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The study of linear fractals has gained a great deal 
from the study of quadratic fractals , despit e impor­
tant differences. Methods for classifying points in 
the complement of a fractal shape were originally 
dev elop ed for quadratic fractals , to provid e insight 
into their und erlying dynami cs. These methods were 
later inodified for use with linear fractals . This pa­
per reconsiders one such classification , called escape 
tim e, and presents a new algorithm for its compu­
tation that is significantly fas t er and conceptually 
simpler. Previous methods worked backwards, by 
mappin g pixels into classifi ed reg ions , wh e reas th e 
ne w forward algorithm uses an "esca p e buffer" to 
mapping classified regions onto pixels. The effi ciency 
of the escape buffe r is justifi ed by a careful analy­
sis of its pe rforman ce on lin ea r fractals with various 
prop erti es . 

1 Introduction 

Whether frac tal geomet ry is consid e red a too l for 
computer a rt (e.g. [Ro sebu s h , 1989]) , a photorealis­
tic mod e l of natur a l ph e nom en a (e.g . [Voss, 1985]) , a 
fruitful example of scientific vis u a lization (e.g. [Man­
delbrot , 1982]) , or an alluring introduction to high e r 
math ematics (e.g. [Peitgen & Richter , 19 86]) , it typ­
ically enjoy s a symbioti c relatio ns hip with computer 
graphics. This rela t ion ship is complem ented by the 
incorporation of fractals as mod eling primitiv es in 
computer graphics sys t ems (particularly lin ea r fra c­
tals [Smith , 1984 ; Opp enh eim er , 19 86; Pru si nkiewicz 
& Lind enm aye r , 1990; Hart , 19 92]). 

Th e escap e buffer continu es this tradition byoffe r­
ing a new method useful for both the visual inves ti­
gation of a family of fra c tal shapes called linear fra c­
tals , and th e res ultin g ge nerati o n of geometric mod­
els for im age sy nth esis. Escap e time was ori gi na lly 
de velop ed as a m e thod for vis u a li zing the dynamics 
of complex quadrati c fra c tal s, but has been ext ended 
to lin ea r fractals [Prusinkie wi cz & Sandn ess, 1988 ; 
Heptin g et al. , 19 91; Prusinkie wi cz & Hamm el , 1992] 
and was th e fo c us of the graduate art of Gordo n 
Lesc in s ky [Hart et al. , 1993]. It has most rece ntly 
represe nted lin ear fractals implic itly , supporting th e 
blending of rough su rfaces [Hart , 1995] . 
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Section 2 reviews previous methods for deter min­
ing the escap e tim e of first quadrati c, and lat e r lin­
ear , fractals. Section 3 provides a bri ef summary of 
quadratic and lin ear fractals sufficient for this di s­
cussion . Section 4 defin es the escap e- tim e fun c tion 
for quadrati c fractal s and transfe rs it to lin ea r frac­
tals . Section 5 introduces the escap e buffer met h od 
for de t ermining escape tim e for linea r fractals. Sec­
tion 6 analyzes its pe rformance. Sectio n 7 relates th e 
results to compute r graphics and vi sualizati on , and 
highlight s so m e op en problems for future resea rch . 

2 Previous Work 

T hi s section briefly ove rvi e ws the pre viou s work 
leading to th e escap e buffer. Some omitted de t a il s 
are fill ed in la t e r , in Sectio n 3 whi ch defines of th e 
comp lex quadratic and lin e ar fractal m odels, and in 
Sect ion 4 which full y desc rib es th e escap e t im e clas­
sifi cat ion. 

Several algorithms for classifying divergent points 
of complex quadratic dynamical syste m s were de­
scri b ed in [Peitg en & Ri cht er , 1986], and lis t ed in 
detail in [Peitgen , 1988] . The earli es t method s plot­
ted simpl e disc r e te leve l sets, counting the numb er of 
function applica tions required to transform a point 
out sid e a la rg e circle. These level sets we re late r 
ge n e rali zed i~t o a continu o us pote ntial and escap e 
time , producing continu ou s classifications of div e r­
gent points. These dy namics can be di sp layed with a 
continuou s sp ec trum of co lo r , or as a smooth heig ht 
field yieldin g a vari e ty of ne w land scapes for im age 
sy n th esis . 

Prusinkie wicz and Sandness [1 988 ] and Ba rn s ley 
[1 988] desc rib ed how th e level set method originally 
developed for quadratic fra c tals could be ex t e nd ed to 
lin ea r fra c t a ls modeled by it e rat ed function syste m s, 
by invertin g the IFS . Wh ereas complex qu ad rat ic 
dy n a mical syste ms co n s ist of a sin gle t ran sfo rm a­
tion , th e an a logo u s in ve rt ed IFS co n tai ns seve ra l 
transformations , the proper on e of which mu s t be 
chosen for eac h it e ration . 

Their me th o d for cho osing the proper tran sfor­
mat ion seg regated space into di st in c t reg ion s , such 
t hat the prop e r transformation would be app li ed to 
any point based on th e region co nt a inin g the point. 
Th ese region s could be intuitiv ely des ig n ed only for 
the simplest lin ea r fra c t a ls, and the reg ion 's bou nd -
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aries were th emselves frac tal in som e cases . 
Hepting et al. [1991]' expanding on an idea men­

tioned at th e end of [Prusinkiewicz & Sand ness , 
1988], avoid ed the us e of regions by checking all 
poss ibilities from iterating all possible transforma­
tions of th e inverted IFS. This avoid s th e problem 
of defining regions at th e combinatorial expense of 
traversing a tree of possibilities . De termining level 
sets is a maximization of the numb er of iterations 
need ed to escape a bounding circle , so they were 
able to pru ne the tree when a branch succeeded pre­
maturely. They also developed a continuous classifi­
cation of divergent poin ts for iterated function sys­
tems analogous to the escape-time classification of 
quadratic fractals . 

Hepting et al. [1991] also proposed using a grid 
to store prior escape times to avoid their recompu­
tation for later calculations . Although this scheme 
interpolated existing values , div erg ence from these 
valu es wer e very small and the time savings was sub­
stantial , as illustrated in Section 6. 

Prusinkiewicz and Hammel [1992] adapted the dis­
crete and continuous escape-time classification to a 
larger class of linear fractals , specifically those repre­
sented by language-restricted iterated function sys­
tems [Prusinkiewicz & Hamm el , 1991] . Although 
the language of an LRIFS can be located anywhere 
in th e Chomsky hierarchy , it is typically regular (al­
though [1993] demonstrates som e examples resulting 
from a context-free LRIFS that can not be repre­
sented by a regular LRIFS) . This exposition focus es 
on a represe ntation, equivalent to the regular LRIFS , 
call ed the recurrent iterated function syst em, which 
is defin ed in Section 3 .3 . 

This pap e r improv es on these pre vious results by 
de veloping a significantly faster forward algorithm 
for determining escap e time that neith e r explicitly 
defin es regions nor follows all point iteration possi­
bili ties. 

3 Background 

Und erstanding an escap e tim e visualization requires 
som e knowl edge of the und e rlying dynamical system 
on which it operates . Although this work focus es on 
lin ear fra c tals , this sec tion begins with a brief re­
vie w of the study of quadratic fra c tal s, which pro­
duced the first incarnation of escap e time . (More 
de tail ed reviews of this study can be found in [Peit­
gen & Ri chter , 1986 ; Peitgen , 1988].) . Summaries 
of iterated function system s and recurr ent iterated 
function systems follow, which are greatly condensed 
from [Hutchinson , 1981] and [Barnsley, 1989], re­
spectiv ely . 

3.1 Quadratic Dynamics 

Th e dynamics of all quadrati c fun c tion s in th e com­
pl ex plan e can be expl o r ed by inv es ti gatin g a sin gle 
famil y of compl ex quadrat ic fun c ti o ns f e : (C -+ <C 
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defined as 
(1 ) 

parameterized by a single constant c E <C [Julia , 
1918]. 

The dynamics of these functions becom e evid ent 
by examining the resulting orbit of their ite ration on 
an initial point . Given an initial point Zo E <C and 
a function f e, the points in the orbit (ZI, Z2 , . .. ) are 
defined recurrently through iteration as 

For each function f e, there is always a non-empty 
set of initial points Zo whose orbits diverge. Such 
points are called the basin of attraction of infinity, 
whereas their complement is called the filled-in Julia 
set of fe, denoted K e. Although interesting dynam­
ics occur in the filled-in Julia set, its complement 
(the basin of attraction of infinity) is more useful for 
mathematical analysis [Douady & Hubbard, 1982] 
and has subsequently been the primary focus of vi­
sualization algorithms . 

For the sake of computation , infinity is often ap­
proxim ated by an infinity circle, a circle cen tered at 
the origin of radius sufficiently large such that th e 
orbit of any initial point that travels outside this 
circle is known a priori to be divergent. 

The level set method classifi ed initial points with di­
vergent orbits by counting the numb er of iteration s 
required to escape the infinity circle . The contin­
uous potential method smoothly interpolat ed the dis­
crete steps of the level set method , by examining th e 
magnitude of the first point in the orbit to escap e 
the infinity circle [Peitgen & Richte r , 1986 ; Peitgen , 
1988]. 

3.2 Iterated Function Systems 

Althou?h popularized in [Barnsley & Demko , 1985] 
for thelT natural mod eling potential, ite rated func­
tion syste ms had previously app eared in variou s 
forms [Hutchinson , 1981 ; Williams, 1971]. The fol­
lowing follows the form of [Hutchinson , 1981]. 

This pap e r focus es on two-dimensional compute r 
graphics , and the domain of its definitions is sp ecif­
ically \R 2 although th ey extend to \R n or any other 
complete topological space . The coll ection of all sub­
sets of a space is called the power set of the space, de­
noted PC) , and will be used to defin e the domain and 
range of transformations that pointwise map sets to 
sets . 

A function T : \R 2 -+ \R 2 is Lipschitz if and only if 
there exists som e positive value). such that 

IIT(x) - T(y)11 ~ ).llx - yll (2) 

for all x , y E \R 2
• Th e minimum value). satisfying 

(2) is known as the Lipschitz constant of T , denoted 
Lip T. Th e fun c tion T is contractive if and only if 
Lip T < 1. 
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An it e rated function syste m T = {Ti } ~ I consists 
of a finit e set of contractiv e affin e maps 1 Ti : 1R 2 -+ 

1R2. In computer graphics , such affine maps are typi­
cally represented by 3 x 3 homoge neous tra ns forma­
tion matrices [Fole y et al., 199 0] . 

Th e Hutchinson operator, T : P( IR 2) -+ P( R 2) of an 
IFS T 

N 

T(A) = U Ti(A) . 
i=l 

defin es the appli cation of th e IFS on a give n set A C 
1R2. 

Each IFS T desc rib es a non-e mpty compact set 
A C 1R2, called th e attractor of T , which is uniqu ely 
in varian t und e r t he H u tchin so n op e ra t o r 

A = T(A) (3) 

and is the limit se t of rep eated applicatio n of th e 
Hutchin son ope rator 

A = Iim r i(B) 
.-+ 00 

wh er e T Oi is th e i-fold compos itio n of T an d BC 1R2 
is any non- empty bound e d set . 

The inve rse of an IFS T = {Ti } ~ I co nsis t s of a 
se t of dilation m a p s T- 1 = {Ti-

I } ~ I ' If A is th e 
attrac t o r of T , th e n on e also has that 

A (4) 
i =1 

althou g h unlike (3) , A is not a uniqu e solutio n to (4) . 
If an IF S T contain s a proj ec ti o n , th e n its inv erse is 
und efin ed . 

An IF S T satis fi es th e open set property if a nd onl y 
if th e re exi s t s an op en set 0 C 1R2 such th at A C (5 
(wh e r e (5 d enot es th e clos ur e of 0) and 

N n Ti (O ) = 0. 
I =} 

Th e effi cie n c y of IFS algorithm s ge nerally de pe nd s 
on three fac tors: th e numb e r of th e IF S ma ps N, 
th eir Lip schit z co n s t a nts and wh e th e r th e IFS satis­
fi es th e op e n set pro p e r ty . 

3.3 R ecurrent Ite rated Function Systems 

More co rn ple x and less s tri c tl y self- s imil a r s ha p es 
result fr o m res tri ct in g th e a pplicati o n of I FS tr a n s­
form a tio ns by so m e mechanis m . Suc h m ec h a nis m s 
have app ear ed in diffe r ent form s and with va riou s 
nam es, and with subtl e diffe re n ces that t his sec tion 

1 Some defi ni tio ns of IFS inc lude a correspondi ng set o f pro ba­
bilit ies for measure theoret ic res ul ts [Hu tchinson , 198 1; Barnsley 
& Demko, 1985]. T he use of the IFS as a geometric representa­
tion in computer graphics requ ires no measure t heory, a nd th is 
p a p e r avoids its use. 

aspir es to explain . Although th e mo s t recent wo rk 
on escap e tim e for lin e ar fractals [Prusinkie wicz & 
Ha mmel , 1992] used the language-res trict e d it e r­
a ted fun c ti o n sys t e m , thi s work ins t ead utili zes the 
recurre nt ite rat ed fun c tion syste m [Ba rnsl ey, 1989 ] 
(id e ntical to the contro ll ed iterat ed fun c tion sys t e m 
[Prusinkie wicz & Lind e nmayer , 199 0]) . 

A recurre nt iterat e d fun c tion sys t em con sis t s of 
an IFS T = {Ti }~I as well as a control digraph C 
consisting of N verti ces corres ponding to th e IFS 
maps , and direc t ed edg es, denoted by th e ord e r ed 
pa ir (i, j) . Th e notation (i , j) E C indicat es that di­
graph C contains a dir ec t ed edge from vert e x i to 
verte x j , and implies th a t transformation T) may be 
appli ed dir ec tly aft e r transform atio n Ti . 

A conve ni ent mechanis m for describin~ th e dy­
na mics of an RI F S replaces the se t A C IR with t he 
set-v ector A = (AI ' A2, .. . , AN) C (IR 2)N . Th e ele­
me nts of th e set vector kee p points di s tinct to main ­
tain prop e r tran sformati o n comp osit io n , in th a t a 
point in th e set-compon ent Ai is th e res ult of a ppli­
cation of th e tra n sform atio n Ti . 

Th e Hutc h ins on ope r a tor T P(( 1R 2)N) 
P(( IR 2)N) of an RIFS takes se t-vec t o rs to se t-v ec t o rs 
as 

wh e re 

Tj (A ) = U T) (A ;) . 
( i ,J) EG 

Appli ca ti o n of th e rec urre nt Hutc hin so n op e r ato r 
appli es eac h m a p T j onl y to th e res ults of a prev io u s 
ma p Ti , if and only if th e ed ge (i, j ) E C . 

As befor e, each RIF S T describ es a non-e m p ty 
compac t set A C 1R2, call ed th e attracto r of T. T hi s 
a t t r act or is deco mposed into possibly ove rl a p p in g 
compon e nts of t he set vec t o r A = (A 1 , A 2 , . .. ,A N ) 

such that A = U~ I A •. T hi s se t -vecto r is uniqu e ly 
inva ri a nt und e r th e rec urr e nt Hut chin so n op e r ato r 

A = T (A ) 

and is also t h e limit set of rep eated a pplica ti o n of 
the rec urre nt Hut chin so n operato r 

A = lim T O'(B) 
,-+ 00 

whe re B C (1R2 )N is a ny set-vec t o r con sis ting of no n­
empty bo und e d comp o n e n ts Bi C 1R2. 

Th e RI FS repres ent at io n is equiv a le nt to th e 
reg ul a r la ng u age-res tri cted IFS representatio n of 
[Pru sinkie wi cz & Ha mm e l , 199 2]). 

A dir ec t ed gra ph is strongly connec ted if and onl y 
if t her e exis t s a dir ec t e d pa th of ed ges betwee n an y 
two ver t ices. A dir ec t e d gra ph is weakly co nnected 
if and onl y if t he digraph is not s tr o n g ly co nn ec t e d 
but th e re st ill exis t s a pa th of edg es be t wee n any two 
ver t ices. A d irected grap h is disconnected if it is ne i­
t he r st ro ng ly conn ected no r weakl y con n ected. W e 
will call an RI FS st r o n g ly co nn ected, wea kl y co n­
nected , or disco nn ec t ed based on th e to pology of 
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its contro l digraph. (The hie rarchical IFS of [Peit­
gen et al. , 1992] is equ ivalent to an RIFS, although 
the connotation of the term "hierarchical" implies a 
weakly-connected tree structure.) 

The inverse of an RIFS (7,0) is found by inve rt­
ing its transform at ions as well as reversing the di­
rected edges in the control graph 0 such that if and 
only if (i, j) E 0 the n (j, i) EO- I . 

An RIFS (7,0) with attractor specified by the set 
vector A consisting of components A j C 1R2 satisfies 
the open set property if and on ly if there exists a set­
vector of open sets 0 consisting of components OJ C 
1R2 such that Aj C OJ and 

n TJ(Oj) = 0. 
(' ,J)EG 

The efficiency of RIFS algorithms generally de­
pe nds on the same three facto rs as the IFS case: th e 
numb er of the RIFS maps N, their Lipschitz con­
s tants and wh e th e r the RIFS satisfies the open set 
property. In addition , some algorithms requir e th e 
control digraph to be strongly connected. This pa­
per makes no such co nst raint on the RIFS control 
digraph topology. 

4 Escape Time 

The discrete form of th e esca p e-time classification 
co u n ts the num b e r of it e rations for a poin t to iter­
ate ou tside th e infi ni ty circle. The con tin uous form 
smoothly interpolates the areas bet ween the discrete 
escape-time boundari es based on the location of the 
point that escap es the infinity circle. 

4.1 Discrete E scape Time 

De termining the dis c rete esca p e time (the Le ve l Set 
Method of [Peitge n , 1988 ]) is simp le for the comp lex 
quadratic case. 

D efini tion 4.1 (Quadratic discrete escape time) 
Given the function f e (z) = z2 + c, a disk D R centered at 
the origin and of radius R sufficient such that th e fill ed­
in Julia set K c C D R, th en th e discrete escape time 
DE: <C --+ ::z is given by 

DE( z) nun {n : 11 f :n(z) 11 :::: R} (5) 

+ DE(fc(z)) 
o 

if 11 z 11 < R , (6) 
otherwise. 

Equation (5) d efin es the discre te escape tim e as 
the first iteration that takes the orbit outside the 
disk , whereas (6) rec urr e ntly defines an equivalent. 
The form e r is eas ie r to und e rs tand , but th e latt e r 
will be mor e useful in the development of escape 
tim e for lin ea r fra c t als. 
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An important connection 
quadratic fractaIs was drawn 
inverting Equation (1) into 

be tween linear and 
in [Peitgen, 1988] by 

yielding a form analogous to an iterated function 
system on the complex plane. 

The escape-time classification was originally de­
fined for (1) and Equation (1) is related to (7) by 
inversion. By this analogy , inversion of an IFS is 
required to compute its escape-time classification. 

Prusinkiewicz and Hammel [1 992] discuss a gen­
eralizat ion of the results presented by Prusinkie­
wicz and Sandness [1988] in defining the escape-time 
function for language restricted lin ear fractals . 

The following was proven for an IFS in 
[Pru sinkiewicz & Sandness, 1988] and for an LRIFS 
in [Prusinkiewicz & Hammel , 1992] . Given an IFS 
7 (RI FS (7,0) for any poin t :c E A there ex­
ists at least one sequence of inve rs e tranformations 
T.~1 E 7- 1 (allow ed by 0-1) such that as n --+ 00 

T- 1 
0 ... 0 T- 1 

0 T- 1 (:c) 
In 12 t1 

remains bounded . In contrast, every sequence of in­
verse mappings (allowed by 0- 1

) applied to a point 
:c ft A will eventually send it to infinity as n --+ 00 . 

This theorem suggests the following d efinition of a 
discrete escape-tim e function , based on the one given 
by Prusinkiewicz and Sandness [1988]. 

D efinition 4.2 (IFS discrete escape time) Given 
an IFS 7 with attractor A, let DR be a disk centered 
about th e origin2 of radius R sufficiently large such that 

(8) 

Then the discrete escape time is given by the function 
DE: 1R2 --+ ::z which is defined recurrently as 

DE(:c) = { o 
if:c E D R , 

otherwise . 

The discrete escape-tim e function is the maximum 
numb e r of inverse transformations T j-

1 E 7- 1 nec­
essary to iterate :c to a point outside DR' 

The condition (8) insures the infinity circle is large 
enough that points will not exit it at one itera­
tion and re-enter on the next . Equation (8) im­
pli es A E DR but the opposite is not true in that 
for some attractors there can be a disk Dr of ra­
dius r < R such that A C Dr but 7(Dr ) et. Dr. In 
short , the smallest disk that contains its Hutchinson­
operator image is not necessa rily the smallest disk 
that contains the IFS attractor. Finding the smallest 

2The infinity circle is cente red about the origin as a matter 
of notational convenience. The definitions o f this and all of the 
fo ll owing escape-time methods can be easi ly ex t ended to use an 
in finity c ircle centered about any location . 
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disk that contains its images, as well as the smallest 
disk that contains an attracto r is a diffi c ult prob­
lem , although som e partia l solutions have rec ently 
beco m e available [Hart & DeFanti, 1991 ; Hepting , 
1991 ; Canright , 1994; Dubu c & Hamzaoui, 1994]. 

Wh e n N > 1, imple m e ntat ion of Definition 4.2 
parses through an N-ary tree, pruning branch es 
wh en e ve r DE re turn s 0 [H ep ting et al. , 19 9 1]. 

Definition 4.3 (RIFS discrete escape time) 
Given an RIFS (7 , G) with attractor A , let D R be a disk 
centered about th e origin of radius R sufficiently large 
such that T;(D R ) C DR (ii i). Then the discrete escape 
tim e is given by 

DE(x) = max DE;(x) 
;=I... N 

where the fun ctions DE; : IR 2 -+ IZ are defined recur­
rentlyas 

{
I + max DE;(T;-l (x» 

(.,;) E G 
o oth erwise. 

In anticipation of Section 5 which desc ribes th e 
escape buffe r , the followin g d efinition shows alt e r­
nativ ely that one may map t he dis k D R inst ead of 
inve rse-mappin g the point x. 

Definition 4.4 (Forward discr e te escape time) 
Given 7 , A and D R as in Definition 4.2. Th en the dis­
crete escape time is given by D E( x, 1) wh ere 1 is the 
unitytransf ormation I (x) = x (iix). Th e in teger-valu ed 
DE(x , T) now operates on both a point x E 1R 2 alld a 
homogen eous 3 x 3 transformation m atrix T , and is re­
curren tly defined 

{
I + max D E(x, T· T;) 

DE(x , T) = .=IN 0 
if x E T(DR) ' 

otherwis e. 

Definition s 4.2 and 4.4 are equivalent becaus e de­
termining if a po int is in th e image of a reg ion x E 
T(D R) is equ ivale nt to dete rmining if th e inv e rs e im­
age of a point is in the original reg io n T- 1 (x) E DR' 
In practice , it is m o re effi c ie n t to inve rse map points 
than to for ward map the infinity circl e becau se the 
image of th e infinity ci rcl e und e r an affi nity can be 
an arbitrary ellip se, which can be diffi c ul t to man age 
and sca n co nv ert. 

As Definition 4 .2 was ext e nd ed to Defini ­
tion 4.3, Definiti o n 4.4 exte nd s to the RIFS case 
[Prusinkie wicz & Hammel , 1992 ]. 

4.2 Continuous Escape Time 

A continu o us escape-t im e fun ct io n requir es a m eans 
to inte rp olate smoothly be twee n the boundaries of 
the disc re te escape-time leve l sets. Such a m et hod 
was prese nted for the IF S case in [H e pting et al. , 

1991], and for the LRIFS case m [Prusinkie wicz & 
Hamm el , 1992]. 

Th e following was originally de riv ed in [H e ptin g 
et al., 199 1], alth o ugh is presented her e in the no­
tation defined in [Prusinkie wicz & Ha mmel , 1992]. 
Give n an (R)IFS 7 and the radius R of the infinit y 
circl e, inte rpolatio n be twee n the bound a ri es of dis­
crete escape-tim e le vel sets is given by th e residu al 
function res; : D R \ T;(DR) -+ [0 , 1) d efin e d 

res;( x) 
log R - log 11 x 11 

log 11 T;-I(X) 11 -log 11 x 11 ' 

10g(1I X 11 2 / R2) 

(9) 

(10) 

for each map T;-l of th e invert ed IFS. Equ atio n (10 ) 
follow s from (9) after a few simple log a rithmic id e n­
tities, and is less exp ensive and more robust to co m ­
pu te . We defin e the resid u e of an IFS as 

res(x) = max res;(x ) . 
I=l. .. N 

The resid u e of an RIFS is mor e complicated , and is 
denote d through the individu a l res; fun c ti o ns in Sec­
tion 5.2. The res idu e components and the res ultin g 
maximum are demo n st rated on an IFS in Figure 1. 

Figure 1: The left three images plot t he res;O fun c­
tion for i = 1, 2 an d 3 respect ively, for Sie rpin s ki 's 
gask et. The image on the rig ht plot s th e resulting 
resO fun c tion. 

Th e continu o us escap e time consist s of an in te­
gral disc re te escape t im e plus a fr actio n a l residu e. 
Co mputation of co ntinuou s escap e tim e co nsists of 
compu ting th e discrete escape tim e, and de termin­
ing the residu a l of the point jus t befor e it esca p es 
the infinity circle. 

Definition 4.5 (Continuous escape-time) Given 
an IFS 7 with attractor A , let D R be a disk centered 
about th e origin of radius R sufficiently large such that 
7(D R) C DR' Th en th e continuous escape time is given 
by C E( x) whe7'e th e function C E : IR 2 -+ IR is defin ed 
recunently as 

GE(x) ~ { 

1 + max CE(T;-l (x» 
t=l. . . N 

if x E D R,T;-I(X) E DR 
res(x) if x E D R,T;-I (X) rf. DR 

o otherwise. 

(3i) 
(iii) 

A sim il a r definition can be con st ru cted for th e 
RIFS case [Pru s ink iewicz & Hamm el , 1992]. 
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5 The Escape Buffer 

The escape buffer is a new algorithm for comput­
ing the continuous escape time classification for the 
comple ment of a linear fracta!. It uses height fields , 
as defin ed in Section 5.1 to support a forward def­
inition of escape tim e in Section 5.2. Section 5.3 
de tails the esc ap e buffe r me thod with pseudocode 
algorithms . 

5.1 Height Fields 

Let B C IR2 X IR be a height field such that (x , zd E B 
impli es there exists no other point (x , Z2) E B such 
that z ) # Z2' Defin e th e proj ec tion '/r: IR 2 x IR .... jR 2 
as 

'/r(x , z) = x 

such that '/r(B) flatt e ns th e he ight fi eld B. The height 
fi e ld evaluat es like a fun ct ion 3 B : IR 2 .... IR as 

B(x ) = { ~ if (x , z) E B , 
ot h e rwise. 

Furth e rmore, define th e maximum of two height 
fi e ld s B I , B2 as 

{(x , z) : x E '/r(Bd U '/r(B2) ' 

z = max(B)(x) , B2(X)) } . 

Th e maximum op erator pe rfo rm s the role of a z­
buffe r [Fol ey et al. , 1990) on height fi eld s. 

5.2 D efinition 

Th e previous definiti on of height fi elds provid es th e 
final ingredient necess ary to defin e a forward me thod 
for de t e rmining cont inuou s esc ap e time . 

D efinition 5.6 (Forward continuous escape-time) 
Given an IFS T with attractor A , let D R be a disk cen­
tered about the origin of radius R sufficiently large such 
that T (DR) C DR. Defin e a n ew three-dimensional 
IFS, T' = {T: } ~I ' of maps T ,' : IR3 -+ IR3 constructed 
F om T; as demonstrated by th e homogeneous transfor­
mation matrices 

b , 
d; 
o 

b; 
d; 
o 
o 

o 
o 
1 
o 

such that T: operates as T; in th e first two dimensions, 
but translates by 1 in the third. Furthermore, let a se­
quen ce of height fields Bn C IR2 X IR be defined recurrently 
as 

Ba {(x, z): x E DR,z = res(x)}, 

max T;(Bn_d 
'=l. .. N 

(11 ) 

3 We have used the term inology of a he ig ht field , which is more 
familiar In the d omain of computer graphi cs, to re p lace the ter­
mino logy of measures . In terms o f measures, 71"(8) is the support 
a nd 8(X ) is t he measure . 
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Th en the continuous escape time is given by th e fun ction 
GE: IR n .... IR 

GE(x) max Bn(x) . 
n=O ... oo 

Th e sequ ence of height fi eld s Bn refin es th e IFS 
attracto r as n inc r eases , (in a mann er simil ar to 
pre vious methods for approximating IFS attractors 
[Dubu c & Elqortobi , 1990 ; Hepting et al., 1991 ; Hart , 
1992)) . For example , Ba co ntain s the points whose 
continuous escape tim e is in [0 , 1) , and in general Bn 
contains the points whose continuous escape falls be­
tween nand n+ 1 inclusive . These height fields form 
the escape buffer, and maximizes th e N individu a l 
esc ape-time co mpon ents in (11) to produce th e con­
tinuous escape-time classification in th e same way 
that a z- buffer maximizes the z co mponent of geom­
etry to produce correc t visibl e-s urface classification 
[Fol ey et al., 1990) . 

Figure 2: The first two it e ration s of the esca pe buffe r 
for Sierpinski 's gaske t. T he heig ht field Ba is com­
puted using t he residual fun ct io~ wh ereas B) is th e 
maximum of T;(Bo) , T~(Bo) and T~ (Bo). 

We can also defin e th e forward continuous escap e 
tim e on an RIFS , alt h ough dist in ct escap es buffe r 
seq u ences Bi,n must be maintain ed for each RIFS 
map Ti . 

D efinition 5.7 (Forward RIFS cont. escape time) 
Given an R I FS (T , G) with attra ctor A , let D R be a disk 
centered about the origin of radius R suffi ciently large 
such that T (D R) CDR. Let th e transformations T' be 
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the height-field ext ensions of T as prescribed in Defini­
tion 5.6, and let N sequences of h eight fi elds Bn C JR 2 x]R 
be defined recurrently as 

{ ( x, z) : a: E D R, z = res j ( a: ) }, 

max T}(Bin _ I ). 
(i,j)EG ' 

Th en the continuous escape time is given by the function 
C E : JR 2 ~ JR as 

CE(x) max max B} ,n' 
n-+ oo J=l ... N 

The separate escape buffe r sequences B} ,n act as 
th e individual elements of B used to define the at­
tractor of an IFS . At each lev el , the height field 
maXj=I. .. N Bj,n contains the points whose continuous 
escape tim e is at least between It and n+1 inclu si ve . 
These N height fields collectively refin e the attractor 
as It Illcreases . 

5.3 The Escape Buffer Algorithms 

The escap e buffer uses the IFS to map image seg­
me nts , which is analogous to the blo ck coding IFS 
techniques of [Jacquin , 1992] . In fac t , the escape 
buffer can operate solely in scre e n coo rdinates. Let 
(R)IFS maps T defin ed on JR2 describ e the attractor 
A C JR 2. The window-to-view port map W : JR2 -+ ]R2 
maps world coo rdinates to screen coo rdinates [Fo­
ley et al. , 1990]. The screen-space (R)IFS maps 
S = {Si }~I defined 

Si = W· Ti . W- I 

describes an attractor A(S) equ ivale nt to the 
mapped attractor WeAl from the original (R)IFS 
maps T. 

O. initializ e E(a:) = 0 (\la:) 
1. for every pixel a: 
2. E(a:) = res(a:) 
3. for iterations k = 1 ... n 
4. for every pix el a: 
5. for eve ry Si l E S-I 
6. E(x) = max{E(x) , E(Sil (x)) + 1} 

Figure 3: Escape buffer algorithm for an IFS. 

Definition 5.6 suggests th e algorithm shown III 

Figure 3. Lines 1-2 comput e th e res idual wh ereas 
lin es 3-6 use a forward met hod to map the res idual 
to interpo late the boundaries of the discrete escap e 
tim e level sets. 

The algorithm computes continuou s esc ap e time 
ite ratively in place. Any reade r who has solved the 

. . 

radiosity equation will recognize this similarity be­
tween the escape buffer iteration and Gauss-Seidel 
iteration [Foley et al., 1990], which also operates in 
place causing some sections to converge more rapidly 
than others depending on the order of processing . 

As with any iterative method, detecting conver­
gence is not trivial. Let A be the maximum Lipschitz 
constant of the maps T . Th e n after the n iterations 
specified by line 3, the escape buffer will refin e the 
infinity circle DR to a precision of An R . Hence for a 
desired precision p, the maximum num b e r of itera­
tions necessary is 

n = rlOg pi Rl 
log A 

(12) 

Similar such equations appeared in [Reu ter , 1987 ; 
Hepting et al., 1991 ; Hart , 1992] and were us ed to 
determine the necessary prec ision to approximate an 
attractor. 

One added constraint of the escape-buffer method 
not shared by previous regional , tree- traversal and 
grid methods , is that the escape buffe r must contain 
the infinity circle. 

Organizing JR2 into region s us ing the methods de­
scribed in [Prusinki ewicz & Sandness, 1988] can sim­
ilarly inc rease th e efficiency of the escape buffe r by 
determining, in a point-by-point mann e r , which one 
of th e N maps needs to be applied to dete rmin e th e 
escap e time. 

O. initialize Ei(a:) = 0 (\la:, i) 
1. for i = 1 . . . N 
2. for eve ry pixel a: 
3. Ei(a:) = resi (a:) 
4. for iterations k = 1 .. . It 
5. for i = 1 . .. N 
6. for eve ry pixel a: 
7. for eve ry st E S-I such that (i, j) E G 

8. Ej(x) = max{Ej(x) , Ei(St(a:)) + I} 
9. for every pixel a: 
10. E(a:) = maXi=L N Ei(a:) 

Figure 4: Escape buffe r algorithm for an RIFS . 

For the RIFS case, Definition 5.7 suggests the al­
gorithm shown in Figure 4. This algorithm is ex­
tended from th e IFS escape buffer on ly in that a 
separat e escape buffe r is maintain ed for each map , 
co rres p onding to each component of the set-vector 
notation used in th e definition of the RIFS rep resen­
tation. Lines 9- 10 maximiz e these distinct escap e 
buffers into the final escape tim e classi fi ca tion of the 
RIFS attractor complem ent. 

4
,···-
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6 Results 

6.1 Implementation 

One implementation of the escape buffer works en­
tirely in screen coo rd i nat es, and uses fixed-poin t 
arithmetic (eight bits fractional) to tak e advantage 
of th e high er speed of ep U in teger pe rform ance. 

Althou gh the algo rithm run s fast es t when the es­
cape buffer is he ld in m emory with th e final results 
plotted aft e r th e algo ri t hm 's co mpl e tion , plotting 
the pixels of the esca p e buffe r as th ey change yields 
a fas cinating and edu cat ion a l animation of the algo­
rithm . The escap e buffe r is by far more fun to watch 
than any prev ious escape time algorithm . 

The res idual function is clamped such t hat the 
und efin ed points outside the disk DR are set to zero 
wh er eas und efin ed points in th e region T(D R ) are 
set to one. As the escap e buffe r ite rat es, pixels in­
tersecting the attractor become noisy. After th e final 
ite ration , co loring pixe ls whose escape time exceeds 
so m e threshold yie ld s an approximation of the at­
tractor. 

6.2 Tests 

Tests of different impl e m entation s, weighing th e fac­
tors mentio n ed above giv e n the following results . A 
sam pI e of each test attractor is given in Figu re 5. 
Sierpinski's gasket, whose IFS co ns ist s of three maps 
whi ch scale uniformly by 0. 5 but trans late in differ­
ent direc tions , is connected and satisfies the open-se t 
property. The dis co nn ected gasket, whos e IFS map s 
scale uniformly by 0.1, is disconnected but still satis­
fi es the open-set property. Th e overlapping gasket 4

, 

whose IF S maps scale unifo rmly by 0.9, is co nn ected 
but does not satis fy the ope n-set property. 

Figure 5: Test cases: Sierpinski's gas ket (left) , dis­
co nn ec ted gas ket (middl e ) and ove rlapping gasket 
(righ t). 

The smas hed gasket, shown in Figur e 7, has an 
IFS similar to th e Sie rpin s ki gasket's augmented by 
a fourth transformation that sca les by 0.5 but do es 
not translate. This IFS do es not satisfy the open­
set condi tion. Its escape-t im e pe rformance und er 
the various met hod s is show n in Figure 6. 

4 The ove rlapping gasket is a pathological e xample. Its image 
in figure 5 is approximated by the same numbe r o f iterations as 
the o the rs , but is not enough in thIs case to adequately converge 
to the attractor, as could be predi c t ed by (12) . 

: " \ ::, 

R I n I Tree T raversaI I G rid I Escape Buffe r 
Sie rpinski's Gasket (Lip Ti - 0.5) 

1 7 78 .52 48.2 7 28.19 
2 8 86.53 51.39 30 .5 1 
4 8 91.35 53 .84 34.56 
8 7 90.00 54.23 35.43 

Disconnected Gas ket (LIp Ti - 0.1) 
1 2 44.30 44.02 29.34 
2 2 46.84 49 .77 30.82 
4 2 56.52 50.98 32.11 
8 2 50.91 48 .90 33.05 

Ove rlapp in g Gas ke t (L Ip Ti - 0.9) 
1 7 213.78 40.27 228.28 
2 7 462 .88 50.32 253.54 
4 7 810.64 52.80 265.15 
8 7 1166.46 55.07 270 .50 

Smash ed Gas ket (LIp T. - 0.5, N - 4) 
118.81 164 .5 0 1 34.82 
172 .5 1 68.27 45.65 
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Figure 6: Execution tim es for Sierpinski's gasket 
tests , wh e re R is the infinity circl e radius and n is 
the maximum numb e r of ite rations. 

Figure 7: The smashed gasket whose IFS has an 
extra map . 

4
'······ 
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6.3 Discussion 

Recalling from Section 3, the factors affecting lin ear 
fractal efficiency are: (1) the number of transforma­
tions N, (2) their Lipschitz constants and (3) the 
open-set prop erty . 

Each of the escape methods is similarly affected 
by factor 2. Figure 6 shows that for a Lipschitz 
constant of 0.5, the escape buffer is clearly faster 
than its competitors. For a Lipschitz constant of 
0.1 the escape- buffer's performance is excellen t. For 
a Lipschitz constant of 0.9, the coherence which is 
exploited by the escape-buffer becomes more of a 
hindrance than a help. In this case, the grid method 
wins, but the escape buffer is still a reasonable choice 
over the tree-traversal method. A heuristic based on 
the scaling ratio would be useful to automatically se­
lect between the grid method and the escape buffer. 

An (R)IFS that does not satisfy factor 3 adversely 
affects both the regional method of [Prusinkiewicz 
& Sandness, 1988] and the tree-traversal method of 
[Hepting et al., 1991], but does not impact the per­
formance of the escape buffer. 

Factor 3 provides an easy me thod for determin­
ing the regions for escape time (every example in 
[Prusinkiewicz & Sand ness , 1988] satisfies the open 
set prop e rty). Such reg ions are much more difficult 
to determine for an (R)IFS not satisfying th e open­
set property. 

The tree-traversal method beco mes exponential 
wherever the (R)IFS images of the infinity circle 
overlap. Whil e satisfying th e open-set condition cer­
tainly does not guarantee that the infinity circle 's 
images will not overlap , not satisfying factor 3 do es 
guarantee the infinity circle's images will overlap, 
and in general, tree- traversal beco mes expon ential 
more often for attractors whose (R)IFS fails the open 
set condition. 

For the escape buffe r , Figure 6 shows the execu­
tion times for the smash ed gasket, whose IFS maps 
have the same Lipschitz constant as the Sierpinski's 
gasket's IFS maps, but otherwise diffe rs in two ways: 
the smashed gaske t's IFS consists of four maps , 
and the smashed gasket does not satisfy th e open 
set prop erty. Th e extra map should increase the 
smashed gasket execution time, under all me thods , 
by 33% over their corresponding Sierpinski's gasket 
times , and this is nearly the case with both the grid 
method and the escape buffer. However, th e tree­
traversal me thod increases not by 33%, bu t by 51 % 
for R = ] and 91 % for R = 8. Th e tree-traversal 
method's lag is due to its becoming exponential in a 
larger portion of the image . 

7 Conclusion 

A critical review of pre vious algorithms for com­
puting approximations to both quadratic and lin ea r 
fractals has provid ed new insights into how more 
general and efficient algorithms may be design ed 

" ,-' . ~ 
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specifically for linear fractals . The improved speed 
of the escape buffer makes linear fractal inv es tiga­
tion more interactive. 

7.1 Future Research 

Many interesting problems regarding the esc ap e­
time function for linear fractals remain open. One 
such problem is extending the escape buffer to han­
dle cases where it does not contain the infinity circle. 

Tracking which transformations have bee n applied 
during escape-time computation hints at a new visu­
alization method (vis-a-vis the index maps discussed 
in [Hepting et al., 1991]). Through such index maps, 
it may be possible to gain further understanding 
abou t the dyn amics associated with linear fractals. 

If a similar forward algorithm can be constructed 
around distance instead of escape time, the result 
would greatly increase the efficiency of computing 
the distance transform of linear fractals , and perhaps 
of general shapes. 
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Plate 1: The output of the escape buffer on 
Sie rpinski's gasket. The escape time classifi ­
cat ion is augmented with index maps, as de­
sc rib ed ill [Ilepting et al., 1991], which one can 
use to read the address of points in a similar 
manner to th e exte rnal allgles of qlladratic Ju­
liil set!" [Pei 1gen, 1988). 

Plat.e Ill : C-Eye-Land. The Cl "eye" logo 
is In ode led as an open-set weakly-connected 
IUFS of 89 a.mne maps "sing techniques de­
~cribed in [Ilart 1994). The colo r boundaries 
indicate integer escape time increments which 
~re continllol l!"ly interpolated. 

Plate 11 : The escape buffer rend er ing of a clas­
~ i c nIPs att racto r call ed the fra c tal pound 
~lbn. Tire fOll r co rn er images rep r ese nt the 
], c ii-!,],t fi eld co mp onents, which arc maximized 
to create tir e final result displayed in th e cen­
I c r. 

1)lilt.e IV : A sce ne mod eled using the escape 
tim e c l a~sification as a heig ht fi eld. 
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