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Abstract
Using a generalization of the IFS model, we try
to establish relations between operations over lan-
guages and operations over attractors. This leads us
to a constructive approach of fractal geometry.
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1 Introduction

The Iterated Function Systems (IFS) model has been
introduced by BARNSLEY [Bar88] for fractal geome-
try. This model is particularly interesting due to its
rigourous formalism and its simplicity : a fractal is
encoded by a finite number of contractive transfor-
mations.

Several authors have generalized the IFS model :
Equations systems [CD92][CD93a][Har92] and Ma-
trices [PJS92] are used to define attractor vectors.
Languages accepted by a finite-state automaton
[PHO1][PH92][BM89][BNASY], directed multigraphs
[MW88][Edg90] and affine expressions [CD93b] are
used to define a subset of an IFS attractor. These
models have one common point : they are all related
to formal languages theory.

We have tried to define a constructive approach
to fractal geometry adapted from Constructive Solid
Geometry (CSG) [Req80][Rot82] in solid modeling.
This can be done using languages. Indeed, there
are relations between operations over languages and
operations over attractors. For this purpose we
have chosen to use the Language-Restricted Iterated
Function Systems approach [PH91] because it seems
to be the most general approach among those cited
above. However, we present a slightly different defi-
nition of the attractor based on a transition system.
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2 Definitions

The LRIFS model has been introduced by
PRUSINKIEWICZ and HAMMEL [PH91][PH92]. It pro-
vides tools for restricting the sequences of applicable
transformations of an IFS using a formal language.
The definition of an attractor we use is adapted from
LRIFS’s using a transition system instead of a lan-
guage. Thus, we will give the definitions of an IFS
and a LRIFS and present our definition.

2.1 Iterated Function Systems

The IFS model is based on an application of the fixed
point theorem in the set of the compact sets of a
metric space.

Definition 2.1 An [FS is.a set7T =
of contractive transformations on X.

{T,...,Tn}

Notation : Let K be a compact set, we denote
Tok = |J T(K)={T(@)TeT,pe K}
TeT

Moreover, we have chosen to compose transforma-
tions from right to left because it is the classical no-
tation for matrix products on which our approach is
based.

Theorem 2.1 Denote H(X) the set of all non-
empty compact sets of X. (H(X),dn) is a complete
melric space, where dp s the HAUSDORFF distance.
The HUTCHINSON operator defined by :

F: HX) — HX)
I5e — T oK
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is a contraction on H(X). Thus this operator has a
unique fized point :

A=FA)=ToA
A is called the attractor of T and is denoted A(T).

Proof : the proof can be found in [Bar88].
2.2 Language-Restricted Iterated
Function Systems

PRUSINKIEWICZ and HAMMEL [PH91][PH92] define
an IFS as a tuple of functions. This enables them to
define an alphabet of contraction labels and a lan-
guage over this alphabet.

Definition 2.2 A LRIFS 18 a
I = (7,%,h,L) where :

L4 T:(Tl,..
X.

4-tuple

. Tn) is a tuple of contractions on

o ¥ = {1,...,N} is an alphabet of contraction
labels.

o h is a labeling function : h(i) =T; fori € X.
o [, C X* is a language over X.

The function h is generalized to languages over X
using the following equations :

h(e) = Identity
h(uiug .. .ug) = Ty, 0Ty, 0... Ty,
h(L) {h(w)|w e L}

where ¢ is the empty word.

2.3 Attractor associated with a tran-
sition system

We have chosen to work only with languages ac-
cepted by a transition system, that is regular lan-
guages. This approach allows us to define an attrac-
tor associated to a transition system.

This definition [T'T93] is based on the equivalence
between a transition system [Har78], the graph of
this transition system and the matrix associated with
this graph [GM86]. Using this matrix we can apply
the fixed point theorem in H(X')" as it has been done
in [PJS92] in order to produce an attractor vector.
The attractor associated with the transition system
will then be a projection of this vector.

More precisely :
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Definition 2.3 A transition system is a J-tuple

M=(Q,%,6Qr,QF) where :

e (Q is a finite nonempty set of states.
e X is an alphabet.

e & is a function from Q x ¥ into Q called the
direct transition function.

e Q1 C Q 1is the set of initial states.
e QF C Q is the set of final states.

The language accepted by M is given by
LM) ={we X", §(g;,w) =gy, ¢ €Qr,95 €Qr}

with 6(g, aw) = 6(8(¢q,a),w) if a € ¥ and w € £*.

L(M) is a regular language.

M can be viewed as a graph in which vertices rep-
resent the states and edges the transition function.
The initial (resp. final) states are pointed by a short
entering (resp. outgoing) arrow.

Definition 2.4 Let M be a transition system. The
matriz associated with M is a n X n matric A =
(Aij) where n is the number of states of M and :

Vi,j=1,...n A;; = {a € X|b(qi,a) = g}

The function h is generalized to n x n matrices
using the following equations :

h(A)i; = h(Aij)
h(A)oV :(Xpmmom

with V € H(X)".

Proposition 2.1 h(A) is a contractive operator.
Thus it has a unique fized point V in H(X)". The
attractor associated with M is then defined by :

AM)= | W

4:i€Q1

Proof : see [PJS92][TT93].

This approach enables us to visualize the attractor
using the deterministic algorithm. Indeed, we can
construct the sequence (h(A)" o V)neN’ where V €

H(X)". This sequence converges to V.

A
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3 Languages operations and attrac-
tors

We have started developing a constructive ap-
proach of fractals by using operations over IFS’s
[Gen92][GT91]. This approach enables the creation
“step by step” of an image. Using simple shapes (not
necessarily fractals) we are able to construct complex
fractal shapes. Thus it gives a control on the image
construction.

The use of languages theory allows us to extend
this approach by using operations over languages.
Indeed, the set of regular languages is closed under
the union, concatenation, intersection and shuffle op-
erations [Har78] and thus, it is possible to construct
complex languages using simple ones. Moreover,
these operations over languages have simple equiv-
alent operations over transition systems. Using def-
inition 2.1, we will be able to produce the attractor
corresponding to the result of these operations. Thus
we will be able to built an attractor by composing
simple attractors.

Our question is : given an arbitrary operation x
and two transition systems M = (Q,%,6,Qr,QF)
and M’ = (Q',%,8,Q}, Q%) over the same alpha-
bet, what is the relation between A(M* M), A(M)
and A(M’) 7 We will present for each operation the
results we obtain. Proofs can be found in [TT94].

3.1 Union

We present here what the attractor associated with
the union of two languages is. The union of two
languages L and L’ is defined by :

LUL ={weX*/welL or wel'}

The transition system M that accepts L(M") =
LIM)UL(M)is :

MII — (Q”, 2,6”, I]/’QII.I_‘
where
Q" = Que
! = Qru@;
Y= Qru@p
6(¢g,a)ifgE€Q
1" —_
4 (q,a) - { 6’(q,a)ifq€Q’

Proposition 3.1

AM") = AM)UAM)
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3.2 Concatenation

We now present what the attractor associated with
the concatenation of two languages is. It is given by :

Ll ={weX/w=u, ueL, vel}

Let M" be the transition system that accepts
L(M") = L(M).L(M’"). M" is obtained by con-
necting each final state of M to each initial state of
M’ by an e-transition.

Proposition 3.2
AM") = A(M) UhA(L(M)) o A(M")

3.3 Intersection
The intersection of two languages is given by :
LNL ={weX/wel and we L'}

The transition system M” that accepts L(M") =
LM)NL(M') is :

M =(Q",%,8", Q1. QF)

where
R = @xQ
T = QrxQ
P = QF xQF
6(q1,a) = ¢4
§"((q1,92),a) = (q7,¢5) if< and

'(g2,0) = ¢4
Proposition 3.3 If L(M)N L(M’) # 0 then
AM") C AM) N AM)

3.4 Shuffle

The shuffle of two languages is given by :
LUL' = {w=wuviugwy.. Unly €I’
Ul .. .Uy € L,v1v3...0m € L'
u;,v; € XU {E}}
The transition system M" that accepts L(M") =
LM)U L(M') is :
M//:(Q//"S‘(SN, /]/’ II{")
where
Q// Q X Q/
7 QI xQ UQ xQ;
P = QFxQUQxQR
(¢".q¢") if 6(q,a)=4q"
" / )
8"((q,4"),a) { (q,¢") if (Sl(q',a) =q"

M is not necessarily determinist.

(&1
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Figure 1: Examples of operations over attractors.
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Proposition 3.4

AM”) D AM)UAM)
AM") 2 h(L(M')) 0 A(M) Uh(L(M)) 0 AM)

3.5 Examples

In order to give examples we use affine transforma-
tions of ¥ = R®. The following notations are used :

e T(a,b,c) denotes the translation by the vector
(a,b,¢).

e Rz(a) (resp. Ry(a),Rz(a)) denotes the rotation
of angle a around the Oz (resp. Oy,0z) axis.

e H(a) denotes the scaling with respect to the ori-
gin of the coordinate system.

The visualization is made by the deterministic al-
gorithm [TT93]. The primitive we use in the algo-
rithm is the sphere. To illustrate each operation we
use the octree transformations :

St = H(0.5)

S, = T(0.5,0,0)0 H(0.5)
Ss = T(0,0.5,0)0 H(0.5)
Sy = 1T(0,0,0.5)0 H(0.5)
Sy = T(0.5,0.5,0)0 H(0.5)
Ss = T(0.5,0,0.5)0 H(0.5)
Sz = T(0,0.5,0.5) 0 H(0.5)
Sg = T(0.5,0.5,0.5)0 H(0.5)

Let L(M) = {1,3,4}* and L(M’) = {1,3,5}".
Figure 1 shows M, M’ MUM', MM' MNOM',
M U M’ and the corresponding attractors.

3.6 Remark on attractors definitions

Our definition of an attractor and PRUSINKIEWICZ’s
one [PH91] are slightly different. Indeed, in our
definition, an attractor is a fixed point in the set
of compact sets. Thus it does not depend on an
initial point. It is a way to avoid the sufficient
condition (prefix extenbility of the language) given
in [PH91]. Proofs can be found in [TT94]. How-
ever the shuffle and the concatenation of two prefix
extensible languages are prefix extensible and thus
PRUSINKIEWICZ definition allows these operations.

pATRA TS’
AVNAVENAY
ol AR le

Figure 3: Construction tree of a language

4 Constructive Fractal Geometry

We have defined operations over languages that allow
to compose two attractors. These operations can be
used, as in Constructive Solid Geometry, to built a
construction tree. We will give an example of “Con-
structive Fractal Geometry tree”, and then investi-
gate the relation between CSG and our approach of
Constructive Fractal Geometry.

4.1 Construction trees

We can now construct “CFG trees” in the same way
as CSG trees. Indeed, given simple languages we
can construct a complex language using operations.
Thus, given simple fractals we can construct a com-
plex fractal using these operations.

Example : We still use the octree tranformations.
Figure 3 shows the construction tree of the language
and figure 2 shows the corresponding “CFG tree”.

4.2 Operations

We have seen that the union operation is the same in
our approach as in CSG. On the contrary, the inter-
section operation leads to a particular problem. In-
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Figure 2: CFG tree
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deed, two different languages can produce the same
attractor and the result of the intersection may de-
pend on the choice of the languages.

For instance, let T3 = H(0.5), 7> = H(0.3). If
L(M) = {1}* and L(M’) = {2}* then AM) =
A(M’) = {O} : the origin of the coordinate system.
Thus L(M) N L(M’) = @ when A(M) = A(M’).

The concatenation and shuffle operations are typi-
cal operations over languages and thus they have no
equivalent in CSG. The obtained results are often
interesting from a graphical point of view.

Example : In addition to Si,...Ss given in section
3.5, we use the following transformations :

Se = T(0,1,0)

Sie = H(1/3)
511 = H(1/3)OT(1,0,0)ORy(7F/3)
512 = SbOT(l,0,0)ORy(—Qﬂ'/3)
Si3 = H(1/3)0T(2,0,0)

S1a = T(0,0,1)0 Ry(w/4) o H(1/2)
Sis = T(0,0,1)0 Ry(—n/4) o H(1/2)

Figure 4 gives two examples of concatenation ope-
ration :

Ly ={1,4.6}*, Li ={1,2,4}1*9
Ey=41.4.7}, Ly=1{10,11,12,13}"
and an example of shuffle :
Lz = {1,4}*.{14,15}", L5 = {1,4}*.{14,15}*.9

This example shows that one can make extrusion of
an attractor using the shuffle operation. The trans-
formations of the tree are those used in [PH91].

4.3 Primitives

As in CSG we should define what the primitives of
the Constructive Fractal Geometry are. The set of
these primitives should be an independant set of lan-
guages such that any other language could be con-
structed from this set by applying the above opera-
tions.

Proposition 4.1 Let ¥ = {1,2,...,N}* be an al-
phabet. Then the set of languages :

{0,{e}, {1}, {2}, .. AN} A1}, {2}, .. . {N}7}

is a set of primitives of the Constructive Fractal Ge-
omeltry.

Proof : See [TT94]
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203

5 Conclusion [GT91] C. Gentil and E. Tosan. Descriptions of
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Ez)t also languages operations (concatenation, shuf- [Har92] J. Hart. The object instancing paradigm
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