unit quaternion. However, this rotation matrix has
a problem: t he Jacobian matrix is rank deficient.

For a given nonzero quaternion q (-I 0) , the
quaternions o:q represent the same rotation matrix
for 0: E R, i.e.,

R Qq = R q, for 0: E R.

For given m points PI , . . . ,Pm E R3 and a quaternion
q, consider the transformation (for i = 1, 2, . . . , m):

Ti : R4 \ {O} ----t R3.
q t------+ Rq(pi)

The differential of Ti is a linear transformation:
d(Ti)q : R4 ----t R 3 , which can be represented by a

. .

173

3 x 4 matrix [3]. Let Pi(t) E R3 be the curve gener­
ated by the point Pi under the rotation of q(t) E R 4

,

for t E R, that is,

When the quaternion curve q(t) is given by a radial
line: q(t) = tq, t E R, we have

That is, the curve Pi(t) is a constant curve. The
differential at t = 1 is a zero vector:

This means that the three rows (which are 4D vec­
tors) of the Jacobian matrix of d(Ti)q are all orthog­
onal to the 4D vector q. Thus, d(Ti)q has rank 3, for
i = 1, ... ,m. FUrthermore, for the transformation

----t R 3m

t------+ (Rq(Pd, · ··, Rq(Pm)) ,

the differential dTq is represented by a 3m x 4 Jaco­
bian matrix and all the 3m rows of dTq are orthog­
onal to the 4D vector q. Thus, dTq has rank 3. In
the formulation of the Jacobian matrix J of [5], the
complexity and rank deficiency of the Jacobian ma­
trix J essentially result from those of the Jacobian
matrix dTq for the rotational degrees of freedom .

3 A Simple Jacobian Matrix

3,1 Quaternion Calculus

To remedy all the complications of the Jacobian ma­
trices dTq and J, we take a different approach in rep­
resenting the rotational degrees of freedom . Instead
of starting from the quaternions, we start from the
angular velocities and represent the quat ern ions by
taking the integrals of the angular velocities. For a
given unit quaternion curve q(t) E S3, t E R, the
differential q'(t) E Tq(t) (S3) C R4 is given by:

q'(t) = ~[O,w(t)]. q(t) , (4)

for some w(t) E R 3
, where· is the quaternion mul­

tiplication, Tq(t)(S3) is the tangent space of S3 at
q(t) E S3, and q'(t) is orthogonal to q(t) as a 4D
vector in R4. (The details on the derivation of Equa­
tion (4) are described in [9]. Also see [7, 8, 11] for
quaternions.) Given fixed 3D points Pi E R3 (for

~
...

r~. Graphics Interface '95

174

i = 1, ... ,m), let Pi(t) = Rq(t)(Pi) be the rotated
point of Pi by the 3D rotation of the unit quaternion
q(t). Then we have

p~(t) = w(t) x Pi(t).

(See [9] for more details on the derivation. When w
is interpreted as the angular velocity, this equation
is exactly the same as the formula given in classical
dynamics [14].) Consequently, for the transforma­
tion

----+ R3
f---+ Rq (Pi) = Pi

the differential d(Ti)q is given by

d(Ti)q: Tq(S3) ----+ R3
q' f---+ w X Pi

Since the isomorphism

F: Tq(S3) ----+ R3
q' = ~w . q f---+ w

identifies the tangent space Tq(S3) with the 3D Eu­
clidean space R3

, we may interpret the differential
d(Ti)q as

d(Ti)q: R3 ----+ R3
W f---+ w X Pi

The Jacobian matrix of d(Ti)q can be represented by
a simple 3 x 3 square matrix:

Zi
o

-Xi

-,Yi 1 Xi

o

where Pi = (Xi,Yi,Zi) E R3. When an angular ve­
locity w is computed, the quaternion q(t) is updated
to a new quaternion q(t + tlt) by the relation

tlt
q(t + tlt) = exp(TW) . q(t),

where tlt is the time interval for the integration,
the operation' is the quaternion multiplication, and
the transformation exp is the exponential map. (See
[2, 7, 8] for more details on the exponential map.)

3.2 The Jacobian Matrix for a View-
ing Transformation

A virtual camera can be specified by a perspective
viewing transformation which projects 3D points
onto the 2D viewing plane. Let the position and

orientation of the virtual camera at time t be
given by -t(x,y,z) (t) = (-tx (t), -ty (t), -tz (t)) E
R3 and q-l(t) = q(t) = (qw(t), -q(x,y,z)(t)) =
(qw(t), -qx(t), -qy(t), -qz(t)) E S3, where q(t) is
the quaternion conjugate of q(t) . For a given fixed
3D point P = (x, y, z) E R3 in the world coordinate
system, the projected 2D image point h(t) E R2 can
be represented by:

h(t) = Vp(f(t), t(x ,y,z)(t), q(t))

Pf(t) 0 Qq(t) 0 Tt(X,y,%)(t)(P) (5)

where Pf(t) is the perspective projection with a
focal length f(t), Tt(x ,y,%)(t) is the translation by
t(x,y,z)(t) E R 3, q(t) = (qw(t),q(x ,y,z)(t)) E S3, and
Qq(t) is the rotation about the axis q(x,y,z)(t) E R3
by an angle 20(t), where cosO(t) = qw(t).

The 3D rigid transformation: Q 0 T(p) = P =
(x, Y, z) E R3 is simply given by

The perspective transformation Pf(t) is then applied
to p(t) as follows:

h(t) Pf(t) (jj(t)) = Pf(t) (x(t), y(t), z(t))

= (
f(t)x(t) f(t)Y(t))

z(t) , z(t)

To derive the Jacobian matrix J of the viewing
transformation Vp , we differentiate Equation (5):

dh _ dVp _ !!:... P 0 Q 0 T. ()
dt - dt - dt f(t) q(t) t(x,y, %)(t) P

By applying the chain rule to this equation, we ob­
tain

dh
dt

with

J = (t
i

J (f' t~ t' y

-1#
z 2

- J - i..jI;
z

J+ L#-z

L¥ z

- If)
13..

i

where r i j is the ij-th component of the 3 x 3 rotation
matrix Rq(t) of the unit quat ern ion q(t). (See [9] for
more details on the derivation.) This Jacobian ma­
trix J is much simpler than the one given in Gleicher
and Witkin [5].

Graphics Interface '95

4 Camera Control by Moving
Image Control Points

4.1 Moving a Single Image Point

In through-the-Iens camera control, the virtual cam­
era placement is automatically determined by solv­
ing the following equation:

where P E R 3 is the given 3D point, and ha is the
2D point onto which the point P is to be projected.

Gleicher and Witkin [5] approximated the solution
by using a constrained nonlinear optimization tech­
nique and solving a series of Lagrange equations. For
an underconstrained system with many possible so­
lutions, the solution of Equation (3) provides an op­
timal solution with respect to the objective function
of Equation (1). For a system with no solution (e.g. ,
an overconstrained system), an approximate solu­
tion may be computed using the projection method
to Equation (2) (see [13] and Section 5.1). When
the vector ha is projected into the column space of
J in Equation (1), there is now at least one solution
of Equation (2). (Note that , when the projection
method is applied to Equation (3), it is not clear
what geometric meaning the approximate solution
has .)

The projection process enforces us to give up some
hard constraints. After then, we believe the op­
timization process does not make much sense. In
this paper, we rather concentrate on how to con­
trol the projection in a user-controllable way (see
Section 5.2). We approximate the solution of Equa­
tion (6) using the Newton method [1] . The Newton
approximation is carried out by solving a sequence
of linear equations which are obtained by differen­
tiating the given nonlinear equation. In each lin­
ear equation, the unknowns are the velocities of the
camera parameters, that is , 6x = (j' , t(x,y,z)'w) E

R4 x Tq(S3), where x = (j,t(x,y, z), q) E R4 x S3,
and q E S 3. By integrating the velocities, we
can approximate the solution of Equation (6). Let
F : R4 X S 3 --+ R2 , be defined by:

Given

F(x) = Vp(x) - ha.

Xk = (ik, t (x ,y,z),kl qk) , and

6Xk = (6.fk,6.t(x ,y,z),kl W k),

(7)

175

The Taylor series expansion of F at Xk+l gives :

where dFxk : R4 x Tq(S3) --+ R2 is the differential of
Fat Xk [3]. We approximate XkH so that

F(Xk+d = O.

Ignoring the last term o(16xkI2), we have

0= F(Xk) + dFxk (6Xk).

Thus we solve for 6Xk E R4 X Tqk S3 in the following
linear system:

where the Jacobian matrix J(Xk) is the matrix rep­
resentation of the differential dFxk . (Note that this
matrix equation is the same as Equation (2) .) Here,
J(Xk) is not a square matrix; thus it is not invert­
ible. Weighted least squares method will be used in
Section 5 to approximate the solution.

4.2 Moving Multiple Image Points

The linear system for a single control point has been
derived as a 2 x 7 matrix in Section 4.1. For mul­
tiple 2D image control points, Equation (7) can be
generalized as follows:

f(pd . _ (h)
(ptl. 1 x

f(pd" _ (h)
(Ptl. 1 y

f(p~) . _ (h)
(p~). m x

f(p~lu - (h)
(p~). m y

As the function F is extended to 2m-dimension, the
Jacobian matrix J(Xk) now becomes a 2mx7 matrix.
The linear equation J(Xk)6xk = -F(Xk) may have
many solutions or no solution at all depending on
the rank of J(Xk) and the value of F(Xk).

4.3 Tracking 3D Moving Data Points

We have derived the Jacobian matrix J under the
assumption that all the picked 3D points P i'S are
stationary points. However, when the 3D points Pi'S

Graphics Interface '95

176

are allowed to move, we need to take this fact into ac­
count in controlling the virtual camera parameters.
For the moving 3D points Pi(t)'S, the derivative for
the 3D rotation and translation of the virtual camera
can be computed as follows (see [9]):

d
dt Qq(t) 0 Tt (Z ,y,Z)(t)(p(t))

w(t) x p(t) + Qq(t) (p'(t) + t(x ,y,z)(t)).

Thus, for the perspective viewing transformation

we have

h(t) = Vp(t) (f(t), t(x,y,z)(t), q(t)),

dh
dt

l'
t~ + p~
t~ + P~
t~ + p~

Wx
Wy
Wz

The linear system to be solved is:

5 Solving Linear System

5.1 Computing Pseudo Inverse

When there are m control points in the image space,
the system to be solved is a 2m x 7 linear system:

J(x)~x = -F(x),

where ~x = (f',t~,t~,t~,wx, Wy,wz) E R4 x Tq(S3).
Since the non-square matrix J(x) is not invertible, a
solution should be chosen from the possible solutions
of ~x's so that it is optimal to some given criteria.
We suggest the following least squares method for
the selection of a solution:

1. For the case of 2m < 7, ~x with the min­
imal norm is selected from the solutions for
J(x)~x = -F(x).

2. For the case of 2m > 7, ~x is chosen so that it
minimizes IJ(x)~x + F(x)l·

To compute the least squares solution in a nu­
merically stable way, we use the Singular Value De­
composition (SVD) and the pseudo inverse of the
Jacobian matrix J(x) [6, 10, 13]. There are various

efficient and stable methods [6, 10] to decompose a
matrix A into the form UWVT , where W is a diago­
nal matrix. After decomposing the Jacobian matrix
J into UWVT , its pseudoinverse J+ is computed as:

where

J+ = VW- 1UT

if i i= j or (W)ij = 0
if i = j and (W) ij i= 0

The numerical stability of the SVD method is unsur­
passed by any other methods, especially when the
matrix J is almost singular. The above pseudoin­
verse matrix always produces the solution with the
minimal norm while satisfying the condition.

For the case of 2m > 7, the pseudoinverse would
require the SVD of a large 2m x 7 matrix as m in­
creases. In this case, it is more efficient to use the
projection method [13] which produces the solution
that minimizes the quantity IJ ~x + FI, that is,

~x = -J+F

where
J+ = (JT J)-l JT .

But, the pseudoinverse J+ is not defined when the
square matrix JT J is singular, i.e., when the col­
umn vectors of J are not linearly independent. Since
the SVD method can detect the singularity of a ma­
trix to be decomposed, we compute (JT J)-l by
using the SVD method. When the square matrix
JT J turns out to be singular, we go back to the
previous method of computing the pseudo inverse:
J+ = VW- 1UT based on the SVD decomposition
of J = UWVT . The construction of the 7 x 7 square
matrix JT J takes O(m) time and the inverse oper­
ation for JT J takes constant time.

5.2 Weighted Least Squares

For an under constrained system, the least squares
method gives the solution which minimizes the mag­
nitude I~xl. However, sometimes other solutions
may be required. For example, when the user
wants to move the camera with little change of fo­
cus and/or camera rotation, the solution should be
skewed from the least squares solution . That is ,
higher weights should be given to the parameters for
less changes. Furthermore, the camera parameters
(Le. , focus, translation, and rotation) have different
units of measure; thus it is irrational to treat them

Graphics Interface '95

with equal weight. A simple way to enforce this con­
dition is to scale the camera parameter space in dif­
ferent ratios. This can be done easily by scaling each
column of the matrix; that is, by solving A W x = b
instead ofAx = b, where W is a diagonal matrix.

When the linear system is overconstrained, that
is, the number of control points is more than 3, a
solution dominated by certain 2 or 3 control points
may be desired. To control the contribution of each
control point, we suggest the row-weighting method.
A given linear system Ax = b is changed into a new
form WAx = Wb, where W is a diagonal matrix.
The row and column weightings may be combined
together, reducing the linear system Ax = b into a
general form of W1AW2 x = W1b, where W1 and W2

are diagonal matrices.
The row-weighting method may have useful appli­

cations in computer animation. For an animation
movie with dramatic scene changes, it is not enough
to have only a few control points. The control points
appropriate for the start of the scene may not work
well at the end of the scene. It is desirable to limit
the effect of each control point to a certain time in­
terval while keeping the smoothness of the camera
motion. To do this, each control point Pi is assigned
with an active time interval [Si, ei] during which the
control point is valid. Furthermore, the active set
A(t) at time t is defined as

where Pi is the i-th control point. The Jacobian
matrix J at time t is constructed from the active
control points in A(t). To keep the smoothness of
the camera motion at t = Si and t = ei, the row­
weighting function Wi(t) for Pi E A(t) is defined as
a non-negative smooth function with Wi(t) = 0 for
t :::; Si or t ? ei.

6 Implementation
suIts

and Re-

The camera control process is briefly summarized in
the following pseudo code:

Camera-Control(fx, fe, Xt., Ht')
Input:

f s, f e : the start and end frames ;
x t. : the start camera parameters;
Ht., Hte: the start and end positions;

Output:
Xt., ... , Xt. : a sequence of camera parameters;

begin
t::.H := te ~t. (Hte - Ht.);
for j := fs + 1 to fe do begin

Hj := Hj - l + t::.H;

end

Xj := Newton(Xj_l, H j - l , H j);

end

Newton(x(O), H(O), Ho)
Input:

x(O) : the initial camera parameters;
H(O) = (h~O), ... , h~)): the start positions;
Ho : the destination positions;

Output:

177

x(i+I) : the approximate solution of Vp(x) = Ho;
begin

1* H(i) = (h~i), ... , h~): positions at i-th step * /
for i = 0 to MAX-ITERATION do begin

(1) F(x(i)) := H(i) - Ho;
(2) Construct the Jacobian matrix: J(x(i));
(3) Solve for t::.x(i) in the matrix equation:

J(x(i))t::.x(i) = _F(x(i));

/* x(i) = (f(i) t(i) q(i))
'(x,y,z)' ,

t::.x(i) = (t::.f(i) t::.t(i) w(i)) and
'(x,y,z)' ,

t::.t is the time step * /
(4) x(i+l) = (f(i) + t::.t t::.f(i) ,

t(i) + t::.t t::.t(i) exp(6.t w(')) • q(i)).
(x,y,z) (x,y,z)' 2 '

(5) H(i+I) = Vp(x(i+l));
(6) if '1IH(i+I) - Ho 11 - IIH(i) - Ho 11 , < f. then

return (x(i+l));
end

end

The most time-consuming is Step (3), which solves
for t::.x in the linear system J(x)t::.x = -F(x) with
the least squares method. The main subroutine for
this step is the SVD, which takes 0(2rc2 +4c3) time,
for an r x c matrix with c :::; r. When the linear
system is under constrained , i.e., m :::; 3, the whole
computation takes constant time. For an overcon­
strained system with m > 3, the SVD of J(x) takes
0(2· (2m) .72 +4.73) = O(m) time. This is a promis­
ing result since the time complexity grows only lin­
early as the number of control points increases.

Three experimental results are demonstrated in
Figure 2. Examples of controlling three and four
image points are shown in Figure 2(a) and (b), re­
spectively. In these two cases, the 3D points are sta­
tionary points. In Figure 2(c), a more general case
is shown for three moving 3D points. The numer­
ical approximations up to three control points are

Graphics Interface '95

178

~,.~ ~ ~
-=tt1 ~ .. '.".

Control Points

~

~ -=MJ ~rn

1lJ 1JD ~rn
11) 1JO ~@

~@ ~ tD:
(a) (b) (c)

Figure 2: Experimental Results

accurate as shown in Figure 2(a) and (c) . However,
in the overconstrained case of controlling more than
three points , we have experienced large approxima­
tion errors as shown in Figure 2(b) .

7 Conclusion

The Jacobian matrix plays an important role in
the through-the-lens camera control. The computa­
tional efficiency and numerical stability of the over­
all algorithm mainly depend on the simplicity of the
Jacobian matrix. The SVD method makes the New­
ton approximation numerically stable. The weight
least squares method provides a convenient way of
controlling optimization criteria.

The simplicity of the Jacobian matrix J is due to
the fact that the unit quaternion space S3 is a Lie
group [;] . This implies that q'(t) = ~[O,w(t)]·q(t) E
Tq(t) (S), for some tangent vector w(t) E Tl (S3) ==
R3 at the identity element 1 of S3. The differen­
tial calculus becomes much more complex on other
virtual camera model spaces when they are not Lie
groups. Nevertheless, the tangent space and the ex­
ponential map are also defined in any differentiable
manifold [3], and our technique is extendible to the
general case as long as the exponential map has an
explicit formula. For example, consider the fibre

" , " '-

. .

bundle structure S2 x SI of Shoemake [12] for the
control of camera rotations. Applying the chain rule
to Ti 0 F : S2 x SI -+ R3 , where F : S2 x SI -+ S3
is a diffeomorphism, we can compute the Jacobian
matrix for the camera model. The exponential map
also has a relatively simple explicit formula in this
case.

References

[1] Conte, S., and de Boor, C. , Elementary Numeri­
cal Analysis: An Algorithmic Approach , 3rd Ed.,
McGraw-Hill , Singapore, 1981.

[2] Curtis, M. , Matrix Groups , Springer-Verlag, New
York, 1979.

[3] do Carmo, M., Differential Geometry of Curves and
Surfaces, Prentice Hall, Englewood Cliffs , New Jer­
sey, 1976,

[4] Foley, J ., van Dam, A., Feiner, S., and Hughes, J.,
Computer Graphics, Principles and Practice , 2nd
Ed., Addison-Wesley, Reading, Mass., 1990,

[5] Gleicher, M. , and Witkin, A., "Through-the-Lens
Camera Control ," Computer Graphics , VoL 26,
No, 2, 1992, pp. 331-340,

[6] Golub, G" and Van Loan, C., Matrix Computa­
tions , Johns Hopkins University Press, 1983.

[7] Kim, M,-J. , Kim, M.-S ., and Shin, S., "A Com­
pact Differential Formula for the First Derivative
of a Unit Quaternion Curve," Technical Report CS­
CG-94-005 , Dept . of Computer Science, POSTECH,
1994,

[8] Kim, M.-S " and Nam, K.-W., "Interpolating Solid
Orientations with Circular Blending Quaternion
Curves," to appear in Computer-Aided Design.

[9] Kyung, M.-H. , Kim, M,-S. , and Hong, S.J .,
"Through-the-Lens Camera Control with a Simple
Jacobian Matrix," Technical Report CS-CG-94-006,
Dept, of Computer Science, POSTECH, 1994.

[10] Press , W., Flannery, 8., Teukolsky, S" and Vetter­
ling, W., Numerical Recipes, Cambridge University
Press, 1986.

[11] Shoemake, K., "Animating Rotation with Quater­
nion Curves," Computer Graphics (Proc. of SIG­
GRAPH '85), VoL 19, No. 3, 1985, pp. 245- 254.

[12] Shoemake, K. , "Fibre Bundle Twist Reduction "
Graphics Gems IV , Heckbert, P., (Ed.), Academic
Press, Boston , 1994, pp. 230- 236,

[13] Strang, G., Linear Algebra and its Applications ,
3rd Ed. , Harcourt Brace Jovanovich , Pub. , Orlando,
Florida, 1988.

[14] Wittenburg , J. , Dynamics of Systems of Rigid Bod­
ies, B.G. Teubner, Stuttgart, 1977.

~
' .•. '.

::0 0 Graphics Interface '95

