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Abstract 

The smooth interpolation of keyframes of a rigid 
body, in particular their orientations, is an impor
tant problem in animation . Using the quaternion 
as a representation for orientation, several papers 
have solved this problem through the generation 
of smooth curves on the quaternion sphere. How
ever, none of these methods have constructed ratio
nal curves. 

This paper develops a method for generating true 
rational Bezier curves on the quaternion sphere that 
interpolate a given set of orientations. The control of 
orientation by a rational Bezier curve has all of the 
typical advantages of Bezier curves, such as efficient 
computation, subdivision, and variation diminution. 
We also discuss control of the speed of rotation, and 
cusp avoidance, both of which are simpler with our 
method. 

This paper can be viewed as an extension of the 
classical work on interpolation of points (i. e., posi
tion) to the interpolation of orientations. 

Keywords: animation, orientation, interpolation, 
quaternion , Bezier curve. 

1 Introduction 

Smooth interpolation of three-dimensional object 
orientation, starting from n keyframe orientations , is 
used in computer animation to model moving solids, 
cameras, and lights . Shoemake clarified the superi
ority of unit quaternions as the representation of ori
entation in this setting [12], thus casting the problem 
as one of interpolation of n points on the quaternion 
sphere (the unit sphere in 4-space). Subsequently, 
many papers have been written solving the prob
lem of constructing good interpolating curves on the 
quaternion sphere [12 , 4, 8, 10, 11 , 1], for orienta-

"This work was supported in part by the National Science 
Foundation under grant CCR-921 3918. 

" , 
•• " . ' !::: 

Tel. 410-516-5298 

tion interpolation . However, all of these methods 
have constructed non-rational curves (using slerping, 
a trigonometric function, and/or constrained opti
mization) . They have also lacked strong interactive 
control over the curve (e.g. , subdivision, local con
trol, efficient redesign). 

This paper shows how to construct a rational 
Bezier interpolating curve on the quaternion sphere, 
for orientation interpolation. Since this curve is a 
true Bezier spline (not an imitation of a Bezier curve 
as in Shoemake and others), it enjoys all of the ad
vantages of Bezier curves, such as efficient compu
tation, subdivision, local control, affine invariance, 
variation diminution, as well as a predictable be
haviour and ease of implementation because of the 
rich understanding of Bezier curves. Since the curve 
has a complete analytic description, it allows simple 
manipulation and complete control. This construc
tion answers many of the challenges for future work 
outlined by Shoemake in his paper. 

Our method does not attempt to design the curve 
directly on the quaternion sphere as in other meth
ods (which must apply restrictive constraints to stay 
on the sphere) . Instead, the curve is initially de
signed freely in 4-space (using traditional interpola
tion techniques) and is then mapped to the sphere 
by a special rational map . 

Related work is discussed in Section 2. Section 3 
reviews the theory of quaternions. Sections 4-9 are 
the heart of the paper: Section 4 presents an out
line of the new method, the map onto the quater
nion sphere is developed in Section 5, its inverse in 
Section 6, and the map of a single cubic Bezier seg
ment onto the sphere in Section 7. Ways to control 
the speed of rotation are presented in Section 8, and 
Section 9 discusses cusps. Examples of curves and 
animations generated by the method are presented 
in Section 10, and we close with some final thoughts 
in Section 11. 
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2 Related work 

Rather than discussing the approach of each of the 
other papers on orientation interpolation through 
curves on the quaternion sphere, it is enough to 
discuss a common tool of the methods: s/erping. 
Slerping refers to spherical linear interpolation [12] : 
SI ( ) sin(l-u)8 + sinu8 h d erpQl,q2;U := sin8 Ql sm8Q2,wereqlan 
Q2 are unit quaternions and 0 is the angle between 
these two vectors. This achieves interpolation along 
a great arc of the quaternion sphere. It is clearly 
a non-rational, trigonometric map. Various papers 
have used various spline techniques based around re
placement of linear interpolation by slerping: Bezier 
curve (Shoemake [12]), B-spline (Duff [4]) , cardinal 
spline (Pletinckx [10]), Catmull-Rom spline (Schlag 
[11]). 

The paper of Barr et. al. [1] uses a different tech
nique: constrained optimization to minimize tangen
tial acceleration of the spherical curve. (It also uses 
slerping for interpolation.) It is also notable for its 
excellent motivation of the design of splines on non
Euclidean curved manifolds. 

Our paper is strongly motivated by a paper of Di
etz, Hoschek , and Jiittler [3] on the construction 
of interpolating curves on quadrics (including the 
sphere). Like the present paper, Dietz et. al. map 
points from the sphere to 3-space, find an interpolat
ing curve in 3-space, and map this curve back to the 
sphere. The major differences arise from the differ
ences between 3-space and 4-space, and our partic
ular attention to the use of the curves in animation 
(which lead to our analysis of cusps and speed con
trol). Their map onto the sphere in 3-space is quite 
different than our map onto the sphere in 4-space. 
Also, we look at a single point of the map's inverse 
image rather than the entire line, which allows clas
sical point interpolation methods to be applied in 4-
space, rather than Dietz et. al.'s system of equations 
approach to the interpolation of a curve through lines 
in 3-space. 

3 Quaternions and the quater
nion sphere 

The theory of quaternions is well documented, such 
as in Shoemake [12] which also contains an excellent 
motivation of their advantages for representation of 
orientation. The relevant facts about quaternions for 
this paper are as follows. A quaternion is a 4-vector 
(Xl,X2,X3,X4) = Xl + X2 * i + X3 * j + X4 * k, a 4-

. , 

dimensional analogue of complex numbers, 1 invented 
by Hamilton. A unit quaternion 

corresponds to a rotation of 0 about the axis v .2 

Since a single rotation about an axis is sufficient 
to represent an arbitrary orientation of a solid ob
ject, unit quaternions are a representation for rigid 
body orientation . The other primary choices are the 
rotation matrix and Euler angles. Quaternions are 
the most elegant representation, at least for anima
tion. Unlike Euler angles, quaternions have a unique 
representation for each orientation, do not experi
ence gimballock, and can be combined easily. Unlike 
both Euler angles and rotation matrices, the quater
nion has a concise representation (4 numbers) with 
a natural geometric analogue (through identification 
of the set of unit quaternions with the unit sphere S3 
in 4-space) which is highly useful for interpolation. 

A major advantage of the unit quaternion is that 
we can control and predict the speed of rotation of 
the tumbling body, since the metrics of the sphere 
S3 and rotation (the angular metric of SO(3)) are 
equivalent. That is, distance on the sphere is speed 
ofrotation (e .g. , a constant speed path on the sphere 
yields a constant speed rotation of the object) . We 
will explore this control in Section 8. 

In the rest of the paper, a unit quaternion will 
be identified with a point on S3, the unit sphere in 
4-space, which will be called the quaternion sphere . 

4 Our method of orientation 
interpolation 

We now present an outline of our method . The ma
jor idea is to design the interpolating curve freely in 
4-space using traditional techniques and then map 
back onto the sphere (using a map M from 4-space 
onto the sphere). The input is a set of n orientations 
of a solid represented as unit quaternions ql, . .. , Qn 

(Figure 1) . 

li, j, and k each act very much like the imaginary number 
i : i2 = j2 = k2 = ijk = -l. 

2Two quaternions [sl, vd and [S2,V2] (where Vi are 3-
vectors) are multiplied by the formula: [sl ,vd" [S2, V2 ] = 
[(SI" S2 - VI . V2, SI .. V2 + S2 .. VI + VI X V2 J . Represent
ing a vector w as the quaternion [0, wJ, the result of ro
tating w by the quaternion q = Is , vJ is q-I [0, w]q, where 
q-I = ([s, _v))/(s2 + V . v). This is the same r esult as ro
tating w about v by an angle 2cos - 1 (s). 
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1. If necessary, translate the orientations to unit 
quaternions. 

2. (Map quaternions into 4-space) Map the 
quaternions qi by M-I into 4-space. 

3. (Interpolate in 4-space) Interpolate the 
points M-I (qd in 4-space by a polynomial curve 
C(t), for example a cubic B-spline. 

4. (Translate to Bezier spline) Translate C(t) 
to the equivalent cubic Bezier spline Cbez (t). 

5. (Map back onto the sphere) Map Cb (t) 
onto the sphere using M, one Bezier segme~~ at 
a time, yielding a Bezier spline Dbez (t). 

Dbez (t) is the desired spherical curve, a Bezier 
spline that interpolates the quaternions qi. In our 
examples, since we use a cubic B-spline in step (3), 
Dbez (t) is C2-continuous. Traditional techniques are 
used for steps (3) and (4) , the interpolation in 4-
space and the translation from polynomial curve to 
Bezier spline (see Farin [5]). Step 1 is also well under
stood (see Shoemake [12]). Steps 2 and 5 are the only 
steps that require elaboration. Step 2 is discussed in 
Section 6 and step 5 in Section 7. 

Notice that any method of interpolation can be 
used in step (3), as long as it can be translated to a 
Bezier spline. We need to translate to a Bezier spline 
so that the method of step (5) can be applied. 

5 Onto the sphere 

We want a rational3 map from 4-space onto the unit 
sphere 53 in 4-space. The challenge is to make the 
map rational, since it is simple to find non-rational 
maps onto the sphere (e.g., normalization) . A for
mula from number theory yields a solution [2][p. 318]. 

Lemma 5.1 (Euler, Aida) 

(1) 

Notation 5.1 
It is most natural to express the following map in 
projective 4-space, p4. (Xl, X2, X3, X4, X5) in projec
tive 4-space is equivalent to (~ ~ ~ !i) in affine 

X',s' %'5' %'5' %'5 

4-space. 

3 A map O'(t) = (xdt), ... , Xk(t)) is rational if each compo
nent Xi (t) can be expressed as the quotient of two polynomials . 
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Corollary 5.1 The map M : p4 --+ 53 C p4: 

( 

2+ 2 2 2) Xl X2 + X3 - X4 
2XIX4 

M(XI,X2,X3,X4, 1) = 2X2X4 
2X3X4 

xi + x~ + x5 + x~ 

(2) 

sends any point in projective 4-space 
unit sphere in projective 4 -space. 4 

IIM(XI, X2, X3, X4, 1)11 = 1. 

onto the 
That is, 

Remark 5.1 To get a map from 4-space to the unit 
sphere, we are looking for a formula of the form A2 + 
B2 + c 2 + D2 = E2 where A, B, C, D and E are 
functions of at most four variables and at least one 
is a function of exactly four variables . Then a point 
in 4-space can be mapped to (A, B, C, D , E) where 
II(A, B, C, D, E) 11 = 1. 

The analogous map in 3-space is Lebesgue's 
M(XI , X2,X3 , X4) = (2(XIX2 - X3X4),2(X2X4 -
XIX3), x~ + X5 - xi - x~, ±(xi + x~ + X5 + x~» [2,3]' 
which is used by Dietz et . al. [3].5 This is an elegant 
map since it is necessary and sufficient: every ratio
nal curve c(t) on the unit sphere in 3-space has the 
form M(XI(t) , X2(t), X3(t), X4(t», for some choice of 
XI(t), X2(t), X3(t), X4(t). We are not as lucky in 4-
space with our map M. But the fact that M does not 
map onto the set of all rational interpolating curves 
is not important: we need only insure that it creates 
a good interpolating curve for animation. 

6 Back to 4-space 

The inverse map M-I is needed to map the quater
nions qi to M-I (qd as input to the interpolation in 
4-space. If we find a curve interpolating M-I(qi), 
then its image under M will be a curve interpolating 
qi· 

(The observant reader may notice that the image of the 
origin under M is undefined (and is the only such point). This 
is not a problem since we will see that the inverse images M-I 
of unit quaternions all lie above the plane X( = 0 (with the 
s~le exception of the identity quaternion (1,0,0,0, I), which 
WIll map onto this plane but far from the origin) and the entire 
space curve interpolating the M-I (q) avoids the origin. 

5These maps onto the sphere are instances of Pythagorean 
n-tuples. An interesting work on the use of Pythagorean 
triples for curve design is the work of Farouki and Sakkalis 
on Pythagorean hodograph curves [6) . 
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Lemma 6.1 The map M-I : S3 -+ p4 is defined by 

{ 

(X2,X3,X.,X5 _xI,+2y'z,;Z,) 

the hyperplane X4 = ° 
if X i= (1,0,0,0, 1) 
(vi z., if Xl i= xs) 
otherwise6 

where (Xl, X2, X3, X4, xs) lies on the unit sphere S3 
and only the positive square root is used. 

Proof: If Xl i= Xs, M-I(M(p, q, r , s, 1)) 
M-I(p2+q2+r2_s2, 2ps, 2qs, 2rs,p2+q2+r2+s2) = 
(2ps, 2qs, 2rs, 2s2 , 2s) = (p , q, r , s, 1). 

Since M(XI,X2,X3,0,XS) = (1,0,0 , 0, 1), the in
verse image of (1,0,0,0,1) is the entire hyperplane 
X4 = 0 . • 

Corollary 6.1 M is surjective. 

Proof: Every point of the unit sphere S3 has an 
inverse image . • 

Note that (1,0,0,0,1) is the identity quaternion, 
representing rotation by ° degrees about an arbitrary 
aXIs . 

When the quaternion qi = (qi I, qi2, qi3, qi4) is 
mapped off of the sphere using M-I, we apply the 
map M-I(qil, qi2, qi3 , qi4, 1). That is, we simply set 
the homogeneous coordinate to 1. This maps the 
quaternion to a unique point. The inverse of the pro
jective point {(kqil' kqi2 , kqi3 , kqi4, k)} k E~ is a line,7 
but we choose a unique preimage in order to apply 
point interpolation. 

7 The image of a cubic Bezier 
segment 

To take advantage of the Bezier representation, the 
Bezier spline in 4-space must be mapped back to the 
sphere as a Bezier curve , not simply a rational curve. 
It turns out that the image of each cubic Bezier seg
ment of the spline is a sextic Bezier segment . The 
following lemma reveals the Bezier structure of these 
sextic image segments on the sphere. Notice that the 
structure of the map M is preserved in the control 
points (compare (4) and (2)) . 

6We arbitrarily choose M- I (1,O, O,O, 1) = (1 , 1,1,0,1) in 
our implementation . 

7 M-I (kq;l, kq;2, kq;3, kq;., k) = 
(kq;2,kq;3,kq;.,k(1 - qil),2y'I-li' Vk), or in affine space 

v'2«(5Qi,)(qi2,qi3,qi.,1- qit}, so 

M-I {(kqi!. kqi2, kqi 3, kqi., k)hE1R. is the line from the origin 
through (qi2, q;3 , qi., 1 - qil) in affine space . 

. , 
. . . 

Lemma 7.1 The image of a polynomial cubic 
Bezier segment c(t) in -I-space under the map M is 
a rational Bezier segment of degree 6 with control 
points Ck and weights Wk (k = 0, .. . ,6): 

Ck = E 
0~i~3 

0~i~3 

i +i = k 

Wk= E 
0~i~3 

0~i~3 

i +i = k 

Wijk = (bilbjl + bi2 bj2 + bi3bj3 + bi4bj4 ) 

(4) 

where bi = (bil , bi2 , bi3 , bi4 ) are the control points of 
c(t) (i = 0,1,2 , 3). 

Proof: Let M(c(t)) = M(l=~=o Br(t)bi ) := 
(ml(t), m2(t), m3(t) , m4(t), ms(t)) (where Bf(t) is 
the ith Bernstein polynomial of degree n) . Consider 
the coordinate 

3 3 

ms(t) = [E Br(t)bid2 + .. . + [E Br(t)bi4]2 
i=O i=O 

3 3 (3)*(~) 6 
=LL ( .6. ) Bi+j(bilbjl+ ... +bi4bj4) 

i=Oj=O t+J 

by the product rule of Bernstein polynomials [5]. 
Letting k = i + j, this becomes 

0~i~3 

0~i~ 3 

i + i = k 

Computing the other coordinates analogously yields 

M(c(t)) = 

4
::···' 
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which is a sextic rational Bezier curve with control 
points (4) and weights Wk .• 

Figure 2 shows the control polygon of the rational 
Bezier curve on the sphere. Notice that the control 
polygon does not in general lie on the sphere, only 
the associated Bezier curve. 

8 Control of speed 

To control the speed of rotation of the tumbling 
body, we would like to control our speed along the 
spherical curve (see Section 3). With our rational 
Bezier spherical curve, we cannot solve Shoemake's 
open challenge of designing a spherical curve param
eterized by arc length [12], which would generate per
fectly regular changes of orientation, since no ratio
nal curve can be parameterized by a rational function 
of its arc length (Farouki and Sakkalis [7]) . However, 
we have a great deal of control over our speed on the 
spherical curve: through the knot sequence. More
over , this control is very simple and intuitive. 

8 .1 Choice of knot sequence 

Since the spherical curve that we create using 
Lemma 7.1 is a Bezier spline, we can use its knot 
sequence to control the speed along the curve. For 
example, we might like to approximate an arc-length 
parameterization (since it is impossible to attain ex
actly) for a uniform change of orientation. Chord
length parameterizations assign knot intervals pro
portional to the Euclidean distance between data 
points. Since our points and curve lie on a sphere, 
it is more appropriate to use a non-Euclidean metric 
measuring distance on the sphere: 

dist(A , B) = (Jr = (J = cos-l(A . B) 

(where (J is the angle subtended by the points A and 
B on the unit sphere). Non-Euclidean variants of 
other parameterizations, such as centripetal, could 
also be used. 

In many cases, perfectly regular tumbling will not 
be our goal, and manipulation of the knot sequence 
can just as easily achieve other effects. The above 
non-Euclidean metric will still be useful in these con
texts. 

This control of the speed along the curve via the 
knot sequence is another benefit of using a Bezier 
representation of the spherical curve. 
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8.2 Choice of frames based on arc 
length 

Another simple mechanism for effective speed con
trol in the animation is to choose intermediate frames 
based on arc-length. Suppose that, for example, we 
wish to simulate constant speed along the orientation 
curve (i. e., arc length parameterization). Based on 
computation of arc length, the orientation of inter
mediate frames can be chosen at approximately equal 
spacing along the orientation curve. The length of 
a segment should be computed by subdivision (un
til an acceptable degree of accuracy is achieved) 
rather than by exact computation via the integral f: 1Ic'(t)lldt (for the segment c(t» . This method is 
possible since we have a closed form Bezier represen
tation of the spherical curve. Other methods, which 
do not have direct representation of the entire curve 
cannot perform this type of arc-length based choice 
of intermediate frames . 

9 Cusps 

A cusp in a spherical curve is associated with an 
abrupt change of orientation, undesirable in an ani
mation . All of the spherical curves created by other 
methods can contain cusps (or what Shoemake calls 
'kinks'), and so can ours. However, the next lemma 
shows that our spherical curves rarely have cusps. 
Since it is simple to design our original 4-space curve 
without cusps (a nonplanar cubic Bezier curve can
not contain a cusp [5]), the only cusps are those in
troduced by the map M. The following lemma shows 
that M only introduces cusps in unusual situations, 
which should be easy to avoid during design (espe
cially since design is interactive with our method). 

Lemma 9.1 M introduces a cusp in the curve G(t) 
at t = to if one of the following conditions holds: 

• G(to) = (0,0,0 , 0) 

• G'(to) = (0,0,0,0) 

• C(to)· G'(to) = 0 and G4 (to) = GWo) = 0 

• %t(Ml(G(tO))) = kMl(G(tO», where Ml is de-

ft d b I d k ir(M,(C».M,(C) 
ne e ow an = M,(C).M,(C) . 

Proof: M can be expressed as the composition of 
two maps (in affine space) : 

Ml : (p, q, r, s) -+ (p2 + q2 + r2 - s2, 2ps, 2qs, 2rs) 
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and 
M2 : V -> vI11V1I 

The problem now reduces to determining when these 
two maps introduce cusps. We will show that 
MI(C(tO)) is a cusp when C(to) or C'(to) is the ori
gin or C(to) . C'(to) = 0; while M2(C(tO)) is a cusp 
when C'(to) = kC(to), k E !R. 

Consider the map M I . A curve C(t) has a cusp 
at t = to if it(C(to)) = (0,0,0,0). Let C(t) = 
(p(t), q(t), r(t), s(t)) . Suppose that MI(C(tO)) is a 
cusp. 

( 

2pp' + 2qq' + 2rr' - 288' ) 
2p's + 2ps' 
2q's + 2qs' 
2r's + 2rs' 

(0,0,0,0) (5) 

If s:/: 0, p' = -p(s'ls), q' = -q(s'ls), r' = -r(s' Is), 
and substituting into 2pp' + 2qq' + 2rr' - 2ss' = ° 
yields -~., (p2 + q2 + r2 + s2) = 0. If s' :/: 0, this 
reduces to p2 + q2 + r2 + s2 = ° or (p, q, r, s) is the 
origin. 

If s = ° and s' :/: 0, (5) again reduces to 
(p , q, r , s) = (0,0,0,0) . If s = s' = 0, (5) reduces 
to pp' + qq' + rr' = ° (or (p, q, r, s)· (p', q', r', s') = 0). 
If s:/: ° and s' = 0, (5) reduces to (p',q',r',s') = 
(0,0 , 0,0) . 

Next consider M2. Suppose that M2(C(tO)) is a 
cusp. We assume that C(to) :/: (0 , 0,0,0) . 

~(M (C(t ))) _ ~( C(to) ) _ ~( C(to) ) 
at 2 0 - at IIC(to)1I - at ../C(to)· C(to) 

IICIIC' - ( c ·c' )C 
C.~ = (0,0,0,0) 

Multiplying by IIC(to)1I3
, 

IIClI 2c, - (C· C')C = (0,0,0,0) 

C' =kC 

where k = <t/b'. In other words, the map M2 only 
introduces cusps into the curve C(t) when C'(to) = 
kC(to). 

Note that M2 preserves cusps: that is , if C(to) is 
a cusp, then M2(C(tO)) is also a cusp .• 

Thus, M introduces a cusp in C(t) when the curve 
C(t) passes through the origin, or its hodograph 
C'(t) passes through the origin . M also introduces 
a cusp if C(to) and C'(to), the vectors to the curve 
and hodograph at the same parameter value to , are 
orthogonal as well as lie in the hyperplane X4 = 0. 
Finally, a cusp can be introduced if the vectors to the 

" , \ . 

curve MI (C(t)) and its tangent, at the same param
eter value to, are multiples in the special ratio k of 
the theorem. These are all pathological occurences 
which most curves will not contain, and moreover 
they are unstable conditions which can be removed 
by manipulation of the original 4-space curve. 

10 Examples 

The Bezier nature of our spherical curves predicts 
good quality curves (e.g., variation-diminishing). 
Moreover, our spherical curve will be C 2 continu
ous, since it is the image under a rational map of a 
C2-continuous cubic B-spline. This quality is sup
ported by our practical experience. The curves that 
we have generated are well-behaved. 

We present an example of a tumbling maple leaf. 
Figure 1 shows the input to our animation problem: 
n orientations of n keyframes of a solid. The or i
entations are shown on the left as red unit quater
nions on the quaternion sphere, with the associated 
keyframes on the right. Figure 2 shows the interpo
lating rational Bezier curve on the quaternion sphere 
as determined by our method (on the left) and the 
animation corresponding to this spherical curve (on 
the right). In this static picture, we only show a few 
of the intermediate frames generated by the spheri
cal curve. The control polygon of the Bezier curve 
is also drawn, in black. We visualize the curves in 
4-space by using quaternions with X3 = 0, thus al
lowing projection onto the 3-dimensional hyperplane 
X3 = 0.8 This is purely for purposes of visualization: 
all computations are in 4-space. 

The construction of the orientation curve is illus
trated in Figure 3. The input quaternions are drawn 
in red. They are mapped by M-I to the blue points, 
which are interpolated freely in 4-space by the blue 
Bezier curve (with its control polygon). Finally, the 
blue space curve is mapped back onto the sphere by 
M to the red spherical curve, which interpolates the 
original quaternions. 

Notice that the spherical curve only controls the 
orientation of the frames . The position of the tum
bling leaf in each frame is controlled by a second 
interpolating curve. It is impossible to visualize the 
change in orientation unless the object also moves 
through 3-space. 

8Quaternions with X3 = 0 are mapped by M-I to points 
in 4-space with X2 = 0, so the entire interpolation in 4-space 
lies in the plane X2 = 0 and maps back to a spherical curve 
entirely in the hyperplane X3 = O. 

4
· .. ·· .. ·· 
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Finally, we remind the reader that the representa
tion of an orientation by a quaternion is not unique: 
antipodal quaternions represent the same orienta
tion. In constructing the quaternion representation 
of the series of key frame orientations, it is wise to 
use this degree of freedom and choose whichever 
quaternion lies closest (on the sphere) to the previous 
quaternion, so that the animation does not perform 
undesired flips. For example, if two consecutive iden
tical orientations are represented by two antipodal 
quaternions, the object will perform a full rotation 
rather than remaining stationary. 

11 Conclusions 

We have developed a way of controlling orientation 
rationally, by developing rational Bezier curves that 
interpolate quaternion orientations. Control of ori
entation by a rational Bezier spline is more efficient 
and more amenable to manipulation (e .g., alteration 
of the curve, control of speed) than control by a non
rational curve for which no direct, closed-form rep
resentation is known . 

By constructing a rational map from 4-space to 
the quaternion sphere, and the inverse map from 
the sphere to 4-space, we reduce orientation inter
polation on the sphere to point interpolation in 4-
space. The Bezier structure of the curve in 4-space is 
mapped to the sphere. Point interpolation in 4-space 
can be performed using any classical method. We 
have chosen a cubic B-spline, since it is perhaps the 
most widely understood method , but other methods 
could certainly be used. Since it applies traditional 
techniques of point interpolation , our method can be 
viewed as an extension of the interpolation of posi
tion (in 3-space) to the interpolation of orientation 
(in 4-space) . 
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Figure 1: Input to the animation problem Figure 3: Mapping on and off the quaternion sphere, 

using M 

Figure 2: Orientation curve and animation 
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