
223

A Graphical User Interface Design Environment

Carl A. Edlund Michael Lewis
edlund@lis.pitt.edu ml@lis.pitt.edu

Department of Information Science
135 N. Bellefield Ave.

University Of Pittsburgh
Pittsburgh, Pa. 15260

(412) 624 - 9426
Fax: (412) 624 - 5231

Abstract
Adv,Ulces in computer hardware and interface
technologies have led to a corresponding increase in
research into highly interactive Human-Computer
Interfaces. Development tools that create these
interfaces need to be tlexible, general ,Uld produce easily
modifiable objects. They also should convey important
graphic design principles to the application designer.
Existing design tools largely neglect integrating the
initial selection of representation with the development
of the presentation. The Automatic Graphical Analog
Presentation Environment has been designed to produce
highly interactive analogical interfaces. A representation
is constructively generated from a catalog of primitives
,Uld the dynrunics of the interface are matched to a
fonnalized description of the user's task. The resulting
composite is then evaluated for its cognitive
effectiveness ,md efficiency. Several t<L<;k domains are
identified as initial testbeds for bench marking the
implementation of the AGAPE architecture ,Uld the
effectiveness of the produced displays.

Keywords:
Representation Engineering; Ecological display design.

Introduction
The advent of Direct Manipulation (DM) and

visualization interface designs have led to a
tremendous advance in the sophistication and
complexity of interface development. Command-line
or character-menu driven interfaces are no longer
sufficient to convey the complexity of infonnation ,Uld
constraints inherent in m,my applications. Similarly,
resecu'ch into Representational Aiding has shown that
the fonn in which a problem is represented C,Ul have a
I,u'ge impact on the user's perform,mce of a problem­
solving t<lsk. (e.g. [11]; [8]; [17]; [4]).

The effect of representation on task
perfonncmce is particularly import,Ult for problem
domains which require operator-interaction to
maintain. monitor. ,md control a physical system ,Uld

.... . ~

for interfaces that present infonnation which is t<tilored
to support a problem-solving task. With a DM
interface, a user is able to apply their domain expertise
directly toward reaching operational goals rather than
needing to transfonn that knowledge based on a
particular syntax of communication [22].

For exrunple, airline reservation systems [4],
job scheduling [10], and Diagnun Assisted Rewwning
[7] all require a large degree of interactive
manipulation on the part of the user for problem
solving. In each of these cases a variety of tabul,u'
presentations of the data could have been used by
operators to perfonn a task. However, alternative
representations of the srune infonnation c,m provide a
clearer and more "usable" fonn of the problem. Such
a represent<ttion would enh,mce the accuracy ,md
performance of the user.

The process of designing visualization-style
interfaces that incorporate DM interaction techniques
is a critical step for providing a user with effective
problem solving tools. However , before ,m interface
specification c,m be developed, the "context" (a
specific representation that the particular interface will
be based upon) must be established. For excunple.
designing the presentation of an interface for a
process-control monitoring system a number of
alternative designs are possible. The detennination to
use a particular representation, such as single-indicator
dials and gauges (Figure 1), as opposed to ,m
equivalent graphical analog (Figure 2) occurs before
the interface present<ltion is developed. The
traditional GUI in Figure 1 presents parruneters
graphically ,Uld has virtual controls that c,m be
m,Ulipulated directly. However, the underlying system
dyncunics and constraints that relate the controls ,Uld
displays are not conveyed. The display in Figure 2
illustrates the difference between interface
representations. The interactions between objects, the
underlying process, and the operator's actions cu'e
integrated into a single graphical display. For

4
,,,""',

. .
:: .. Graphics Interface '95

224

Turl'1in~ Sp<:ed

Fud

, ,~: ..
! . • .. -

Figure I.

o
o

Boilt":f Level

Feed Water ~. : ."
" .
.. . ' ..

ex,unple, the relationship between fuel-tlow ,md boiler
level c,m be directly perceived from the interface
objects. Moving the "fuel" weight to the left increases
the rate of fuel-tlow ,md causes the boiler level to
decrease and the turbine speed to increase.

Generally, it is the designer's skill and
experience in selecting the context for a problem
which detennines the interface's effectiveness. This
process of selection lacks quantitative models which

OOtt Ul[Hl

El
Figure 2.

would support a consistent approach. Models like the
Ecological Interface Design (ElD) [26] provide a
fr,unework for designers to ask questions that reveal
the "invisible" constraints ,md structures which need to
be made "visible". However, there currently is no
mech,mism for explaining how to make these visible
or for qu,mtitatively comparing the effectiveness of a
representation.

The Automated Graphical Analog
Presentation Envirorunent (AGAPE) is a User
Interface Design Tool (UlDT) that will assist the
interface developer with the selection of the initial
representation. The initial representation will then be
used to generate ,m interface specification that C<Ul
then be prototyped. In order for AGAPE to design the

. ,
. . -

. .

context representation for effective DM ,md
visualization interfaces, a clear and concise model of
the user's capabilities ,md limitations, ,md the problem
task and dymunics is necessary.

User Model and Cognitive Difficulty
Lewis ([9], [10]) proposes ,m ecological

model of Interactive Situations which characterize the
"directness" <md "intuitiveness" of an interface. In ,m
Interactive Situation, a situation theoretic frrunework
[1], [6] is used to model a problem representation. ,md
the interactions of a user are represented based on <Ul

Ecological Information Processing (EIP) model. An
interface design is treated as a situation that is defined
in a recursive hierarchy as a typed relation between a
set of typed objects. The user's actions are added ,L~

state LnUlsitions between related situations. Together
these two models provide a fnunework for deri ving a
useful measure of the cognitive difficulty associated
with a particular interface design.

From the user's perspec tive, the problem
space for the task possesses a certain complexity. size.
and shape. Applying situation decomposition
methodology [9] to this structure c,m be expressed as a
set of variables (relations) that discriminate states ,md
constraints which govern ch,mges in the values of
those v<u·iables. Through the selec tion of the
appropriate interface representation the abstract
problem can be conveyed to the user in a "cogni ti ve ly
stre<unlined" marmer. The representation for the
interface situation should match the actions ,md effec ts
of the abstract problem ta~k with the user's
attunements (expect~ltions about dyn,unics ,md
structure) and their ability to discriminate states
through the use of simple perceptual operations.

The relations to which a user is attuned me
detennined by the types of objects ,md re lations
involved in the interface situation. For ex,unple. a
situation involving physical objects could be
constrained by attunements to exclude events in which
two objects occupy the s,une location at the srune time.
Additional constraints. c,m then be imposed on a
situation that is already constrained by attunement. In
the g,une of chess , for ex,unple. a naive player's
attunements would preclude pieces ch,mging in color
or shape, while the constraint preventing a knight from
moving three squmes in a line would require
instructions.

It is convenient to think of user tasks as
involving three problem spaces:
I. An intuitive space. A.S. defined by the problem

environment. S. and its attunements. A.

4
",,'

:;a. Graphics Interface '95

2. A fonnal problem space, C-S, defined by the task
constraints, C,

3. ~md ,m effective problem space, r-A-S, in which the
intuitive space is augmented with the instructions,
f. necessary to match the problem space of the
task.

If we presume constraint through attunement to be less
difficult th,m constraint through instructions we can
r~mk representations for task difficulty by ordering
them according to the difficulty of their instructions.
A simple me,L<;ure of this difficulty is provided by
adopting the assumptions of Larkin ,md Simon [8],
,md Casner[4]: the difficulty of using a rule is
proportional to the perceptual! memorial operations
needed to detennine its applicability.

As a result, a variety of analogous interface
representations may be matched to a particular
abstracted problem description. The process of
designing the interface representation for the problem
then hecomes the selection of the least complex
~malog. The expression:

C-S == r-A-S'
identifies the set of possible ,malogies for the problem
space C-S. Analogs are constructed by choosing an
appropriate situation, S'; identifying the intuitive
prohlem space, A-S', that S' detennines; and
composing the instructions, r, which are needed to
make the spaces congruent. Although this process is
conceptually simple, detennining the set of applicable
attunements, A. ,md finding the simplest expression
for the instructions, f, are difficult.

Interface Support of Problem Task
If prohlem-solving is modeled as traversal

through the problem space, then the goal of the task is
representable as a target-state. The specification of a
p,u·ticular t,rrget-state, or equivalence class of states, is
represented as a set of constraints which must be
satisfied. The user's problem-solving ta<;k is thus
represented as a list of additional constraints in the
representation of the abstract problem. This. produces
a unified representation of the problem space, ,md the
prohlem task.

The design of interfaces that support a
pm·ticulm· problem space ,md t<L<;k um be divide into
two styles r 16] . The first is the integration of
infonnation in a presentation involving the use of
primarily static graphics, such as charts, maps and
diagnuns. There is a long and robust history of
research into effective graphic design techniques for
this type of presentation. (e.g . [3], [15), [16], [20] ,

." \:

225

[21], [24]). In most cases this literature focuses on
case studies which exmnine what makes a display
"good" and then generalizes a collection of rules for
use as guidelines in designing further graphics of the
smne type. Despite extensive and detailed Iibr~rries of
guidelines, it is generally still the expertise of the
designer that is the telling factor in the creation of
effective data visualizations and presentation graphics.

The second category is oriented tow,rrd highly
interactive problem-solving in which the displays tend
to be more dynrunic and require a greater degree of
DM. The objects ,md dynarnics in Highly-Interactive
Graphic User Interface (HI-GUI) directly present the
features and dynrunics of the underlying system.

The design of interfaces to support these two
categories needs to move beyond the paradigm of the
Conventional GUI. Conventional GUIs tend to be
composed of standard graphic objects like push­
buttons, scroll-bars and text-windows that m'e
combined at the task-level into a user interface. The
integration of infonnation in the display is only
through pre-specified relations, such as the mapping
between a scroll bar and movement through a text
document, or through the addition of application­
specific objects and behaviors, which are expensive to
produce and severely limited with respect to cross­
domain re-usability. The benefit of this type of
interface lies in the relatively simple, and rapid,
construction from a sl.mdard toolkit. The tr,msfer-of­
training benefits for the user arises from their
fmnili,rrity with a small number of m,mipulatable
,malogs which are consistent across applications. In
other words, knowledge of push buttons and scrollb,U's
is independent of knowledge of the applications in
which they are used.

This kind of interface c,m be considered as ,m
,malogy of fixed-components which are composed
according to a set of fixed synthesis rules, style­
guidelines, and sl.mdards. As a result, it is difficult for
these interfaces to display complex constraints ,md
inter-relationships in their underlying system without
extensive intervention by the designer. This
intervention is exactly what the use of a development
tool is attempting to avoid.

GUI Development Systems
Many automated approaches to graphical

interface presenl.ltion design detennine the display
Imgely through the character of the data. Static­
display generation systems (e.g. APT [14]) work this
way. Systems where the display is additionally
detennined by a query or user-task ,malysis include

4·
·'······· ·

. .
:.- Graphics Interface '95

226

BOZ [4]. SAGE [19], and VIEW [12],[13]. These
systems ,l,>sist the designer by evaluating alternative
designs from a limited library of objects or relations.

The integration of design tas ks and problem
modeling allow for the possibility of automating a
Im'ger part of the development process. Such an
integrated tool requires merging the UIMS's support
environment and automatic interface generation
capabilities with graphic design techniques. interface
design heuristics , ,Old user and ta<; k modeling tools.
An integrated tool that merges these capabilities
would allow the implications of selecting a particular
representation to be automatically incorporated into
the design of the presentation. Similarly, the use of
special purpose toolkits will provide a me,ms to
automatically enforce stanch'lfds ,Old style guidelines.
For exrunple. rules and techniques from graphic
design. interface design , st,mdards compli,mce, human
factors ,Old user modeling could be added through
modular libraries. The reduction of the required
hreadth of expertise of the designer allows them to
concentrate on modeling issues for the system which is
heing represented and the tasks ,Old goals of the user.

Generally. ,my system which attempts to
automate the design process for the representation ,Old
presentation of graphical interfaces. has certain
fund;unental considerations which need to be
addressed:

I. The interface must be constructed ,Old
designed modularly. In order to possess
the tl ex ibility. variability ,Old the
possibility of generating novel di splay
fonnats . the representation must he
constru cted from a library of primitives
using substitution ;md compositional
rules.

2. The libr,u'y of primitives must have a basis in
the user's perceptual capabilities ,Old the
cognitive and graphic design literature
([5]: [14] ; [4]; [23)).

3. The system needs to create a match between
the graphical objects being used in the
presentation ,Old the objects in the
original problem space. The mapping
from problem-space to interface-space
needs to be made intelligible to the user
[9J.

4. User-task ;Old viewing goals need to he
represented in the prohlem space. This is
equi valent to the concepts of
Representational Aiding. ,Old the current

emphasis in user-centered design (e.g.
[26)). The user's t<l'ik is taken into
account during the initial specification
,Old ,malysis and is thus pervasive
throughout the development process.

5. A method needs to be provided for
evaluating, comparing, ,Old verifying the
cognitive efficiency of a particular
representation.

6. A mech,mism for the designer to modify ,Old
refine the display must be available.
Unit-testing and adherence to style or
st;mdard guidelines may require ch,mges
to the automatically generated interface.
This is a Sl<mdard component of
application development cycles

The AGAPE system represents the integration of these
sys tem requirements with the models for situation
theoretic problem solving and EIP.

The AGAPE System
AGAPE is a UIDT based on a situation

theoretic model of a problem ;md a user's task. ;Old on
;01 EIP (Ecological Information Processing) mode l
([9]. [10)) of the user. The Interactive Situation model
is used to generate ,Old evaluate alternative des ign
representations for a particular problem definiti on.
The input to the AGAPE system consists of a situation
theoretic description of the problem situation. This
description includes all relev;mt objects, attributes or
features of the objects, the relationships ,unong the
objects, and the rule-like constraints which govern
state-change in the problem solving space. The output
is ;01 interactive graphical situation which is rendered
into a prototype graphical interface. Users interact
with this interface-situation to explore alternatives.
plan. and solve problems that involve the original
situation.

The AGAPE system model is designed to
automate the task of refonnulating a problem space
representation by finding ;malogies which optimize the
user's problem-solving perfonn,mce. AGAPE is
di stinguished from earlier automatic graphica l
presentation systems by its ability to graphically
convey the possibilities ,Old restrictions on actions ,Old
their subsequent effects.

The process of engineering the des ign
representation can be thought of as constructing <U1
<Olalogous problem-solving si tuation to the original
task-situation. The interface (jJw/og preserves the

Graphics Interface '95

re\ev;mt distinctions :unong objects, attributes. :md
relationships which were specified in the t:L'ik­
situation. In addition the :malog is isomorphic to the
task-situation with respect to the problem-space
graphs. Automated methods of representational
ch:mge that ch:mge the problem structure have been
shown to be effective in improving machine problem­
solving perfonn,mce [18].

Although these methods can also be applied
to hUln<m problem-solving, there is :mother class of
refonnulations that involve the context. but not the
structure of the problem. This fonn of refonnulation
is structurally isomorphic :md is related to :malogical
creation. Representation design for ,malogical
prohlem representations have also been shown to
enh:mce hum:m problem-solving perfonn<mce ([11],
[8]). The goal of the proposed system is thus to
engineer a representation that will enh:mce human
prohlem-solving. rather than automated problem­
solving.

To this end, three principles have been
defined :md incorporated into this system. The first
principle states that those relations or properties which
:u'e attuned to hy hum:m perceptual capabilities may
he suhstituted for abstract problem constraints.
Prohlem constraints :u'e explicitly-stated, non­
perceptual rules that characterize the relations :md
dyn;unics of a prohlem space. Attunements are
implicit characteristics of the representation which do
not require explicit description.

The second principle is the replacement of
non-perceptual constraints by temporal shifts in the
interactive situation. The interface dymunics are
defined to visihly portray constraints of the problem
space through tr:msitions hetween interactive-situation,
and prohlem-space states.

The third principle is the reduction of the
instl1Jctional complexity that is
necess;u'y for the prohlem-sol ver
to apply over the course of the
task.

The AGAPE Architecture
The overall AGAPE

system org:mization is
diagr:unmed in Figure 3. The

227

decomposition. The problem representation is then
written in c:monical fonn as a constrained situation
type,

The problem situation is represented
internally as :01 N-tuple in which each dimension is :01
object's attribute in the problem space. The dyn:unics
of the problem are treated as transitions between states
and are specified by a list of actions. Since this list of
actions completely detennines the behavior :md
dymunics of the system, the automata c<m be created
as a Finite State Automata (FSA) ,md the type­
declaration is closed under the set of actions.

AGAPE's input from the Problem Editor c,m
then be exp:mded into a FSA which represents the full
problem-space that a user may need to interact with in
order to accomplish their task. This graph is import:mt
for the evaluation of an analogical situation. Analogs
must have at least the s:une states and transitions as the
abstract problem. For a particular :malogical situation.
the use of explicit rules :md property tnmsfonnations
c<m prune particular states :md tnmsitions. This
enahles :m :malogical situation to match a large v:u'iety
of problem situations. Pruning "un-w:mted" edges :md
states through the specification of explicit instructions
is accomplished by adding these prescriptive rules to
the "error tenn", f. Property Tr:msfonnations shift the
properties :md relations of the constraints, C, in the
problem situation to the attunements, A, of the
:malogical situation, S'.

The FSA and the input description are then
passed to the "Mind's Eye Planner" (l'v1EP) module. It
is here that the representation analogy is constructed
through a three phase process. Initially the "Structural
Generator" creates a viable state-space. This state­
space definition is then passed to the "Relational
Matcher" which introduces new properties :md
relations that operate on its objects. This composition

Minds Eye Plmmer:
____ Relations

Structural \

------- Evaluation

Analog Catal og functional org,mization of the
system begins with the designer
using the Problem Editor to enter
a prohlem specification. This
specification is the result of an
interacli ve prohlem :md task

Figure 3. Automated Graphical Analog Presentation Environment

Graphics Interface '95

228

is then evaluated by the "Evaluation Module."
Evaluation of the difficulty associated with the
proposed ,malogical situation is based on several
criteria. These criteria include the complexity of the
necessary instructions ,md the cognitive difficulty
associated with the mappings, objects ,md relations
that (U'e proposed in the analogical situation. This
generate-,md-test process is then repeated until
applicable ,malogies are no longer generated. At this
point. the "best situation seen" (the one scoring lowest
in the complexity evaluation) will be passed to the
Rendering Module to be prototyped.

Figure 4. Analog Catalog Hienu-chy

The Structural Generator attempts to create ,m
,malogical situation that is isomorphic in structure to
the original problem. The contents of the Analog
Catalog are substituted for the dimensions of the
abstract problem specification. These dimensions are
then composed into objects which will participate in
the ,malogical situation. This non-instantiated object
definition is only structural and is treated as a "type­
class" for new objects. The dymunics, properties ,md
relations that will operate on the object will be
included in the next stage (relational) of generation.

The Relational Matcher accepts the structural
definition of the ,malogical situation from the
Structural Generator ,md introduces properties ,md
relations to the object-type declmations. The
primitives from the Analog Catalog ,u'e defined by a
set of permissible operations, a set of limitations or
constraints on their use, ,md a set of properties. The
Relational Matcher takes these sets ,md creates a
cross-product between the primitives ,md the
constraints listed as p,ut of the constrained situation
type. The contents of this cross product are then tested
for admissibility into the situation or representation
that is being defined.

A property is admissible 10 the analogical
situation if it I) operates on some grouping of the
primitive dimensions that ,m: actively mapped ,md 2)
if it equates to a consu·aint. property or definition of

," . \ .

the abstract problem. The matching of relational
properties follows the general procedures outlined in
VanB'L:1.len [25]. This methodology defines a
"relation" to be a composition of the properties which
characterize it. For exmnple, ,m ordinal relation is
tnmsitive, non-symmetric, ,md non-retlexive. This
hierarchy allows relational tnmsfonnations which shift
characteristics from explicit definitions to implicit
properties. For example, a binary relation could be
tnmsfonned into a single par,uneter function that maps
one value to the other. In this way the fixed size
property becomes subsumed into the character of the
function.

Once a structure has been proposed ,md the
admissible relations detennined, the Evaluation
Module is invoked. The Evaluation Module generates
a difficulty score associated with the cognitive
complexity involved in the ,malogical situation.
Derived from the model of Cognitive Difficulty, the
measure of difficulty exmnines several key
components of the analogical situation: the mapping
from abstract problem to analog; the inherent
complexity of the objects ,md their attributes; ,md the
complexity of the necessary instructions.

Within the Analog Catalog (Figure 4) . each
,malogical primitive has ,m associated structure in
which the parmneters for its appear,mce ,md
functionality are defined . The primitives me
organized into two classes: Atomic ,md
Compositional. Atomic primitives consume
dimensions of the problem space when selected for
use. Compositional Primitives collect primitives (as
attributes) into a unified object. For exrunple the Hue
primitive is Atomic because it requires the mapping of
a problem-space dimension. The Color Primitive
however, is Compositional because it combines the
renderable properties of Hue, Saturation ,md
Brightness into a single general object that is then used
as a sub-component of other Compositional Primitives.
"Color" does not force dimensional mappings , hut
provides a default mechanism both for rendering the
un-used components and for modularizing the objects.

Example
An exmnple application from AGAPE may

help illustrate the structural composition: a situation
where there (U'e temperature sensors at four chemical
baths in a manufacturing process and three leve ls of
al;Uln (None, Notify ,md Critical). A Notify a\(Uln is
upgraded to Critical if it is not acknowledged in a
fixed time period. See Figure 5.

4
· .. · .. ··

..
:: .. Graphics Interface '95

Dime nsiun: Cardinality

L(lcati(lIls : Numinal 4 (Bath - I; Bath-2; Bath-3; Bath -4)

Ordinal 3 (None , Nutify, Critical) Al arm s:

Temperature Interval 4 (baths-temperature)

Operatur actiun : Acknowledge the alarm . Alarm statu s => Nune

Figure .5. Example Structural Creatiun

The analog catalog from Figure 4 will be used
to develop the representation for this problem. For
hrevity, only the Point primitive, with its associated
suh-components , will he exp,mded . The sub­
components of Point are unable to fully consume the
dimensions of the problem. Thus, this excunple will
only produce variations of a Point-based display. A
"Point" is defined as having two spatial dimensions , a
shape, a label. ,md a color:

Poillt(RATIO:X; Y. NOM:Label,
Shaper NO M:F orm, BINARY:Gellder).
Colur(NOM:H ue, ORD:Sat, ORD:Bri)

The structural matcher will attempt to create a
mapping with the three dimensions of the original
prohlem:

Type (Loralion(N-4), Alarm(O-3), Temperalure(I-4»

Mappings that satisfy this condition fill slots in the
Point class with all three of the problem dimensions.
A "-" indicates a default mapping for the dimension.
Among the numerous mappings are the following
;malogical structures:
= ('uinl(X(I-4), -, -, -, Colr(HIIl:'(N-4), -, Bri(O-3)))

-- Temperature is along the x-axis. the tank is
col or-coded ,md the AI,Uln level is the
Brightness.

= P"int(X(I-4), -, -, -, Colr(HII l:'(N-4), Sal(0-3), -))

-- Temperature is along the x-axis , the t::mks
are color coded ,md the Al,Uln is the
Saturation

= Poil1l(X(I-4), -, Labd(N-4), -, Colr(HIIl:'(O-3), -, -))

-- Temperature is along the x-axis , t::mks are
laheled by a string ::md the Hue is the
Alculll leve l.

= f'uin l(-, Y(I-4), -, Slwpl:'(Form(N-4),-) , Colr(-,-, Bri(0-3))

Temperature is the y-axis , t,mks are
identified by Shape, the Al::Uln is the
Brightness of the default color.

= P" inl(-, Y(I-4), -, Shafi l:'(Form(N-4),-) , Colr(-,5;al(O-3), -)

--Temperature is along the y-axis , the t::mks
have unique shapes ,md the Al<Uln is the
Saturation of the default color for the
objec ts.

P"inl(-, Y(I-4), -, ShClfi l:'(Form(N-4), -), Colr(Hul:'(O-3),-,-))

-- This pennutation is rendered in Figure 6.

Alann and Temperature

Tempeurure
300 .0 ~~-~-~~-~.~

200 .0

100.0 o

0 0
T ank I Tank2 T~nk 3

D No alarm

mriI Noti fy Alarm • O ilical.1olarm

<l

T ionk4

o
. Click on ooy<:t
To admow ledg"

Figure 6. Exampl e Alternative Rendering

229

For each mapping a set of relations would be
introduced based upon the scaling, interactions, ,md
explicit constraints included with the original prohlem
specification.

Conclusions
AGAPE's methods for constructing ::md

assessing the difficulty of analogs are selected for their
ability to successfully identify ::md assess difficulty in a
broad smnple of previously studied problem
representations. AGAPE's methods successfully
identify a block-stacking variant of the Tower of Hanoi
as its easiest problem representation. AGAPE's
methods also correctly order isomorphic versions
corresponding to the Monster-Globe (move), ,md
Monster-Globe (ch,mge) problems [10].

Presented with the General Job Shop
scheduling problem, AGAPE's methods pick the
widely used G::mtt chart as the most suit::lble
present::llion. Also, AGAPE's methods discover a
novel representation of a keyed block-stacking t,L~k to
fit the more tightly constrained Flow Shop problem [9].
AGAPE's methods also find the keyed shapes shown hy
Bauer ::md 10hnson-Laird [2] to aid subject'; in making
disjunctive inferences as an effective problem
representation. For static data presentation AGAPE
will choose representations similar to those preferred
by BOZ [4] or Makinlay [14] because AGAPE
embodies the smne criteria for selecting perceptually
efficient represent::ltions.

An important contribution of thi s system is its
mech::mism for constllJcting , matching ::md testing
altemati ve represent::ltions.

Acknowledgments
This work was supported by NSF gr::mt IRI-9020603.

Graphics Interface '95

230

References:
I. Rarwise. J .. & Perry , J. (1983). Sill/at ions and AlIittldes.

Cambridge: MIT Pn:ss.
2. Rau er. M .. & Johnson-Laird , P. (1993). How Diagrams

can Improve Rl'asoning: Ml'nlal Modds and thl' diffi­

clIlt Cc /SI'S of disjllnction and nl'gation. Psychological

Science. Volume 4. Number 6. American Psychological

Socie ty. pp. 226 - 230.

3. Rertin , J. (1981). Graphics and Graphic Information

Procl'ssing. Rerg, W ., & Sw tt, P. (Tr.) publisher:

Berlin. New York .
4. Casner, S. (1991). A Task-Analytic Approach to the

Alltomatl'd Dl'sign of Graphic Rl'presl'ntations. ACM

Transactions on Graphics. Volume 10 . Number 2.

April. pp I11 - 151

5. Cleveland. W .. & McGill , R. (1984). Graphical

Perception: Theory . Experim entation and Application

to the Development of Graphical Methods. Journal of
thl' Amaican Statistical Association. September.

Volume 79. Number 387. pp. 531 - 553.

6. Devlin. Ke ith . (1991). Logic and Information. Cambridge

University Press. New York .
7 . .Iohnson, S., Barwise, J., & Allwein, G. (1993) . Toward Cl

rigorous USl' of Diagrams in Rl'asoning about

Hardwarl' . pp. 169 - 212 In Allwein. G., & Barw ise, 1.

(Eds.) Working Papas on Diagrams and Logic. Pre­

print Series. Indiana Universiry Logic group. May.

R. Larki n. J.H. & Simon , H.A . (19R7). Why a diagram is

(soml'liml's) worth tl'n thousand words. Cognitive

Science. Volume 11. pp . 65 - 100.

9. Lewis. M. (1991). Visualizat ion and SilLlat ions. In

Barwise, J. , Gawwn, M ., Plotkin . G., & Tutiya, S.

(Eds.) Situation Thl'ory and its Applications. Stanford,

California. CLSI Publications.

10. Lewis, M . (1992). Why arl' situations hard?, Proceedings

(If the Fo urteenth Annual Conference of the Cognitive

Science Sociery , Bloomington, IN. 939-944.

11. Lewis , M ., & Toth . J. (1994). Situated Cognit ion in

Diagrammatic Reasoning . AAAI Tl'chnical Rl'port on

Rl'asoning with Diagrcu/lmatic Rl'prl'sl'ntations. SS-92-

U2. Menh.l Park. California: AAAI. pp. 47 - 52.

12. Friedell . M .. Barnett. l ., & Kramlich, D. (1982).

Contl'xt-Sl'nsitivl' , Graphic Prl'sl'ntation of Informa­

tion. pp. 181 - 188 . In Jllurnal of the ACM, Siggraph .

Computer Graphics Volum e 16. Number 3. July.

13. Friede ll , M. (1984). Automatic Synthesis of Graphical

Object Dl'scriptions. Computer Graphics. Volume 18.

Number 3. (Proceedi ngs ACM SIGGRAPH '84) JUly.

pp. 53 - 62.

14. Mackinl ay. J. (1986). Alllomating the Design of
(;raphica! Prl'sl'ruations of Rdatiotlal Inji>r!)/(uion.

ACM transactions on Graphics. Volum e 5. Number 2.

April. pp. 110 - 141.
15 . Marcus, A. (1987). Graphic Design for Complller

Graphics. pp. 320 - 326. In Baecker, R. & Buxton , W.

(Eds.). (1987). Readings in Hurrum-Compllll'f

Interaction: A M ultiJisciplinary Approach. Murgan

Kaufmann Publishers, Inc. San Mateo, California.

16. Marcus , A. (1992). Graphic Design for Electronic

Documents and User Interfaces. ACM press, Tutorial

Series . Addison Wesley . New York

17 . Newell, A. & Simon, H.A. (1972). Human problem

solving. Englewood Cliffs, NI: Prentice-Hall.

18. Riddle , P. (1990). Automating Problem Reformulation .

In Benjamin , D. (Ed.) Change of Representation of

Inductive Bias. (pp. 105 - (23). Kluw er Academic

Publishers. Dordrecht.

19. Roth , S., Kolojejchick, 1. , Mattis , J . & Gnldstein. 1.

(1994). Interactive Graphic Design Using Automatic

Presentation Knowledge. In Human Factors in

Computing Systems, ACM-CHI '94 Celebrating

Interdependence. (pp . 112 (17). Boston ,

Massachusetts . April 24 - 28 , 1994.

20. Schmind, C. (1983). Statistical Graphics: Design

Principles and Practices. John Wiley & Sons. New

York.
21. Seligmann, D., & Feiner, S. (1991). Automated

Generation of Intent Based 3D Illustrations. pp. 123 -

132. In Proceedings ACM SIGGRAPH '91: Computer

Graphics. Volume 25. Number 4. July 1991. La,

Vegas, NV . July 28-August 2.

22. Shneiderman , B. (1992). Designing the Usa Intaface:

strategies for effective Human-Computer Interaction.

Second Edition . Addison-Wesley.

23. Spring , M . & Jennings , M. (1993). Virtual Rea lity and

Abstract Data: Virtualizing Information. Virtual

Reality World. Volume l. Number l. Spring 1993. pp.

c - m.

24. Tufte, E. (1983). The Visual Display of QuantitatiVl'

Information . Cheshire, Connecticut: Graphics Press .

25. Van Baalen , J. (1992). Autom ated Des ign or
Specialized Represe ntations. Artificial Inteliigl'llce.

Volume 54. pp. 121 - 198.

26. Vicente, K., & Rasmussen , J. (1992). Ewlogical

Interface Design : Theoretical Foundations. IEEE

Transactions on Systems, Man, and Cybernl'lics.

Volume 22. Number 4 . July 1992.

4
·· ..

:, .' Graphics Interface '95

