204"

The Escape Buffer:
Efficient Computation of Escape Time for Linear Fractals

Daryl H. Hepting
School of Computing Science
Simon Fraser University
Burnaby, British Columbia
CANADA V5A 1S6

e-mail: darylh@cs.sfu.ca

Abstract

The study of linear fractals has gained a great deal
from the study of quadratic fractals, despite impor-
tant differences. Methods for classifying points in
the complement of a fractal shape were originally
developed for quadratic fractals, to provide insight
into their underlying dynamics. These methods were
later modified for use with linear fractals. This pa-
per reconsiders one such classification, called escape
time, and presents a new algorithm for its compu-
tation that is significantly faster and conceptually
simpler. Previous methods worked backwards, by
mapping pixels into classified regions, whereas the
new forward algorithm uses an “escape buffer” to
mapping classified regions onto pixels. The efficiency
of the escape buffer is justified by a careful analy-
sis of its performance on linear fractals with various
properties.

1 Introduction

Whether fractal geometry is considered a tool for
computer art (e.g. [Rosebush, 1989]), a photorealis-
tic model of natural phenomena (e.g. [Voss, 1985]), a
fruitful example of scientific visualization (e.g. [Man-
delbrot, 1982]), or an alluring introduction to higher
mathematics (e.g. [Peitgen & Richter, 1986]), it typ-
ically enjoys a symbiotic relationship with computer
graphics. This relationship is complemented by the
incorporation of fractals as modeling primitives in
computer graphics systems (particularly linear frac-
tals [Smith, 1984; Oppenheimer, 1986; Prusinkiewicz
& Lindenmayer, 1990; Hart, 1992]).

The escape buffer continues this tradition by offer-
ing a new method useful for both the visual investi-
gation of a family of fractal shapes called linear frac-
tals, and the resulting generation of geometric mod-
els for image synthesis. Escape time was originally
developed as a method for visualizing the dynamics
of complex quadratic fractals, but has been extended
to linear fractals [Prusinkiewicz & Sandness, 1988;
Hepting et al., 1991; Prusinkiewicz & Hammel, 1992]
and was the focus of the graduate art of Gordon
Lescinsky [Hart et al., 1993]. It has most recently
represented linear fractals implicitly, supporting the
blending of rough surfaces [Hart, 1995].

Graphics Interface ’95

John C. Hart
School of EECS
Washington State University
Pullman, Washington
USA 99164-2752
e-mail: hart@eecs.wsu.edu

Section 2 reviews previous methods for determin-
ing the escape time of first quadratic, and later lin-
ear, fractals. Section 3 provides a brief summary of
quadratic and linear fractals sufficient for this dis-
cussion. Section 4 defines the escape-time function
for quadratic fractals and transfers it to linear frac-
tals. Section 5 introduces the escape buffer method
for determining escape time for linear fractals. Sec-
tion 6 analyzes its performance. Section 7 relates the
results to computer graphics and visualization, and
highlights some open problems for future research.

2 Previous Work

This section briefly overviews the previous work
leading to the escape buffer. Some omitted details
are filled in later, in Section 3 which defines of the
complex quadratic and linear fractal models, and in
Section 4 which fully describes the escape time clas-
sification.

Several algorithms for classifying divergent points
of complex quadratic dynamical systems were de-
scribed in [Peitgen & Richter, 1986], and listed in
detail in [Peitgen, 1988]. The earliest methods plot-
ted simple discrete level sets, counting the number of
function applications required to transform a point
outside a large circle. These level sets were later
generalized into a continuous potential and escape
time, producing continuous classifications of diver-
gent points. These dynamics can be displayed with a
continuous spectrum of color, or as a smooth height
field yielding a variety of new landscapes for image
synthesis.

Prusinkiewicz and Sandness [1988] and Barnsley
[1988] described how the level set method originally
developed for quadratic fractals could be extended to
linear fractals modeled by iterated function systems,
by inverting the IFS. Whereas complex quadratic
dynamical systems consist of a single transforma-
tion, the analogous inverted IFS contains several
transformations, the proper one of which must be
chosen for each iteration.

Their method for choosing the proper transfor-
mation segregated space into distinct regions, such
that the proper transformation would be applied to
any point based on the region containing the point.
These regions could be intuitively designed only for
the simplest linear fractals, and the region’s bound-

(&

aries were themselves fractal in some cases.

Hepting et al. [1991], expanding on an idea men-
tioned at the end of [Prusinkiewicz & Sandness,
1988], avoided the use of regions by checking all
possibilities from iterating all possible transforma-
tions of the inverted IFS. This avoids the problem
of defining regions at the combinatorial expense of
traversing a tree of possibilities. Determining level
sets is a maximization of the number of iterations
needed to escape a bounding circle, so they were
able to prune the tree when a branch succeeded pre-
maturely. They also developed a continuous classifi-
cation of divergent points for iterated function sys-
tems analogous to the escape-time classification of
quadratic fractals.

Hepting et al. [1991] also proposed using a grid
to store prior escape times to avoid their recompu-
tation for later calculations. Although this scheme
interpolated existing values, divergence from these
values were very small and the time savings was sub-
stantial, as illustrated in Section 6.

Prusinkiewicz and Hammel [1992] adapted the dis-
crete and continuous escape-time classification to a
larger class of linear fractals, specifically those repre-
sented by language-restricted iterated function sys-
tems [Prusinkiewicz & Hammel, 1991]. Although
the language of an LRIFS can be located anywhere
in the Chomsky hierarchy, it is typically regular (al-
though [1993] demonstrates some examples resulting
from a context-free LRIFS that can not be repre-
sented by a regular LRIFS). This exposition focuses
on a representation, equivalent to the regular LRIFS,
called the recurrent iterated function system, which
is defined in Section 3.3.

This paper improves on these previous results by
developing a significantly faster forward algorithm
for determining escape time that neither explicitly
defines regions nor follows all point iteration possi-
bilities.

3 Background

Understanding an escape time visualization requires
some knowledge of the underlying dynamical system
on which it operates. Although this work focuses on
linear fractals, this section begins with a brief re-
view of the study of quadratic fractals, which pro-
duced the first incarnation of escape time. (More
detailed reviews of this study can be found in [Peit-
gen & Richter, 1986; Peitgen, 1988].) . Summaries
of iterated function systems and recurrent iterated
function systems follow, which are greatly condensed
from [Hutchinson, 1981] and [Barnsley, 1989], re-
spectively.

3.1 Quadratic Dynamics

The dynamics of all quadratic functions in the com-
plex plane can be explored by investigating a single
family of complex quadratic functions f. : C — C

Graphics Interface *95

205

defined as

f(z2) =2+ ¢ (1)
parameterized by a single constant ¢ € C [Julia,
1918].

The dynamics of these functions become evident
by examining the resulting orbit of their iteration on
an initial point. Given an initial point z, € C and
a function f., the points in the orbit (z, z,,...) are
defined recurrently through iteration as

Zi = fc(zi—l)

For each function f., there is always a non-empty
set of initial points z, whose orbits diverge. Such
points are called the basin of attraction of infinity,
whereas their complement is called the filled-in Julia
set of f., denoted K. Although interesting dynam-
ics occur in the filled-in Julia set, its complement
(the basin of attraction of infinity) is more useful for
mathematical analysis [Douady & Hubbard, 1982]
and has subsequently been the primary focus of vi-
sualization algorithms.

For the sake of computation, infinity is often ap-
proximated by an infinity circle, a circle centered at
the origin of radius sufficiently large such that the
orbit of any initial point that travels outside this
circle is known a priori to be divergent.

The level set method classified initial points with di-
vergent orbits by counting the number of iterations
required to escape the infinity circle. The contin-
uous potential method smoothly interpolated the dis-
crete steps of the level set method, by examining the
magnitude of the first point in the orbit to escape
the infinity circle [Peitgen & Richter, 1986; Peitgen,
1988).

3.2 Iterated Function Systems

Although popularized in [Barnsley & Demko, 1985]
for their natural modeling potential, iterated func-
tion systems had previously appeared in various
forms [Hutchinson, 1981; Williams, 1971]. The fol-
lowing follows the form of [Hutchinson, 1981].

This paper focuses on two-dimensional computer
graphics, and the domain of its definitions is specif-
ically R? although they extend to R™ or any other
complete topological space. The collection of all sub-
sets of a space is called the power set of the space, de-
noted P(-), and will be used to define the domain and
range of transformations that pointwise map sets to
sets.

A function T : R? — R?is Lipschitz if and only if
there exists some positive value A such that

IT(z) — T(W)Il < A= — yl| (2)
for all #,y € R% The minimum value A satisfying
(2) is known as the Lipschitz constant of T, denoted

Lip 7. The function T is contractive if and only if
Lip T < 1.

&

206

An iterated function system 7 = {T:}}, consists
of a finite set of contractive affine maps! T, : R? —
R2. In computer graphics, such affine maps are typi-
cally represented by 3 x 3 homogeneous transforma-
tion matrices [Foley et al., 1990].

The Hutchinson operator, T : P(R?) — P(R?) of an
IFS T

N
T(A) = U Ti(A).

=1
defines the application of the IFS on a given set A C
R2,

Each IFS 7 describes a non-empty compact set

A C R? called the attractor of 7, which is uniquely
invariant under the Hutchinson operator

A =T(A) 3)

and is the limit set of repeated application of the
Hutchinson operator

A = lim T°(B)

1— 00

where 7 °' is the i-fold composition of 7 and B C R?
is any non-empty bounded set.

The inverse of an IFS 7 = {T;}X, consists of a
set of dilation maps 77! = {T, '} ,. If A is the
attractor of 7, then one also has that

N
A= (171A) (4)

although unlike (3), A is not a unique solution to (4).
If an IFS 7 contains a projection, then its inverse is
undefined.

An IFS 7 satisfies the open set propertyif and only
if there exists an open set O C R? such that A C O
(where O denotes the closure of O) and

N
(7:(0) = 0.

The efficiency of IFS algorithms generally depends
on three factors: the number of the IFS maps N,
their Lipschitz constants and whether the [FS satis-
fies the open set property.

3.3 Recurrent Iterated Function Systems

More complex and less strictly self-similar shapes
result from restricting the application of IFS trans-
formations by some mechanism. Such mechanisms
have appeared in different forms and with various
names, and with subtle differences that this section

1Some definitions of IFS include a corresponding set of proba-
bilities for measure theoretic results [Hutchinson, 1981; Barnsley
& Demko, 1985]. The use of the IFS as a geometric representa-
tion in computer graphics requires no measure theory, and this
paper avoids its use.

Graphics Interface ’95

aspires to explain. Although the most recent work
on escape time for linear fractals [Prusinkiewicz &
Hammel, 1992] used the language-restricted iter-
ated function system, this work instead utilizes the
recurrent iterated function system [Barnsley, 1989]
(identical to the controlled iterated function system
[Prusinkiewicz & Lindenmayer, 1990]).

A recurrent iterated function system consists of
an IFS 7 = {T:}X, as well as a control digraph G
consisting of N vertices corresponding to the IFS
maps, and directed edges, denoted by the ordered
pair (¢, 7). The notation (i,j) € G indicates that di-
graph G contains a directed edge from vertex i to
vertex 7, and implies that transformation 7, may be
applied directly after transformation T;.

A convenient mechanism for describing the dy-
namics of an RIFS replaces the set A C R? with the
set-vector A = (A;,Az,...,An) C (R2)N. The ele-
ments of the set vector keep points distinct to main-
tain proper transformation composition, in that a
point in the set-component A; is the result of appli-
cation of the transformation 7.

The Hutchinson operator 7T P((R?HY) —
P((R%)™N) of an RIFS takes set-vectors to set-vectors
as

T(4) = (T:(4), To(A), ..., Tn(4))
where
T,(4) = {J T4
(1,7)€CG

Application of the recurrent Hutchinson operator
applies each map T only to the results of a previous
map T;, if and only if the edge (7, j) € G.

As before, each RIFS 7 describes a non-empty
compact set A C R? called the attractor of 7. This
attractor is decomposed into possibly overlapping
components of the set vector A = (A, A4,,...,Ayn)
such that A = U A,. This set-vector is uniquely
invariant under the recurrent Hutchinson operator

A=T(A)

and is also the limit set of repeated application of
the recurrent Hutchinson operator

A= lim 7°(B)

1— 00

where B C (R?)" is any set-vector consisting of non-
empty bounded components B; C R%

The RIFS representation is equivalent to the
regular language-restricted IFS representation of
[Prusinkiewicz & Hammel, 1992]).

A directed graph is strongly connected if and only
if there exists a directed path of edges between any
two vertices. A directed graph is weakly connected
if and only if the digraph is not strongly connected
but there still exists a path of edges between any two
vertices. A directed graph 1s disconnectedif it is nei-
ther strongly connected nor weakly connected. We
will call an RIFS strongly connected, weakly con-
nected, or disconnected based on the topology of

&

its control digraph. (The hierarchical IFS of [Peit-
gen et al., 1992] is equivalent to an RIFS, although
the connotation of the term “hierarchical” implies a
weakly-connected tree structure.)

The inverse of an RIFS (7 ,G) is found by invert-
ing its transformations as well as reversing the di-
rected edges in the control graph G such that if and
only if (z,7) € G then (j,1) € G71.

An RIFS (7 ,G) with attractor specified by the set
vector A consisting of components A; C R? satisfies
the open set propertyif and only if there exists a set-
vector of open sets O consisting of components O; C
R? such that A; C O, and

M T0)=0

(t,2)€EG

The efficiency of RIFS algorithms generally de-
pends on the same three factors as the IFS case: the
number of the RIFS maps N, their Lipschitz con-
stants and whether the RIFS satisfies the open set
property. In addition, some algorithms require the
control digraph to be strongly connected. This pa-
per makes no such constraint on the RIFS control
digraph topology.

4 Escape Time

The discrete form of the escape-time classification
counts the number of iterations for a point to iter-
ate outside the infinity circle. The continuous form
smoothly interpolates the areas between the discrete
escape-time boundaries based on the location of the
point that escapes the infinity circle.

4.1 Discrete Escape Time

Determining the discrete escape time (the Level Set

Method of [Peitgen, 1988]) is simple for the complex
quadratic case.

Definition 4.1 (Quadratic discrete escape time)
Given the function f.(z) = z°>+c¢, a disk Dy centered at
the origin and of radius R sufficient such that the filled-
in Julia set K. C Dg, then the discrete escape time
DE : C — Z is given by

DE(z) = min {n:| f"(z) || 2 R} (5)
{1+DﬂﬂM)UHZH<&(®
0 otherwise.

Equation (5) defines the discrete escape time as
the first iteration that takes the orbit outside the
disk, whereas (6) recurrently defines an equivalent.
The former is easier to understand, but the latter
will be more useful in the development of escape
time for linear fractals.

Graphics Interface ’95

207

An important connection between linear and
quadratic fractals was drawn in [Peitgen, 1988] by
inverting Equation (1) into

Ti(z) = Vz — ¢,

yielding a form analogous to an iterated function
system on the complex plane.

The escape-time classification was originally de-
fined for (1) and Equation (1) is related to (7) by
inversion. By this analogy, inversion of an IFS is
required to compute its escape-time classification.

Prusinkiewicz and Hammel [1992] discuss a gen-
eralization of the results presented by Prusinkie-
wicz and Sandness [1988] in defining the escape-time
function for language restricted linear fractals.

The following was proven for an IFS in
[Prusinkiewicz & Sandness, 1988] and for an LRIFS
in [Prusinkiewicz & Hammel, 1992]. Given an IFS
7 (RIFS (7,G)) for any point & € A there ex-
ists at least one sequence of inverse tranformations
T‘:l € T7! (allowed by G™') such that as n — oo

T(z) = —Vz— ¢, (7)

tn

T 'o- o T o T ()
1o 1y

remains bounded. In contrast, every sequence of in-
verse mappings (allowed by G~!) applied to a point
x ¢ A will eventually send it to infinity as n — oo.
This theorem suggests the following definition of a
discrete escape-time function, based on the one given
by Prusinkiewicz and Sandness [1988].

Definition 4.2 (IFS discrete escape time) Given
an IFS T with attractor A, let Dg be a disk centered
about the origin® of radius R sufficiently large such that

T(Dgr) C Drg. (8)
Then the discrete escape time is given by the function
DE : R? — Z which is defined recurrently as

—1 s
b = { 1A, PP D) e € D

0 otherwise.

The discrete escape-time function is the maximum
number of inverse transformations 7' € 7! nec-
essary to iterate x to a point outside Dg.

The condition (8) insures the infinity circle is large
enough that points will not exit it at one itera-
tion and re-enter on the next. Equation (8) im-
plies A € Dg but the opposite is not true in that
for some attractors there can be a disk D, of ra-
dius r < R such that A C D, but 7(D,) ¢ D,. In
short, the smallest disk that contains its Hutchinson-
operator image is not necessarily the smallest disk
that contains the IFS attractor. Finding the smallest

?The infinity circle is centered about the origin as a matter
of notational convenience. The definitions of this and all of the
following escape-time methods can be easily extended to use an
infinity circle centered about any location.

(&

208

disk that contains its images, as well as the smallest
disk that contains an attractor is a difficult prob-
lem, although some partial solutions have recently
become available [Hart & DeFanti, 1991; Hepting,
1991; Canright, 1994; Dubuc & Hamzaoui, 1994].
When N > 1, implementation of Definition 4.2
parses through an N-ary tree, pruning branches
whenever DE returns 0 [Hepting et al., 1991].

Definition 4.3 (RIFS discrete escape time)

Given an RIFS (T ,G) with attractor A, let Dg be a disk
centered about the origin of radius R sufficiently large
such that T;(Dr) C Dgr (Vi). Then the discrete escape
time is given by

DE(x) = S DE;(x)

where the functions DE, : R? — Z are defined recur-
rently as

1+maxDE,»T_1:c ife € Dpg,
DE;(x) = { (i,7)€G (. @) i f

0 otherwise.

In anticipation of Section 5 which describes the
escape buffer, the following definition shows alter-
natively that one may map the disk Dg instead of
inverse-mapping the point a.

Definition 4.4 (Forward discrete escape time)
Given T, A and Dy as in Definition 4.2. Then the dis-
crete escape time is given by DE(x,I) where I is the
unity transformation I(x) = @ (Va). The integer-valued
DE(x, T) now operates on both a point € R? and a
homogeneous 3 x 3 transformation matriz T, and is re-
currently defined

DE(2,T) = { 1+ max DE(x,T-T:) if= e T(Dg),

0 otherwise.

Definitions 4.2 and 4.4 are equivalent because de-
termining if a point is in the image of a region @ €
T(Dg) is equivalent to determining if the inverse im-
age of a point is in the original region T~ !(x) € Dp.
In practice, it is more efficient to inverse map points
than to forward map the infinity circle because the
image of the infinity circle under an affinity can be
an arbitrary ellipse, which can be difficult to manage
and scan convert.

As Definition 4.2 was extended to Defini-
tion 4.3, Definition 4.4 extends to the RIFS case
[Prusinkiewicz & Hammel, 1992].

4.2 Continuous Escape Time

A continuous escape-time function requires a means
to interpolate smoothly between the boundaries of
the discrete escape-time level sets. Such a method
was presented for the IFS case in [Hepting et al.,

Graphics Interface "95 -

1991], and for the LRIFS case in [Prusinkiewicz &
Hammel, 1992].

The following was originally derived in [Hepting
et al., 1991], although is presented here in the no-
tation defined in [Prusinkiewicz & Hammel, 1992].
Given an (R)IFS 7 and the radius R of the infinity
circle, interpolation between the boundaries of dis-

crete escape-time level sets is given by the residual
function res; : Dg \ T;(Dg) — [0, 1) defined

log R — 1
sl = ogR-logllell
log [7" (=) | —log | = |
log (Il = |I* /R?)

log (Il |I* / Il 7' (=) |I*)’

for each map T,_1 of the inverted IFS. Equation (10)
follows from (9) after a few simple logarithmic iden-
tities, and is less expensive and more robust to com-
pute. We define the residue of an IFS as

(10)

res(x) = ,max res; ().

The residue of an RIFS is more complicated, and is
denoted through the individual res; functions in Sec-
tion 5.2. The residue components and the resulting
maximum are demonstrated on an IFS in Figure 1.

Figure 1: The left three images plot the res,() func-
tion for « = 1,2 and 3 respectively, for Sierpinski’s
gasket. The image on the right plots the resulting
res() function.

The continuous escape time consists of an inte-
gral discrete escape time plus a fractional residue.
Computation of continuous escape time consists of
computing the discrete escape time, and determin-
ing the residual of the point just before it escapes
the infinity circle.

Definition 4.5 (Continuous escape-time) Given

an IFS T with attractor A, let Dg be a disk centered
about the origin of radius R sufficiently large such that
T(Dgr) C Dg. Then the continuous escape time is given
by CE(x) where the function CE : R? — R is defined

recurrently as
1+ max CE(T (x))
t=1...
ife € Dr, T, ' (z) € D (31)
res(z) ife € Dp, T, '(x) & Dy (V7)

0 otherwise.

CE(z) =

A similar definition can be constructed for the
RIFS case [Prusinkiewicz & Hammel, 1992].

5 The Escape Buffer

The escape buffer is a new algorithm for comput-
ing the continuous escape time classification for the
complement of a linear fractal. It uses height fields,
as defined in Section 5.1 to support a forward def-
inition of escape time in Section 5.2. Section 5.3
details the escape buffer method with pseudocode
algorithms.

5.1 Height Fields

Let B C R?x R be a height field such that (x, z;) € B
implies there exists no other point (@, z) € B such
that z, # z,. Define the projection 7 : R? x R — R?
as

m(®, z) =@
such that «(B) flattens the height field B. The height
field evaluates like a function® B :R? — R as

Bla) = { g if (x, z) € B,

otherwise.
Furthermore, define the maximum of two height
fields Bl)BQ as

max{B;,B,} = {(x,2):x¢€ n(B;)Un(B,),

z = max(B;(x), Bz(x))}.

The maximum operator performs the role of a z-
buffer [Foley et al., 1990] on height fields.

5.2 Definition

The previous definition of height fields provides the
final ingredient necessary to define a forward method
for determining continuous escape time.

Definition 5.6 (Forward continuous escape-time)
Given an IFS T with attractor A, let Dgr be a disk cen-
tered about the origin of radius R sufficiently large such
that T(Dgr) C Dg. Define a new three-dimensional
IFS, T' = {T!},, of maps T! : R® — R® constructed
from T; as demonstrated by the homogeneous transfor-
mation matrices

o b e a, b, 0 e

Tl - c; dz fl — T,/ s C; dl 0 fi
0 0 1 0 0 1 1

0 0 0 1

such that T operates as T; in the first two dimensions,
but translates by 1 in the third. Furthermore, let a se-
quence of height fields B,, C R?xR be defined recurrently
as

By
B,

{(x,z) : @ € Dg,z = res(x)},
max T;(B,_;)

t=1...N

(11)

3 We have used the terminology of a height field, which 1s more
familiar in the domain of computer graphics, to replace the ter-
minology of measures. In terms of measures, m(B) is the support
and B(®) is the measure

Graphics Interface 95

209

Then the continuous escape time is given by the function

CE:R"—> R

CE(x) = max B,(z).

n=0,,.00

The sequence of height fields B,, refines the IFS
attractor as n increases, (in a manner similar to
previous methods for approximating IFS attractors
[Dubuc & Elqortobi, 1990; Hepting et al., 1991; Hart,
1992]). For example, B, contains the points whose
continuous escape time is in [0, 1], and in general B,
contains the points whose continuous escape falls be-
tween n and n+1 inclusive. These height fields form
the escape buffer, and maximizes the N individual
escape-time components in (11) to produce the con-
tinuous escape-time classification in the same way
that a z-buffer maximizes the z component of geom-
etry to produce correct visible-surface classification
[Foley et al., 1990].

Figure 2: The first two iterations of the escape buffer
for Sierpinski’s gasket. The height field By is com-
puted using the residual function whereas B, is the
maximum of T{(By), T,(Bo) and Tj(By).

We can also define the forward continuous escape
time on an RIFS, although distinct escapes buffer
sequences B;, must be maintained for each RIFS
map T;.

Definition 5.7 (Forward RIFS cont. escape time)
Given an RIFS (T , G) with attractor A, let Dy be a disk
centered about the origin of radius R sufficiently large
such that T (Dg) C Dg. Let the transformations T' be

5

210

the height-field extensions of T as prescribed in Defini-
tion 5.6, and let N sequences of height fields B,, C R?xR
be defined recurrently as

{(z,z) : ® € D,z = res,;(x)},

max T;(B;n_1)-
Jor, 5(Bin-1)

B, o

I

nn

Then the continuous escape time is given by the function
CE:R?— R as

CE(xz) = max max B,,.
n—oo 3=1...N !

The separate escape buffer sequences B;, act as
the individual elements of B used to define the at-
tractor of an IFS. At each level, the height field
max;=;. N Bjn contains the points whose continuous
escape time is at least between n and n+1 inclusive.
These N height fields collectively refine the attractor
as n increases.

5.3 The Escape Buffer Algorithims

The escape buffer uses the IFS to map image seg-
ments, which is analogous to the block coding IFS
techniques of [Jacquin, 1992]. In fact, the escape
buffer can operate solely in screen coordinates. Let
(R)IFS maps 7 defined on R? describe the attractor
A C R2. The window-to-viewport map W : R? — R?
maps world coordinates to screen coordinates [Fo-
ley et al., 1990]. The screen-space (R)IFS maps
S = {S:}, defined

Si=w.T, - w™!

describes an attractor .A(S) equivalent to the
mapped attractor W(A) from the original (R)IFS
maps 7.

0. initialize E(z) =0 (V)

1. for every pixel @

2. E(x) = res(x)

3. for iterations k=1...n

4. for every pixel x

5, for every S7' e §71

6. E(z) = max{E(x), E(S' (z)) + 1}

Figure 3: Escape buffer algorithm for an IFS.

Definition 5.6 suggests the algorithm shown in
Figure 3. Lines 1-2 compute the residual whereas
lines 3-6 use a forward method to map the residual
to interpolate the boundaries of the discrete escape
time level sets.

The algorithm computes continuous escape time
iteratively in place. Any reader who has solved the

Graphics Interface '95

radiosity equation will recognize this similarity be-
tween the escape buffer iteration and Gauss-Seidel
iteration [Foley et al., 1990], which also operates in
place causing some sections to converge more rapidly
than others depending on the order of processing.

As with any iterative method, detecting conver-
gence is not trivial. Let A be the maximum Lipschitz
constant of the maps 7. Then after the n iterations
specified by line 3, the escape buffer will refine the
infinity circle Dy to a precision of A" R. Hence for a
desired precision p, the maximum number of itera-
tions necessary is

12
log A (12)

Similar such equations appeared in [Reuter, 1987;
Hepting et al., 1991; Hart, 1992] and were used to
determine the necessary precision to approximate an
attractor.

One added constraint of the escape-buffer method
not shared by previous regional, tree-traversal and
grid methods, is that the escape buffer must contain
the infinity circle.

Organizing R? into regions using the methods de-
scribed in [Prusinkiewicz & Sandness, 1988] can sim-
ilarly increase the efficiency of the escape buffer by
determining, in a point-by-point manner, which one
of the N maps needs to be applied to determine the
escape time.

0. initialize E;(z) =0 (Va,1)
l.fori=1...N
2. for every pixel x
Ei(z) = res;(x)
. for iterations k=1...n
fori=1...N
for every pixel x
for every SJ_1 € S7! such that (i,j) € G
E,(z) = max{E,(z), B:(5; " (=) + 1}
. for every pixel =
0. E(z) = max;=..n Ei(x)

— O 0 oUW

Figure 4: Escape buffer algorithm for an RIFS.

For the RIFS case, Definition 5.7 suggests the al-
gorithm shown in Figure 4. This algorithm is ex-
tended from the IFS escape buffer only in that a
separate escape buffer is maintained for each map,
corresponding to each component of the set-vector
notation used in the definition of the RIFS represen-
tation. Lines 9-10 maximize these distinct escape
buffers into the final escape time classification of the
RIFS attractor complement.

(&

6 Results

6.1 Implementation

One implementation of the escape buffer works en-
tirely in screen coordinates, and uses fixed-point
arithmetic (eight bits fractional) to take advantage
of the higher speed of CPU integer performance.

Although the algorithm runs fastest when the es-
cape buffer is held in memory with the final results
plotted after the algorithm’s completion, plotting
the pixels of the escape buffer as they change yields
a fascinating and educational animation of the algo-
rithm. The escape buffer is by far more fun to watch
than any previous escape time algorithm.

The residual function is clamped such that the
undefined points outside the disk Dgy are set to zero
whereas undefined points in the region 7 (Dg) are
set to one. As the escape buffer iterates, pixels n-
tersecting the attractor become noisy. After the final
iteration, coloring pixels whose escape time exceeds
some threshold yields an approximation of the at-
tractor.

6.2 Tests

Tests of different implementations, weighing the fac-
tors mentioned above given the following results. A
sample of each test attractor is given in Figure 5.
Sierpinski’s gasket, whose IFS consists of three maps
which scale uniformly by 0.5 but translate in differ-
ent directions, is connected and satisfies the open-set
property. The disconnected gasket, whose IFS maps
scale uniformly by 0.1, is disconnected but still satis-
fies the open-set property. The overlapping gasket?®,
whose IFS maps scale uniformly by 0.9, is connected
but does not satisfy the open-set property.

Figure 5: Test cases: Sierpinski’s gasket (left), dis-
connected gasket (middle) and overlapping gasket
(right).

The smashed gasket, shown in Figure 7, has an
IFS similar to the Sierpiniski gasket’s augmented by
a fourth transformation that scales by 0.5 but does
not translate. This IFS does not satisfy the open-
set condition. Its escape-time performance under
the various methods is shown in Figure 6.

*The overlapping gasket is a pathological example. Its image
in Figure 5 is approximated by the same number of iterations as
the others, but is not enough in this case to adequately converge
to the attractor, as could be predicted by (12)

211

[R] n] Tree Traversal | Grid | Escape Buffer
Sierpinski’s Gasket (Lip 7, = 0.5)

1 T 78.52 | 48.27 28.19

21 8 86.53 | 51.39 30.51

41 8 91.35 | 53.84 34.56

8 | 7 90.00 | 54.23 35.43
Disconnected Gasket (Lip 7, = 0.1)

1 2 44.30 | 44.02 29.34

2|2 46.84 | 49.77 30.82

4] 2 56.52 | 50.98 32.11

8 | 2 50.91 | 48.90 33.05
Overlapping Gasket (Lip 7, = 0.9)

117 213.78 | 40.27 228.28

2|7 462.88 | 50.32 253.54

4 |7 810.64 | 52.80 265.15

8 | 7 1166.46 | 55.07 270.50

Smashed Gasket (Lip 7, = 0.5, N = 4)
1 7 118.81 64.50 34.82
8 | 7 172.51 68.27 45.65
Figure 6: Execution times for Sierpinski’s gasket

tests, where R is the infinity circle radius and n is
the maximum number of iterations.

Figure

Graphics Interface 95

T
extra map.

The smashed gasket whose IFS has an

212

6.3 Discussion

Recalling from Section 3, the factors affecting linear
fractal efficiency are: (1) the number of transforma-
tions N, (2) their Lipschitz constants and (3) the
open-set property.

Each of the escape methods is similarly affected
by factor 2. Figure 6 shows that for a Lipschitz
constant of 0.5, the escape buffer is clearly faster
than its competitors. For a Lipschitz constant of
0.1 the escape-buffer’s performance is excellent. For
a Lipschitz constant of 0.9, the coherence which is
exploited by the escape-buffer becomes more of a
hindrance than a help. In this case, the grid method
wins, but the escape buffer is still a reasonable choice
over the tree-traversal method. A heuristic based on
the scaling ratio would be useful to automatically se-
lect between the grid method and the escape buffer.

An (R)IFS that does not satisfy factor 3 adversely
affects both the regional method of [Prusinkiewicz
& Sandness, 1988] and the tree-traversal method of
[Hepting et al., 1991], but does not impact the per-
formance of the escape buffer.

Factor 3 provides an easy method for determin-
ing the regions for escape time (every example in
[Prusinkiewicz & Sandness, 1988] satisfies the open
set property). Such regions are much more difficult
to determine for an (R)IFS not satisfying the open-
set property.

The tree-traversal method becomes exponential
wherever the (R)IFS images of the infinity circle
overlap. While satisfying the open-set condition cer-
tainly does not guarantee that the infinity circle’s
images will not overlap, not satisfying factor 3 does
guarantee the infinity circle’s images will overlap,
and in general, tree-traversal becomes exponential
more often for attractors whose (R)IFS fails the open
set condition.

For the escape buffer, Figure 6 shows the execu-
tion times for the smashed gasket, whose IFS maps
have the same Lipschitz constant as the Sierpinski’s
gasket’s IFS maps, but otherwise differs in two ways:
the smashed gasket’s IFS consists of four maps,
and the smashed gasket does not satisfy the open
set property. The extra map should increase the
smashed gasket execution time, under all methods,
by 33% over their corresponding Sierpinski’s gasket
times, and this is nearly the case with both the grid
method and the escape buffer. However, the tree-
traversal method increases not by 33%, but by 51%
for R = 1 and 91% for R = 8. The tree-traversal
method’s lag is due to its becoming exponential in a
larger portion of the image.

7 Conclusion

A critical review of previous algorithms for com-
puting approximations to both quadratic and linear
fractals has provided new insights into how more
general and efficient algorithms may be designed

Graphics Interface 95

specifically for linear fractals. The improved speed
of the escape buffer makes linear fractal investiga-
tion more interactive.

7.1 Future Research

Many interesting problems regarding the escape-
time function for linear fractals remain open. One
such problem is extending the escape buffer to han-
dle cases where it does not contain the infinity circle.

Tracking which transformations have been applied
during escape-time computation hints at a new visu-
alization method (vis-a-vis the index maps discussed
in [Hepting et al.,, 1991]). Through such index maps,
it may be possible to gain further understanding
about the dynamics associated with linear fractals.

If a similar forward algorithm can be constructed
around distance instead of escape time, the result
would greatly increase the efficiency of computing
the distance transform of linear fractals, and perhaps
of general shapes.

7.2 Acknowledgments

This work was carried out with the support of the
Graphics and Multimedia Research Laboratory and
the School of Computing Science at Simon Fraser
University, and the Imaging Research Laboratory
at Washington State University which is funded in
part by the NSF under grant #CDA-9121675. The
first author acknowledges the support of his super-
visor, Robert D. Russell. The second author is sup-
ported by the NSF under grant #CCR-9309210,
and a gift from Intel. The authors wish to thank
Dave Fracchia, Ken Musgrave and the reviewers for
many helpful comments. This work builds on the
study conducted by the first author with Przemys-
law Prusinkiewicz and Dietmar Saupe.

References

[Barnsley & Demko, 1985] Barnsley, M. F. and
Demko, S. G. Iterated function systems and the
global construction of fractals. Proceedings of the
Royal Society of London, Series A(399), 1985, pp.
243-275.

[Barnsley, 1988] Barnsley, M. F.
where. Academic Press, 1988.

[Barnsley, 1989] Barnsley, M. F. Recurrent iterated

function systems. Constructive Approzimation1(1),
1989.

[Canright, 1994] Canright, D. Estimating the spa-
tial extent of attractors of iterated function sys-
tems. Computers and Graphics 18(2), 1994, pp.
231-238.

[Douady & Hubbard, 1982] Douady, A. and Hub-
bard, J. Iteration des polynomes quadratiques
complexes. CRAS, 1982, pp. 123-126.

Fractals Every-

(&

[Dubuc & Elqortobi, 1990] Dubuc, S. and Elqor-
tobi, A. Approximation of fractal sets. Journal
of Computational and Applied Mathematics 29, 1990,
pp. 79-89.

[Dubuc & Hamzaoui, 1994] Dubuc, S. and Hamza-
oui, R. On the diameter of the attractor of an
IFS. Manuscript, 1994.

[Fernau, 1993] Fernau, H.
guages with applications
Manuscript, Sept. 1993.

[Foley et al., 1990] Foley, J. D., Dam, A. V., Feiner,
S. K., and Hughes, J. F. Computer Graphics: Prin-
ciples and Practice. Addison-Wesley, Don Mills,
Ontario, ed., 1990.

[Hart & DeFanti, 1991] Hart, J. C. and DeFanti,
T. A. Efficient antialiased rendering of 3-D lin-
ear fractals. Computer Graphics 25(3), 1991.

[Hart et al.,, 1993] Hart, J. C., Lescinsky, G. W.,
Sandin, D. J., DeFanti, T. A., and Kauffman,
L. H. Scientific and artistic investigation of multi-
dimensional fractals on the AT&T Pixel Machine.
Visual Computer 9(7), July 1993, pp. 346-355.

[Hart, 1992] Hart, J. C. The object instancing
paradigm for linear fractal modelling. In Graphics
Interface '92 Proceedings, 1992, pp. 224-231.

[Hart, 1994] Hart, J. C. Fractal image compres-
sion and the inverse problem of recurrent iterated
function systems. In Hart, J. C., ed., New Di-
rections for Fractal Modeling in Computer Graphics.
SIGGRAPH ’94 Course Notes, 1994, pp. 9-1-9-
13.

[Hart, 1995] Hart, J. C. Implicit representations of
rough surfaces. In Wyvill, B. and Gascuel, M. P.,
eds., Proc. of Implicit Surfaces 95, April 1995.

[Hepting et al., 1991] Hepting, D., Prusinkiewicz,
P., and Saupe, D. Rendering methods for iter-
ated function systems. In Peitgen, H.-O., Hen-
riques, J. M., and Penedo, L. F., eds., Fractals in
the Fundamental and Applied Sciences, New York,
1991. North-Holland, pp. 183-224.

[Hepting, 1991] Hepting, D. H. Approximation and
visualization of sets defined by iterated function
systems. Master’s thesis, University of Regina,
1991.

[Hutchinson, 1981] Hutchinson, J. E. Fractals and
self-similarity. Indiana University Journal of Math-
ematics 30(5), 1981, pp. 713-747.

[Jacquin, 1992] Jacquin, A. E. Image coding based
on a fractal theory of iterated contractive image
transformations. /EEFE Transactions on Image Pro-
cessing 1(1), Jan. 1992, pp. 18-30.

[Julia, 1918] Julia, G. On the interation of rational
functions (in french). J. Math. Pure Appl. 8, 1918,
pp- 47-245.

[Mandelbrot, 1982] Mandelbrot, B. B. The Fractal
Geometry of Nature. W. H. Freeman, New York,
1982.

Valuations of lan-
to fractal geometry.

Graphics Interface ’95

213

[Oppenheimer, 1986] Oppenheimer, P. E. Real time
design and animation of fractal plants and trees.
Computer Graphics 20(4), Aug. 1986, pp. 55-64.

[Peitgen & Richter, 1986] Peitgen, H.-O.
and Richter, P. H., eds. The Beauty of Fractals.
Springer-Verlag, Heidelberg, 1986.

[Peitgen et al., 1992] Peitgen, H.-O., Jurgens, H.,
and Saupe, D. Fractals for the Classroom 1.
Springer-Verlag, New York, 1992.

[Peitgen, 1988] Peitgen, H.-O. Fantastic determin-
istic fractals. In Peitgen, H.-O. and Saupe, D.,
eds., The Science of Fractal Images, ch. Chapter 4,
pp. 169-218. Springer-Verlag, 1988.

[Prusinkiewicz & Hammel, 1991] Prusinkiewicz, P.
and Hammel, M. Automata, languages and it-
erated function systems. In Hart, J. C. and Mus-
grave, F. K., eds., Fractal Models in 3-D Computer
Graphics and Imaging, pp. 115-143. ACM SIG-
GRAPH 91 (Course #14 Notes), 1991.

[Prusinkiewicz & Hammel, 1992] Prusinkiewicz, P.
and Hammel, M. Escape-time visualization for
language-restricted iterated function systems. In
Graphics Interface '92 Proceedings, 1992, pp. 213—
223.

[Prusinkiewicz & Lindenmayer, 1990]
Prusinkiewicz, P. and Lindenmayer, A. The Algo-
rithmic Beauty of Plants. The Virtual Laboratory.
Springer-Verlag, New York, 1990.

[Prusinkiewicz & Sandness, 1988] Prusinkiewicz, P.
and Sandness, G. Koch curves as attractors and
repellers. IEEE Computer Graphics and Applications
8(6), November 1988, pp. 26—40.

[Reuter, 1987] Reuter, L. H. Rendering and Magni-
fication of Fractals Using Iterated Function Systems.
PhD thesis, Georgia Institute of Technology, De-
cember 1987.

[Rosebush, 1989] Rosebush, J. The proceduralist
manifesto. Leonardo, 1989, pp. 55-61. Computer
Art in Context Special Issue.

[Smith, 1984] Smith, A. R. Plants, fractals, and for-

mal languages. Computer Graphics18(3), 1984, pp.
1-10.

[Voss, 1985] Voss, R. F. Random fractal forgeries.
In Earnshaw, R. A., ed., Fundamental Algorithms
for Computer Graphics, pp. 805-835. Springer Ver-
lag, 1985.

[Williams, 1971] Williams, R. F. Compositions of
contractions. Bol. Soc. Brasil. Mat. 2, 1971, pp.
55-59.

Plate I: The output of the escape buffer on
Sierpinski’s gasket. The escape time classifi-
cation is augmented with index maps, as de-
scribed in [Hepting et al., 1991], which one can
use to read the address of points in a similar
manner to the external angles of gquadratic Ju-
lia sets [Peitgen, 1988].

Plate 11I: G-Eye-Land. The GI “eye” logo
is modeled as an open-set weakly-connected
RIFS of 89 affine maps using techniques de-
scribed in [Hart 1994]. The color boundaries
indicate integer escape time increments which
are continunously interpolated.

Graphics Interface "95 =

Plate 11: The escape buffer rendering of a clas-
sic RIFS attractor called the fractal pound
sign. The four corner images represent the
leieht field components, which are maximized
to create the final result displayed in the cen-
ter.

Plate TV: A scene modeled using the escape
time classification as a height field.

