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Abstract 
Adv,Ulces in computer hardware and interface 
technologies have led to a corresponding increase in 
research into highly interactive Human-Computer 
Interfaces. Development tools that create these 
interfaces need to be tlexible, general ,Uld produce easily 
modifiable objects. They also should convey important 
graphic design principles to the application designer. 
Existing design tools largely neglect integrating the 
initial selection of representation with the development 
of the presentation. The Automatic Graphical Analog 
Presentation Environment has been designed to produce 
highly interactive analogical interfaces. A representation 
is constructively generated from a catalog of primitives 
,Uld the dynrunics of the interface are matched to a 
fonnalized description of the user's task. The resulting 
composite is then evaluated for its cognitive 
effectiveness ,md efficiency. Several t<L<;k domains are 
identified as initial testbeds for bench marking the 
implementation of the AGAPE architecture ,Uld the 
effectiveness of the produced displays. 
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Introduction 
The advent of Direct Manipulation (DM) and 

visualization interface designs have led to a 
tremendous advance in the sophistication and 
complexity of interface development. Command-line 
or character-menu driven interfaces are no longer 
sufficient to convey the complexity of infonnation ,Uld 
constraints inherent in m,my applications. Similarly, 
resecu'ch into Representational Aiding has shown that 
the fonn in which a problem is represented C,Ul have a 
I,u'ge impact on the user's perform,mce of a problem­
solving t<lsk. (e.g. [11]; [8]; [17]; [4]). 

The effect of representation on task 
perfonncmce is particularly import,Ult for problem 
domains which require operator-interaction to 
maintain. monitor. ,md control a physical system ,Uld 

.... . ~ 

for interfaces that present infonnation which is t<tilored 
to support a problem-solving task. With a DM 
interface, a user is able to apply their domain expertise 
directly toward reaching operational goals rather than 
needing to transfonn that knowledge based on a 
particular syntax of communication [22]. 

For exrunple, airline reservation systems [4], 
job scheduling [10], and Diagnun Assisted Rewwning 
[7] all require a large degree of interactive 
manipulation on the part of the user for problem 
solving. In each of these cases a variety of tabul,u' 
presentations of the data could have been used by 
operators to perfonn a task. However, alternative 
representations of the srune infonnation c,m provide a 
clearer and more "usable" fonn of the problem. Such 
a represent<ttion would enh,mce the accuracy ,md 
performance of the user. 

The process of designing visualization-style 
interfaces that incorporate DM interaction techniques 
is a critical step for providing a user with effective 
problem solving tools. However , before ,m interface 
specification c,m be developed, the "context" (a 
specific representation that the particular interface will 
be based upon) must be established. For excunple. 
designing the presentation of an interface for a 
process-control monitoring system a number of 
alternative designs are possible. The detennination to 
use a particular representation, such as single-indicator 
dials and gauges (Figure 1), as opposed to ,m 
equivalent graphical analog (Figure 2) occurs before 
the interface present<ltion is developed. The 
traditional GUI in Figure 1 presents parruneters 
graphically ,Uld has virtual controls that c,m be 
m,Ulipulated directly. However, the underlying system 
dyncunics and constraints that relate the controls ,Uld 
displays are not conveyed. The display in Figure 2 
illustrates the difference between interface 
representations. The interactions between objects, the 
underlying process, and the operator's actions cu'e 
integrated into a single graphical display. For 
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ex,unple, the relationship between fuel-tlow ,md boiler 
level c,m be directly perceived from the interface 
objects. Moving the "fuel" weight to the left increases 
the rate of fuel-tlow ,md causes the boiler level to 
decrease and the turbine speed to increase. 

Generally, it is the designer's skill and 
experience in selecting the context for a problem 
which detennines the interface's effectiveness. This 
process of selection lacks quantitative models which 
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Figure 2. 

would support a consistent approach. Models like the 
Ecological Interface Design (ElD) [26] provide a 
fr,unework for designers to ask questions that reveal 
the "invisible" constraints ,md structures which need to 
be made "visible". However, there currently is no 
mech,mism for explaining how to make these visible 
or for qu,mtitatively comparing the effectiveness of a 
representation. 

The Automated Graphical Analog 
Presentation Envirorunent (AGAPE) is a User 
Interface Design Tool (UlDT) that will assist the 
interface developer with the selection of the initial 
representation. The initial representation will then be 
used to generate ,m interface specification that C<Ul 
then be prototyped. In order for AGAPE to design the 
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context representation for effective DM ,md 
visualization interfaces, a clear and concise model of 
the user's capabilities ,md limitations, ,md the problem 
task and dymunics is necessary. 

User Model and Cognitive Difficulty 
Lewis ([9], [10]) proposes ,m ecological 

model of Interactive Situations which characterize the 
"directness" <md "intuitiveness" of an interface. In ,m 
Interactive Situation, a situation theoretic frrunework 
[1], [6] is used to model a problem representation. ,md 
the interactions of a user are represented based on <Ul 

Ecological Information Processing (EIP) model. An 
interface design is treated as a situation that is defined 
in a recursive hierarchy as a typed relation between a 
set of typed objects. The user's actions are added ,L~ 

state LnUlsitions between related situations. Together 
these two models provide a fnunework for deri ving a 
useful measure of the cognitive difficulty associated 
with a particular interface design. 

From the user's perspec tive, the problem 
space for the task possesses a certain complexity. size. 
and shape. Applying situation decomposition 
methodology [9] to this structure c,m be expressed as a 
set of variables (relations) that discriminate states ,md 
constraints which govern ch,mges in the values of 
those v<u·iables. Through the selec tion of the 
appropriate interface representation the abstract 
problem can be conveyed to the user in a "cogni ti ve ly 
stre<unlined" marmer. The representation for the 
interface situation should match the actions ,md effec ts 
of the abstract problem ta~k with the user's 
attunements (expect~ltions about dyn,unics ,md 
structure) and their ability to discriminate states 
through the use of simple perceptual operations. 

The relations to which a user is attuned me 
detennined by the types of objects ,md re lations 
involved in the interface situation. For ex,unple. a 
situation involving physical objects could be 
constrained by attunements to exclude events in which 
two objects occupy the s,une location at the srune time. 
Additional constraints. c,m then be imposed on a 
situation that is already constrained by attunement. In 
the g,une of chess , for ex,unple. a naive player's 
attunements would preclude pieces ch,mging in color 
or shape, while the constraint preventing a knight from 
moving three squmes in a line would require 
instructions. 

It is convenient to think of user tasks as 
involving three problem spaces: 
I. An intuitive space. A.S. defined by the problem 

environment. S. and its attunements. A. 
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2. A fonnal problem space, C-S, defined by the task 
constraints, C, 

3. ~md ,m effective problem space, r-A-S, in which the 
intuitive space is augmented with the instructions, 
f. necessary to match the problem space of the 
task. 

If we presume constraint through attunement to be less 
difficult th,m constraint through instructions we can 
r~mk representations for task difficulty by ordering 
them according to the difficulty of their instructions. 
A simple me,L<;ure of this difficulty is provided by 
adopting the assumptions of Larkin ,md Simon [8], 
,md Casner[4]: the difficulty of using a rule is 
proportional to the perceptual! memorial operations 
needed to detennine its applicability. 

As a result, a variety of analogous interface 
representations may be matched to a particular 
abstracted problem description. The process of 
designing the interface representation for the problem 
then hecomes the selection of the least complex 
~malog. The expression: 

C-S == r-A-S' 
identifies the set of possible ,malogies for the problem 
space C-S. Analogs are constructed by choosing an 
appropriate situation, S'; identifying the intuitive 
prohlem space, A-S', that S' detennines; and 
composing the instructions, r, which are needed to 
make the spaces congruent. Although this process is 
conceptually simple, detennining the set of applicable 
attunements, A. ,md finding the simplest expression 
for the instructions, f, are difficult. 

Interface Support of Problem Task 
If prohlem-solving is modeled as traversal 

through the problem space, then the goal of the task is 
representable as a target-state. The specification of a 
p,u·ticular t,rrget-state, or equivalence class of states, is 
represented as a set of constraints which must be 
satisfied. The user's problem-solving ta<;k is thus 
represented as a list of additional constraints in the 
representation of the abstract problem. This. produces 
a unified representation of the problem space, ,md the 
prohlem task. 

The design of interfaces that support a 
pm·ticulm· problem space ,md t<L<;k um be divide into 
two styles r 16] . The first is the integration of 
infonnation in a presentation involving the use of 
primarily static graphics, such as charts, maps and 
diagnuns. There is a long and robust history of 
research into effective graphic design techniques for 
this type of presentation. (e.g . [3], [15), [16], [20] , 
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[21], [24]). In most cases this literature focuses on 
case studies which exmnine what makes a display 
"good" and then generalizes a collection of rules for 
use as guidelines in designing further graphics of the 
smne type. Despite extensive and detailed Iibr~rries of 
guidelines, it is generally still the expertise of the 
designer that is the telling factor in the creation of 
effective data visualizations and presentation graphics. 

The second category is oriented tow,rrd highly 
interactive problem-solving in which the displays tend 
to be more dynrunic and require a greater degree of 
DM. The objects ,md dynarnics in Highly-Interactive 
Graphic User Interface (HI-GUI) directly present the 
features and dynrunics of the underlying system. 

The design of interfaces to support these two 
categories needs to move beyond the paradigm of the 
Conventional GUI. Conventional GUIs tend to be 
composed of standard graphic objects like push­
buttons, scroll-bars and text-windows that m'e 
combined at the task-level into a user interface. The 
integration of infonnation in the display is only 
through pre-specified relations, such as the mapping 
between a scroll bar and movement through a text 
document, or through the addition of application­
specific objects and behaviors, which are expensive to 
produce and severely limited with respect to cross­
domain re-usability. The benefit of this type of 
interface lies in the relatively simple, and rapid, 
construction from a sl.mdard toolkit. The tr,msfer-of­
training benefits for the user arises from their 
fmnili,rrity with a small number of m,mipulatable 
,malogs which are consistent across applications. In 
other words, knowledge of push buttons and scrollb,U's 
is independent of knowledge of the applications in 
which they are used. 

This kind of interface c,m be considered as ,m 
,malogy of fixed-components which are composed 
according to a set of fixed synthesis rules, style­
guidelines, and sl.mdards. As a result, it is difficult for 
these interfaces to display complex constraints ,md 
inter-relationships in their underlying system without 
extensive intervention by the designer. This 
intervention is exactly what the use of a development 
tool is attempting to avoid. 

GUI Development Systems 
Many automated approaches to graphical 

interface presenl.ltion design detennine the display 
Imgely through the character of the data. Static­
display generation systems (e.g. APT [14]) work this 
way. Systems where the display is additionally 
detennined by a query or user-task ,malysis include 
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BOZ [4]. SAGE [19], and VIEW [12],[13]. These 
systems ,l,>sist the designer by evaluating alternative 
designs from a limited library of objects or relations. 

The integration of design tas ks and problem 
modeling allow for the possibility of automating a 
Im'ger part of the development process. Such an 
integrated tool requires merging the UIMS's support 
environment and automatic interface generation 
capabilities with graphic design techniques. interface 
design heuristics , ,Old user and ta<; k modeling tools. 
An integrated tool that merges these capabilities 
would allow the implications of selecting a particular 
representation to be automatically incorporated into 
the design of the presentation. Similarly, the use of 
special purpose toolkits will provide a me,ms to 
automatically enforce stanch'lfds ,Old style guidelines. 
For exrunple. rules and techniques from graphic 
design. interface design , st,mdards compli,mce, human 
factors ,Old user modeling could be added through 
modular libraries. The reduction of the required 
hreadth of expertise of the designer allows them to 
concentrate on modeling issues for the system which is 
heing represented and the tasks ,Old goals of the user. 

Generally. ,my system which attempts to 
automate the design process for the representation ,Old 
presentation of graphical interfaces. has certain 
fund;unental considerations which need to be 
addressed: 

I. The interface must be constructed ,Old 
designed modularly. In order to possess 
the tl ex ibility. variability ,Old the 
possibility of generating novel di splay 
fonnats . the representation must he 
constru cted from a library of primitives 
using substitution ;md compositional 
rules. 

2. The libr,u'y of primitives must have a basis in 
the user's perceptual capabilities ,Old the 
cognitive and graphic design literature 
([5]: [14] ; [4]; [23)). 

3. The system needs to create a match between 
the graphical objects being used in the 
presentation ,Old the objects in the 
original problem space. The mapping 
from problem-space to interface-space 
needs to be made intelligible to the user 
[9J. 

4. User-task ;Old viewing goals need to he 
represented in the prohlem space. This is 
equi valent to the concepts of 
Representational Aiding. ,Old the current 

emphasis in user-centered design (e.g. 
[26)). The user's t<l'ik is taken into 
account during the initial specification 
,Old ,malysis and is thus pervasive 
throughout the development process. 

5. A method needs to be provided for 
evaluating, comparing, ,Old verifying the 
cognitive efficiency of a particular 
representation. 

6. A mech,mism for the designer to modify ,Old 
refine the display must be available. 
Unit-testing and adherence to style or 
st;mdard guidelines may require ch,mges 
to the automatically generated interface. 
This is a Sl<mdard component of 
application development cycles 

The AGAPE system represents the integration of these 
sys tem requirements with the models for situation 
theoretic problem solving and EIP. 

The AGAPE System 
AGAPE is a UIDT based on a situation 

theoretic model of a problem ;md a user's task. ;Old on 
;01 EIP (Ecological Information Processing) mode l 
([9]. [10)) of the user. The Interactive Situation model 
is used to generate ,Old evaluate alternative des ign 
representations for a particular problem definiti on. 
The input to the AGAPE system consists of a situation 
theoretic description of the problem situation. This 
description includes all relev;mt objects, attributes or 
features of the objects, the relationships ,unong the 
objects, and the rule-like constraints which govern 
state-change in the problem solving space. The output 
is ;01 interactive graphical situation which is rendered 
into a prototype graphical interface. Users interact 
with this interface-situation to explore alternatives. 
plan. and solve problems that involve the original 
situation. 

The AGAPE system model is designed to 
automate the task of refonnulating a problem space 
representation by finding ;malogies which optimize the 
user's problem-solving perfonn,mce. AGAPE is 
di stinguished from earlier automatic graphica l 
presentation systems by its ability to graphically 
convey the possibilities ,Old restrictions on actions ,Old 
their subsequent effects. 

The process of engineering the des ign 
representation can be thought of as constructing <U1 
<Olalogous problem-solving si tuation to the original 
task-situation. The interface (jJw/og preserves the 
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re\ev;mt distinctions :unong objects, attributes. :md 
relationships which were specified in the t:L'ik­
situation. In addition the :malog is isomorphic to the 
task-situation with respect to the problem-space 
graphs. Automated methods of representational 
ch:mge that ch:mge the problem structure have been 
shown to be effective in improving machine problem­
solving perfonn,mce [18]. 

Although these methods can also be applied 
to hUln<m problem-solving, there is :mother class of 
refonnulations that involve the context. but not the 
structure of the problem. This fonn of refonnulation 
is structurally isomorphic :md is related to :malogical 
creation. Representation design for ,malogical 
prohlem representations have also been shown to 
enh:mce hum:m problem-solving perfonn<mce ([11], 
[8]). The goal of the proposed system is thus to 
engineer a representation that will enh:mce human 
prohlem-solving. rather than automated problem­
solving. 

To this end, three principles have been 
defined :md incorporated into this system. The first 
principle states that those relations or properties which 
:u'e attuned to hy hum:m perceptual capabilities may 
he suhstituted for abstract problem constraints. 
Prohlem constraints :u'e explicitly-stated, non­
perceptual rules that characterize the relations :md 
dyn;unics of a prohlem space. Attunements are 
implicit characteristics of the representation which do 
not require explicit description. 

The second principle is the replacement of 
non-perceptual constraints by temporal shifts in the 
interactive situation. The interface dymunics are 
defined to visihly portray constraints of the problem 
space through tr:msitions hetween interactive-situation, 
and prohlem-space states. 

The third principle is the reduction of the 
instl1Jctional complexity that is 
necess;u'y for the prohlem-sol ver 
to apply over the course of the 
task. 

The AGAPE Architecture 
The overall AGAPE 

system org:mization is 
diagr:unmed in Figure 3. The 
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decomposition. The problem representation is then 
written in c:monical fonn as a constrained situation 
type, 

The problem situation is represented 
internally as :01 N-tuple in which each dimension is :01 
object's attribute in the problem space. The dyn:unics 
of the problem are treated as transitions between states 
and are specified by a list of actions. Since this list of 
actions completely detennines the behavior :md 
dymunics of the system, the automata c<m be created 
as a Finite State Automata (FSA) ,md the type­
declaration is closed under the set of actions. 

AGAPE's input from the Problem Editor c,m 
then be exp:mded into a FSA which represents the full 
problem-space that a user may need to interact with in 
order to accomplish their task. This graph is import:mt 
for the evaluation of an analogical situation. Analogs 
must have at least the s:une states and transitions as the 
abstract problem. For a particular :malogical situation. 
the use of explicit rules :md property tnmsfonnations 
c<m prune particular states :md tnmsitions. This 
enahles :m :malogical situation to match a large v:u'iety 
of problem situations. Pruning "un-w:mted" edges :md 
states through the specification of explicit instructions 
is accomplished by adding these prescriptive rules to 
the "error tenn", f. Property Tr:msfonnations shift the 
properties :md relations of the constraints, C, in the 
problem situation to the attunements, A, of the 
:malogical situation, S'. 

The FSA and the input description are then 
passed to the "Mind's Eye Planner" (l'v1EP) module. It 
is here that the representation analogy is constructed 
through a three phase process. Initially the "Structural 
Generator" creates a viable state-space. This state­
space definition is then passed to the "Relational 
Matcher" which introduces new properties :md 
relations that operate on its objects. This composition 

Minds Eye Plmmer: 
____ Relations 

Structural \ 

------- Evaluation 

Analog Catal og functional org,mization of the 
system begins with the designer 
using the Problem Editor to enter 
a prohlem specification. This 
specification is the result of an 
interacli ve prohlem :md task 

Figure 3. Automated Graphical Analog Presentation Environment 
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is then evaluated by the "Evaluation Module." 
Evaluation of the difficulty associated with the 
proposed ,malogical situation is based on several 
criteria. These criteria include the complexity of the 
necessary instructions ,md the cognitive difficulty 
associated with the mappings, objects ,md relations 
that (U'e proposed in the analogical situation. This 
generate-,md-test process is then repeated until 
applicable ,malogies are no longer generated. At this 
point. the "best situation seen" (the one scoring lowest 
in the complexity evaluation) will be passed to the 
Rendering Module to be prototyped. 

Figure 4. Analog Catalog Hienu-chy 

The Structural Generator attempts to create ,m 
,malogical situation that is isomorphic in structure to 
the original problem. The contents of the Analog 
Catalog are substituted for the dimensions of the 
abstract problem specification. These dimensions are 
then composed into objects which will participate in 
the ,malogical situation. This non-instantiated object 
definition is only structural and is treated as a "type­
class" for new objects. The dymunics, properties ,md 
relations that will operate on the object will be 
included in the next stage (relational) of generation. 

The Relational Matcher accepts the structural 
definition of the ,malogical situation from the 
Structural Generator ,md introduces properties ,md 
relations to the object-type declmations. The 
primitives from the Analog Catalog ,u'e defined by a 
set of permissible operations, a set of limitations or 
constraints on their use, ,md a set of properties. The 
Relational Matcher takes these sets ,md creates a 
cross-product between the primitives ,md the 
constraints listed as p,ut of the constrained situation 
type. The contents of this cross product are then tested 
for admissibility into the situation or representation 
that is being defined. 

A property is admissible 10 the analogical 
situation if it I) operates on some grouping of the 
primitive dimensions that ,m: actively mapped ,md 2) 
if it equates to a consu·aint. property or definition of 

," . \ . 

the abstract problem. The matching of relational 
properties follows the general procedures outlined in 
VanB'L:1.len [25]. This methodology defines a 
"relation" to be a composition of the properties which 
characterize it. For exmnple, ,m ordinal relation is 
tnmsitive, non-symmetric, ,md non-retlexive. This 
hierarchy allows relational tnmsfonnations which shift 
characteristics from explicit definitions to implicit 
properties. For example, a binary relation could be 
tnmsfonned into a single par,uneter function that maps 
one value to the other. In this way the fixed size 
property becomes subsumed into the character of the 
function. 

Once a structure has been proposed ,md the 
admissible relations detennined, the Evaluation 
Module is invoked. The Evaluation Module generates 
a difficulty score associated with the cognitive 
complexity involved in the ,malogical situation. 
Derived from the model of Cognitive Difficulty, the 
measure of difficulty exmnines several key 
components of the analogical situation: the mapping 
from abstract problem to analog; the inherent 
complexity of the objects ,md their attributes; ,md the 
complexity of the necessary instructions. 

Within the Analog Catalog (Figure 4) . each 
,malogical primitive has ,m associated structure in 
which the parmneters for its appear,mce ,md 
functionality are defined . The primitives me 
organized into two classes: Atomic ,md 
Compositional. Atomic primitives consume 
dimensions of the problem space when selected for 
use. Compositional Primitives collect primitives (as 
attributes) into a unified object. For exrunple the Hue 
primitive is Atomic because it requires the mapping of 
a problem-space dimension. The Color Primitive 
however, is Compositional because it combines the 
renderable properties of Hue, Saturation ,md 
Brightness into a single general object that is then used 
as a sub-component of other Compositional Primitives. 
"Color" does not force dimensional mappings , hut 
provides a default mechanism both for rendering the 
un-used components and for modularizing the objects. 

Example 
An exmnple application from AGAPE may 

help illustrate the structural composition: a situation 
where there (U'e temperature sensors at four chemical 
baths in a manufacturing process and three leve ls of 
al;Uln (None, Notify ,md Critical). A Notify a\(Uln is 
upgraded to Critical if it is not acknowledged in a 
fixed time period. See Figure 5. 
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Dime nsiun: Cardinality 

L(lcati(lIls : Numinal 4 (Bath - I; Bath-2; Bath-3; Bath -4) 

Ordinal 3 (None , Nutify, Critical) Al arm s: 

Temperature Interval 4 (baths-temperature) 

Operatur actiun : Acknowledge the alarm . Alarm statu s => Nune 

Figure .5. Example Structural Creatiun 

The analog catalog from Figure 4 will be used 
to develop the representation for this problem. For 
hrevity, only the Point primitive, with its associated 
suh-components , will he exp,mded . The sub­
components of Point are unable to fully consume the 
dimensions of the problem. Thus, this excunple will 
only produce variations of a Point-based display. A 
"Point" is defined as having two spatial dimensions , a 
shape, a label. ,md a color: 

Poillt(RATIO:X; Y. NOM:Label, 
Shaper NO M:F orm, BINARY:Gellder). 
Colur(NOM:H ue, ORD:Sat, ORD:Bri) 

The structural matcher will attempt to create a 
mapping with the three dimensions of the original 
prohlem: 

Type (Loralion(N-4), Alarm(O-3), Temperalure(I-4» 

Mappings that satisfy this condition fill slots in the 
Point class with all three of the problem dimensions. 
A "-" indicates a default mapping for the dimension. 
Among the numerous mappings are the following 
;malogical structures: 
= ('uinl(X(I-4 ), -, -, -, Colr(HIIl:'( N-4 ), -, Bri(O-3 ))) 

-- Temperature is along the x-axis. the tank is 
col or-coded ,md the AI,Uln level is the 
Brightness. 

= P"int(X(I-4 ), -, -, -, Colr(HII l:'( N-4 ), Sal(0-3 ), -)) 

-- Temperature is along the x-axis , the t::mks 
are color coded ,md the Al,Uln is the 
Saturation 

= Poil1l(X(I-4 ), -, Labd(N-4 ), -, Colr(HIIl:'(O-3), -, -)) 

-- Temperature is along the x-axis , t::mks are 
laheled by a string ::md the Hue is the 
Alculll leve l. 

= f'uin l( -, Y(I-4 ), -, Slwpl:'( Form(N-4),-) , Colr( -,-, Bri(0-3 )) 

Temperature is the y-axis , t,mks are 
identified by Shape, the Al::Uln is the 
Brightness of the default color. 

= P" inl( -, Y(I-4 ), -, Shafi l:'( Form(N-4),-) , Colr( -,5;al(O-3), -) 

--Temperature is along the y-axis , the t::mks 
have unique shapes ,md the Al<Uln is the 
Saturation of the default color for the 
objec ts. 

P"inl(-, Y(I-4 ), -, ShClfi l:'(Form(N-4), -), Colr(Hul:'(O-3 ),-,-)) 

-- This pennutation is rendered in Figure 6. 

Alann and Temperature 

Tempeurure 
300 .0 ~~-~-~~-~.~ 

200 .0 

100.0 o 

0 0 
T ank I Tank2 T~nk 3 

D No alarm 

mriI Noti fy Alarm • O ilical.1olarm 

<l 

T ionk4 

o 
. Click on ooy<:t 
To admow ledg" 

Figure 6. Exampl e Alternative Rendering 
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For each mapping a set of relations would be 
introduced based upon the scaling, interactions, ,md 
explicit constraints included with the original prohlem 
specification. 

Conclusions 
AGAPE's methods for constructing ::md 

assessing the difficulty of analogs are selected for their 
ability to successfully identify ::md assess difficulty in a 
broad smnple of previously studied problem 
representations. AGAPE's methods successfully 
identify a block-stacking variant of the Tower of Hanoi 
as its easiest problem representation. AGAPE's 
methods also correctly order isomorphic versions 
corresponding to the Monster-Globe (move), ,md 
Monster-Globe (ch,mge) problems [10]. 

Presented with the General Job Shop 
scheduling problem, AGAPE's methods pick the 
widely used G::mtt chart as the most suit::lble 
present::llion. Also, AGAPE's methods discover a 
novel representation of a keyed block-stacking t,L~k to 
fit the more tightly constrained Flow Shop problem [9]. 
AGAPE's methods also find the keyed shapes shown hy 
Bauer ::md 10hnson-Laird [2] to aid subject'; in making 
disjunctive inferences as an effective problem 
representation. For static data presentation AGAPE 
will choose representations similar to those preferred 
by BOZ [4] or Makinlay [14] because AGAPE 
embodies the smne criteria for selecting perceptually 
efficient represent::ltions. 

An important contribution of thi s system is its 
mech::mism for constllJcting , matching ::md testing 
altemati ve represent::ltions. 
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