223

A Graphical User Interface Design Environment

Carl A. Edlund
edlund@lis.pitt.edu

Michael Lewis
ml@lis.pitt.edu

Department of Information Science
135 N. Bellefield Ave.
University Of Pittsburgh
Pittsburgh, Pa. 15260
(412) 624 - 9426
Fax: (412) 624 - 5231

Abstract

Advances in computer hardware and interface
technologies have led to a corresponding increase in
research into highly interactive Human-Computer
Interfaces. Development tools that create these
interfaces need to be flexible, general and produce easily
modifiable objects. They also should convey important
graphic design principles to the application designer.
Existing design tools largely neglect integrating the
initial selection of representation with the development
of the presentation. The Automatic Graphical Analog
Presentation Environment has been designed to produce
highly interactive analogical interfaces. A representation
is constructively generated from a catalog of primitives
and the dynamics of the interface are matched to a
formalized description of the user's task. The resulting
composite is then evaluated for its cognitive
effectiveness and efficiency. Several task domains are
identified as initial testbeds for bench marking the
implementation of the AGAPE architecture and the
effectiveness of the produced displays.

Keywords:
Representation Engineering; Ecological display design.

Introduction

The advent of Direct Manipulation (DM) and
visualization interface designs have led to a
tremendous advance in the sophistication and
complexity of interface development. Command-line
or character-menu driven interfaces are no longer
sufficient to convey the complexity of information and
constraints inherent in many applications. Similarly,
research into Representational Aiding has shown that
the form in which a problem is represented can have a
large impact on the user's performance of a problem-
solving task. (e.g. [11]; [8]; [17]; [4]).

The effect of representation on task
performance is particularly important for problem
domains  which  require  operator-interaction  to
maintain, monitor, and control a physical system and

Graphics Interface 95

for interfaces that present information which is tailored
to support a problem-solving task. With a DM
interface, a user is able to apply their domain expertise
directly toward reaching operational goals rather than
needing to transform that knowledge based on a
particular syntax of communication [22].

For example, airline reservation systems [4],
job scheduling [10], and Diagram Assisted Reasoning
[7]1 all require a large degree of interactive
manipulation on the part of the user for problem
solving. In each of these cases a variety of tabular
presentations of the data could have been used by
operators to perform a task. However, alternative
representations of the same information can provide a
clearer and more "usable” form of the problem. Such
a representation would enhance the accuracy and
performance of the user.

The process of designing visualization-style
interfaces that incorporate DM interaction techniques
is a critical step for providing a user with effective
problem solving tools. However, before an interface
specification can be developed, the "context" (a
specific representation that the particular interface will
be based upon) must be established. For example,
designing the presentation of an interface for a
process-control monitoring system a number of
alternative designs are possible. The determination to
use a particular representation, such as single-indicator
dials and gauges (Figure 1), as opposed to an
equivalent graphical analog (Figure 2) occurs before
the interface presentation is developed. The
traditional GUI in Figure 1 presents parameters
graphically and has virtual controls that can be
manipulated directly. However, the underlying system
dynamics and constraints that relate the controls and
displays are not conveyed. The display in Figure 2
illustrates  the  difference  between  interface
representations. The interactions between objects, the
underlying process, and the operator's actions are
integrated into a single graphical display.  For

5



224

Boiler Level

Turbine Speed

ot
,

Fuel Feed Water

RO = R

Figure 1.

example, the relationship between fuel-flow and boiler
level can be directly perceived from the interface
objects. Moving the "fuel” weight to the left increases
the rate of fuel-flow and causes the boiler level to
decrease and the turbine speed to increase.

Generally, it is the designer's skill and
experience in selecting the context for a problem
which determines the interface's effectiveness. This
process of selection lacks quantitative models which

BOILER LEVEL Tarkdue Spocd

w

-]

Figure 2.

would support a consistent approach. Models like the
Ecological Interface Design (EID) [26] provide a
framework for designers to ask questions that reveal
the "invisible" constraints and structures which need to
be made "visible". However, there currently is no
mechanism for explaining how to make these visible
or for quantitatively comparing the effectiveness of a
representation.

The Automated Graphical Analog
Presentation  Environment (AGAPE) is a User
Interface Design Tool (UIDT) that will assist the
interface developer with the selection of the initial
representation.  The initial representation will then be
used to generate an interface specification that can
then be prototyped. In order for AGAPE to design the

Graphics Interface "95 L]

context representation for effective DM  and
visualization interfaces, a clear and concise model of
the user's capabilities and limitations, and the problem
task and dynamics is necessary.

User Model and Cognitive Difficulty

Lewis ([9], [10]) proposes an ecological
model of Interactive Situations which characterize the
"directness" and "intuitiveness" of an interface. In an
Interactive Situation, a situation theoretic framework
[1], [6] is used to model a problem representation, and
the interactions of a user are represented based on an
Ecological Information Processing (EIP) model. An
interface design is treated as a situation that is defined
in a recursive hierarchy as a typed relation between a
set of typed objects. The user's actions are added as
state transitions between related situations. Together
these two models provide a framework for deriving a
useful measure of the cognitive difficulty associated
with a particular interface design.

From the user's perspective, the problem
space for the task possesses a certain complexity, size,
and shape. Applying situation decomposition
methodology [9] to this structure can be expressed as a
set of variables (relations) that discriminate states and
constraints which govern changes in the values of
those variables.  Through the selection of the
appropriate  interface representation the abstract
problem can be conveyed to the user in a "cognitively
streamlined" manner. The representation for the
interface situation should match the actions and effects
of the abstract problem task with the user's
attunements  (expectations about dynamics and
structure) and their ability to discriminate states
through the use of simple perceptual operations.

The relations to which a user is attuned are
determined by the types of objects and relations
involved in the interface situation. For example, a
situation involving physical objects could be
constrained by attunements to exclude events in which
two objects occupy the same location at the same time.
Additional constraints, can then be imposed on a
situation that is already constrained by attunement. In
the game of chess, for example, a naive player's
attunements would preclude pieces changing in color
or shape, while the constraint preventing a knight from
moving three squares in a line would require
instructions.

It is convenient to think of user tasks as
involving three problem spaces:

l. An intuitive space, AeS, detined by the problem
environment, S, and its attunements, A.



2. A formal problem space, CeS, defined by the task
constraints, C,
3. and an effective problem space, feAeS, in which the
intuitive space is augmented with the instructions,
f, necessary to match the problem space of the
task.
If we presume constraint through attunement to be less
difficult than constraint through instructions we can
rank representations for task difficulty by ordering
them according to the difficulty of their instructions.
A simple measure of this difficulty is provided by
adopting the assumptions of Larkin and Simon [8],
and Casner[4]: the difficulty of using a rule is
proportional to the perceptual/ memorial operations
needed to determine its applicability.

As a result, a variety of analogous interface
representations may be matched to a particular
abstracted problem description.  The process of
designing the interface representation for the problem
then becomes the selection of the least complex
analog. The expression:

CeS =feAeS'

identifies the set of possible analogies for the problem
space CeS.  Analogs are constructed by choosing an
appropriate situation, S'; identifying the intuitive
problem space, AeS'  that §' determines; and
composing the instructions, f, which are needed to
make the spaces congruent. Although this process is
conceptually simple, determining the set of applicable
attunements, A, and finding the simplest expression
for the instructions, f, are difficult.

Interface Support of Problem Task

If problem-solving is modeled as traversal
through the problem space, then the goal of the task is
representable as a target-state. The specification of a
particular target-state, or equivalence class of states, is
represented as a set of constraints which must be
satisfied. The user's problem-solving task is thus
represented as a list of additional constraints in the
representation of the abstract problem. This.produces
a unified representation of the problem space, and the
problem task.

The design of interfaces that support a
particular problem space and task can be divide into
two styles [16]. The first is the integration of
information in a presentation involving the use of
primarily static graphics, such as charts, maps and
diagrams.  There is a long and robust history of
research into effective graphic design techniques for
this type of presentation. (e.g. [3]. [15]. [16], [20],

Graphics Interface ’95 =

225

[21], [24]). In most cases this literature focuses on
case studies which examine what makes a display
"good” and then generalizes a collection of rules for
use as guidelines in designing further graphics of the
same type. Despite extensive and detailed libraries of
guidelines, it is generally still the expertise of the
designer that is the telling factor in the creation of
effective data visualizations and presentation graphics.

The second category is oriented toward highly
interactive problem-solving in which the displays tend
to be more dynamic and require a greater degree of
DM. The objects and dynamics in Highly-Interactive
Graphic User Interface (HI-GUI) directly present the
features and dynamics of the underlying system.

The design of interfaces to support these two
categories needs to move beyond the paradigm of the
Conventional GUI. Conventional GUIs tend to be
composed of standard graphic objects like push-
buttons, scroll-bars and text-windows that are
combined at the task-level into a user interface. The
integration of information in the display is only
through pre-specified relations, such as the mapping
between a scroll bar and movement through a text
document, or through the addition of application-
specific objects and behaviors, which are expensive to
produce and severely limited with respect to cross-
domain re-usability. The benefit of this type of
interface lies in the relatively simple, and rapid,
construction from a standard toolkit. The transfer-of-
training benefits for the wuser arises from their
familiarity with a small number of manipulatable
analogs which are consistent across applications. In
other words, knowledge of push buttons and scrollbars
is independent of knowledge of the applications in
which they are used.

This kind of interface can be considered as an
analogy of fixed-components which are composed
according to a set of fixed synthesis rules, style-
guidelines, and standards. As aresult, it is difficult for
these interfaces to display complex constraints and
inter-relationships in their underlying system without
extensive intervention by the designer. This
intervention is exactly what the use of a development
tool is attempting to avoid.

GUI Development Systems

Many automated approaches to graphical
interface presentation design determine the display
largely through the character of the data. Static-
display generation systems (e.g. APT [14]) work this
way. Systems where the display is additionally
determined by a query or user-task analysis include



226

BOZ [4]. SAGE [19], and VIEW [12],[13]. These
systems assist the designer by evaluating alternative
designs from a limited library of objects or relations.

The integration of design tasks and problem
modeling allow for the possibility of automating a
larger part of the development process. Such an
integrated tool requires merging the UIMS's support
environment and automatic interface generation
capabilities with graphic design techniques, interface
design heuristics, and user and task modeling tools.
An integrated tool that merges these capabilities
would allow the implications of selecting a particular
representation to be automatically incorporated into
the design of the presentation. Similarly, the use of
special purpose toolkits will provide a means to
automatically enforce standards and style guidelines.
For example, rules and techniques from graphic
design, interface design, standards compliance, human
factors and user modeling could be added through
modular libraries. The reduction of the required
breadth of expertise of the designer allows them to
concentrate on modeling issues for the system which is
being represented and the tasks and goals of the user.

Generally, any system which attempts to
automate the design process for the representation and
presentation of graphical interfaces, has certain
fundamental considerations which need to be
addressed:

I. The interface must be constructed and
designed modularly. In order to possess
the flexibility, variability and the
possibility of generating novel display
formats, the representation must be
constructed from a library of primitives
using substitution and compositional
rules.

The library of primitives must have a basis in
the user's perceptual capabilities and the
cognitive and graphic design literature
([51: [14]; [4]; [23]).

3. The system needs to create a match between
the graphical objects being used in the
presentation and the objects in the
original problem space. The mapping
from problem-space to interface-space
needs to be made intelligible to the user
[9].

4. User-task and viewing goals need to be
represented in the problem space. This is
equivalent  to  the  concepts  of
Representational Aiding, and the current

(3%

emphasis in user-centered design (e.g.
[26]). The user's task is taken into
account during the initial specification
and analysis and is thus pervasive
throughout the development process.

5. A method needs to be provided for
evaluating, comparing, and verifying the
cognitive efficiency of a particular
representation.

6. A mechanism for the designer to modity and
refine the display must be available.
Unit-testing and adherence to style or
standard guidelines may require changes
to the automatically generated interface.
This is a standard component of
application development cycles

The AGAPE system represents the integration of these
system requirements with the models for situation
theoretic problem solving and EIP.

The AGAPE System

AGAPE is a UIDT based on a situation
theoretic model of a problem and a user's task, and on
an EIP (Ecological Information Processing) model
([9]. [10]) of the user. The Interactive Situation model
is used to generate and evaluate alternative design
representations for a particular problem definition.
The input to the AGAPE system consists of a situation
theoretic description of the problem situation. This
description includes all relevant objects, attributes or
features of the objects, the relationships among the
objects, and the rule-like constraints which govern
state-change in the problem solving space. The output
is an interactive graphical situation which is rendered
into a prototype graphical interface. Users interact
with this interface-situation to explore alternatives,
plan, and solve problems that involve the original
situation.

The AGAPE system model is designed to
automate the task of reformulating a problem space
representation by finding analogies which optimize the
user's problem-solving performance.  AGAPE is
distinguished from earlier automatic  graphical
presentation systems by its ability to graphically
convey the possibilities and restrictions on actions and
their subsequent effects.

The process of engineering the design
representation can be thought of as constructing an
analogous problem-solving situation to the original
task-situation.  The interface analog preserves the

Graphics Interface '95 =



relevant distinctions among objects, attributes, and
relationships  which  were specified in the task-
situation. In addition the analog is isomorphic to the
task-situation with respect to the problem-space
graphs.  Automated methods of representational
change that change the problem structure have been
shown to be effective in improving machine problem-
solving performance [18].

Although these methods can also be applied
to human problem-solving, there is another class of
reformulations that involve the context, but not the
structure of the problem. This form of reformulation
is structurally isomorphic and is related to analogical
creation. Representation  design  for analogical
problem representations have also been shown to
enhance human problem-solving performance ([11],
[&]). The goal of the proposed system is thus to
engineer a representation that will enhance human
problem-solving. rather than automated problem-
solving.

To this end, three principles have been
defined and incorporated into this system. The first
principle states that those relations or properties which
are attuned to by human perceptual capabilities may
be substituted for abstract problem constraints.
Problem constraints are  explicitly-stated, non-
perceptual rules that characterize the relations and
dynamics of a problem space. Attunements are
implicit characteristics of the representation which do
not require explicit description.

The second principle is the replacement of
non-perceptual constraints by temporal shifts in the
interactive situation.  The interface dynamics are
detined to visibly portray constraints of the problem
space through transitions between interactive-situation,
and problem-space states.

The third principle is the reduction of the

227

decomposition. The problem representation is then
written in canonical form as a constrained situation
type,

The problem situation is represented
internally as an N-tuple in which each dimension is an
object's attribute in the problem space. The dynamics
of the problem are treated as transitions between states
and are specified by a list of actions. Since this list of
actions completely determines the behavior and
dynamics of the system, the automata can be created
as a Finite State Automata (FSA) and the type-
declaration is closed under the set of actions.

AGAPE's input from the Problem Editor can
then be expanded into a FSA which represents the full
problem-space that a user may need to interact with in
order to accomplish their task. This graph is important
for the evaluation of an analogical situation. Analogs
must have at least the same states and transitions as the
abstract problem. For a particular analogical situation,
the use of explicit rules and property transformations
can prune particular states and transitions.  This
enables an analogical situation to match a large variety
of problem situations. Pruning "un-wanted" edges and
states through the specification of explicit instructions
is accomplished by adding these prescriptive rules to
the "error term", f. Property Transformations shift the
properties and relations of the constraints, C, in the
problem situation to the attunements, A, of the
analogical situation, S'.

The FSA and the input description are then
passed to the "Mind's Eye Planner" (MEP) module. It
is here that the representation analogy is constructed
through a three phase process. Initially the "Structural
Generator” creates a viable state-space. This state-
space definition is then passed to the "Relational
Matcher" which introduces new properties and
relations that operate on its objects. This composition

necessary for the problem-solver
to apply over the course of the
task.
The AGAPE Architecture

The overall AGAPE
system organization is
diagrammed in Figure 3. The
functional organization of the
system begins with the designer

instructional complexity that is
Problem editor

[Type Catalog]

Minds Eye Planner:
/ Relations
Structural \

\

Renderer

iraphic
[_ibrary

Evaluation

Analog Catalog

using the Problem Editor to enter

Library of state and translation functions

a problem specification.  This
specification is the result of an

Figure 3. Automated Graphical Analog Presentation Environment

interactive  problem and  task

Graphics Interface '95

[




228

is then evaluated by the "Evaluation Module."
Evaluation of the difficulty associated with the
proposed analogical situation is based on several
criteria. These criteria include the complexity of the
necessary instructions and the cognitive difficulty
associated with the mappings, objects and relations
that are proposed in the analogical situation. This
generate-and-test  process is then repeated until
applicable analogies are no longer generated. At this
point, the "best situation seen" (the one scoring lowest
in the complexity evaluation) will be passed to the
Rendering Module to be prototyped.
Form Gender le

Saturation

Shape Color Pattem

//“"“ Key \Fm/h

Spatiad Dimension  Label Brightness

Circle’

/me

Bar Box

Figure 4. Analog Catalog Hierarchy

The Structural Generator attempts to create an
analogical situation that is isomorphic in structure to
the original problem. The contents of the Analog
Catalog are substituted for the dimensions of the
abstract problem specification. These dimensions are
then composed into objects which will participate in
the analogical situation. This non-instantiated object
definition is only structural and is treated as a "type-
class" for new objects. The dynamics, properties and
relations that will operate on the object will be
included in the next stage (relational) of generation.

The Relational Matcher accepts the structural
definition of the analogical situation from the
Structural Generator and introduces properties and
relations to the object-type declarations. The
primitives tfrom the Analog Catalog are defined by a
set of permissible operations, a set of limitations or
constraints on their use, and a set of properties. The
Relational Matcher takes these sets and creates a
cross-product  between  the primitives and the
constraints listed as part of the constrained situation
type. The contents of this cross product are then tested
for admissibility into the situation or representation
that is being defined.

A property is admissible to the analogical
situation if it 1) operates on some grouping of the
primitive dimensions that are actively mapped and 2)
if it equates to a constraint, property or definition of

the abstract problem. The matching of relational
properties follows the general procedures outlined in
VanBaalen [25]. This methodology defines a
"relation” to be a composition of the properties which
characterize it. For example, an ordinal relation is
transitive, non-symmetric, and non-reflexive.  This
hierarchy allows relational transformations which shift
characteristics from explicit definitions to implicit
properties. For example, a binary relation could be
transformed into a single parameter function that maps
one value to the other. In this way the fixed size
property becomes subsumed into the character of the
function.

Once a structure has been proposed and the
admissible relations determined, the Evaluation
Module is invoked. The Evaluation Module generates
a difficulty score associated with the cognitive
complexity involved in the analogical situation.
Derived from the model of Cognitive Difficulty, the
measure  of difficulty examines several key
components of the analogical situation: the mapping
from abstract problem to analog; the inherent
complexity of the objects and their attributes; and the
complexity of the necessary instructions.

Within the Analog Catalog (Figure 4), cach
analogical primitive has an associated structure in

which the parameters for its appearance and
functionality are defined. The primitives are
organized into two  classes:  Atomic  and
Compositional. Atomic  primitives  consumne

dimensions of the problem space when selected for
use. Compositional Primitives collect primitives (as
attributes) into a unified object. For example the Hue
primitive is Atomic because it requires the mapping of
a problem-space dimension. The Color Primitive
however, is Compositional because it combines the
renderable  properties of Hue, Saturation and
Brightness into a single general object that is then used
as a sub-component of other Compositional Primitives.
"Color" does not force dimensional mappings, but
provides a default mechanism both for rendering the
un-used components and for modularizing the objects.

Example

An example application from AGAPE may
help illustrate the structural composition: a situation
where there are temperature sensors at four chemical
baths in a manufacturing process and three levels of
alarm (None, Notify and Critical). A Notify alarm is
upgraded to Critical if it is not acknowledged in a
fixed time period. See Figure S.

Graphics Interface '95 -




229

Dimension: Cardinality
Locations: Nominal 4 (Bath-1; Bath-2; Bath-3; Bath-4)
Alarms: Ordinal 3 (None, Notify, Critical)
Temperature Interval 4 (baths-temperature)

Operator action: Acknowledge the alarm. Alarm status => None

Figure 5. Example Structural Creation

The analog catalog from Figure 4 will be used
to develop the representation for this problem. For
brevity, only the Point primitive, with its associated
sub-components, will be expanded. The sub-
components of Point are unable to fully consume the
dimensions of the problem. Thus, this example will
only produce variations of a Point-based display. A
"Point" is defined as having two spatial dimensions, a
shape, a label, and a color:

Point(RATIO:X; Y, NOM:Label,

Shape(NOM:Form, BINARY :Gender),

Color(NOM:Hue, ORD:Sat, ORD:Bri)
The structural matcher will attempt to create a
mapping with the three dimensions of the original
problem:

Type (Location(N-4), Alarm(0-3), Temperature(I-4))
Mappings that satisty this condition fill slots in the
Point class with all three of the problem dimensions.
A "-" indicates a default mapping for the dimension.
Among the numerous mappings are the following
analogical structures:
= Point(X(1-4), -, -, -, Colr(Hue(N-4), -, Bri(0-3)))

-- Temperature is along the x-axis, the tank is

color-coded and the Alarm level is the
Brightness.
=Point(X(1-4), -, -, -, Colr(Hue(N-4), Sat(0-3), -))
-- Temperature is along the x-axis, the tanks
are color coded and the Alarm is the
Saturation
= Point(X(1-4), -, Lubel(N-4), -, Colr(Hue(0-3), -, -))
-- Temperature is along the x-axis, tanks are
labeled by a string and the Hue is the
Alarm level.
= Point(-, Y(1-4), -, Shape(Form(N-4),-), Colr(-,-, Bri(0-3))
-- Temperature is the y-axis, tanks are
identified by Shape, the Alarm is the
Brightness of the default color.
= Point(-, Y(1-4), -, Shupe(Form(N-4),-), Colr(-,Sat(0-3),-)
--Temperature is along the y-axis, the tanks
have unique shapes and the Alarm is the
Saturation of the default color for the
objects.
Point(-, Y(1-4), -, Shape(Form(N-4), -), Colr(Hue(0-3),-,-))
-- This permutation is rendered in Figure 6.

Alarm and Temperature
‘Temperature
300.0 . . : . —
2000 m —
| q
1000 — o B
0o P S S S S
Tankl  Tank2 Tank3  Tankd
O wuwm - Click on object
m X To acknowledge
Notify Alam
M oo
Figure 6. Example Alternative Rendering

For each mapping a set of relations would be
introduced based upon the scaling, interactions, and
explicit constraints included with the original problem
specification.

Conclusions

AGAPE's methods for constructing and
assessing the difficulty of analogs are selected for their
ability to successfully identify and assess difficulty in a
broad sample of previously studied problem
representations. AGAPE's methods successtully
identify a block-stacking variant of the Tower of Hanoi
as its easiest problem representation. AGAPE's
methods also correctly order isomorphic versions
corresponding to the Monster-Globe (move), and
Monster-Globe (change) problems [10].

Presented with the General Job Shop
scheduling problem, AGAPE's methods pick the
widely used Gantt chart as the most suitable
presentation.  Also, AGAPE's methods discover a
novel representation of a keyed block-stacking task to
fit the more tightly constrained Flow Shop problem [9].
AGAPE's methods also find the keyed shapes shown by
Bauer and Johnson-Laird [2] to aid subjects in making
disjunctive inferences as an effective problem
representation. For static data presentation AGAPE
will choose representations similar to those preferred
by BOZ [4] or Makinlay [14] because AGAPE
embodies the same criteria for selecting perceptually
efficient representations.

An important contribution of this system is its
mechanism for constructing, matching and testing
alternative representations.

Acknowledgments
This work was supported by NSF grant IRI-902060)3.

Graphics Interface '95 =




230

References:
1. Barwise, J., & Perry, J. (1983). Situations and Attitudes.

o

]

‘N

Cambridge: MIT Press.

Bauer, M., & Johnson-Laird, P. (1993). How Diagrams
can Improve Reasoning: Mentul Models and the diffi-
cult cases of disjunction and negation. Psychological
Science. Volume 4. Number 6. American Psychological
Society. pp. 226 - 230.

Bertin, J. (1981). Graphics and Graphic Information
Processing. Berg, W., & Scott, P. (Tr.) publisher:
Berlin. New York.

Casner, S. (1991). A Tusk-Analytic Approach to the
Automated Design of Graphic Representations. ACM
Transactions on Graphics. Volume 10. Number 2.
April. pp 111 - 151

W., & McGill, R. (1984).

Perception: Theory, Experimentation and Application

to the Development of Graphical Methods. Journal of

the  American  Statistical — Association.

Volume 79. Number 387. pp. 531 - 553.

Cleveland, Graphical

September.

6. Devlin, Keith. (1991). Logic and Information. Cambridge

University Press. New York.

7. Johnson, S., Barwise, J., & Allwein, G. (1993). Toward a

rigorous Use of Diagrams in Reasoning about
Hardware. pp. 169 - 212 In Allwein, G., & Barwise, J.
(Eds.) Working Puapers on Diagrams and Logic. Pre-
print Series. Indiana University Logic group. May.

8. Larkin, J.H. & Simon, H.A. (1987). Why « diagram is

10.

. Lewis, M., & Toth, J.

(sometimes) worth ten thousand words. Cognitive
Science. Volume 11. pp. 65 - 100.

Lewis, M. (1991). Visualization and Situations. In
Barwise, J., Gawron, M., Plotkin, G., & Tutiya, S.
(Eds.) Situation Theory and its Applications. Stanford,
California. CLSI Publications.

Lewis, M. (1992). Why are situations hard?, Proceedings
of the Fourteenth Annual Conference of the Cognitive
Science Society, Bloomington, IN, 939-944.

(1994). Situated Cognition in
Diagrammatic Reasoning. AAAI Technical Report on

Reasoning with Diagrammatic Representations. SS-92-

02. Menlo Park, California: AAAL pp. 47 - 52.

M.. Barnett, J., & Kramlich, D. (1982).

Context-Sensitive, Graphic Presentation of Informa-

tion. pp. 181 - 188. In Journal of the ACM, Siggraph.

Computer Graphics Volume 16. Number 3. July.

Friedell,

. Friedell, M. (1984). Awtomatic Synthesis of Graphical

Object Descriptions. Computer Graphics. Volume 18.
Number 3. (Proceedings ACM SIGGRAPH '84) July.
pp- 53 - 62.

Mackinlay, J. (1986). Automating the Design of
Graphical Presentations of Relational  Information.

16.

17.

18.

19.

Graphics Interface ’95

ACM transactions on Graphics. Volume 5. Number 2.
April. pp. 110 - 141.

. Marcus, A. (1987). Graphic Design for Computer

Graphics. pp. 320 - 326. In Baecker, R. & Buxton, W.
(Eds.).  (1987).
Interaction: A Multidisciplinary Approuch.

Readings in  Human-Computer
Morgan
Kaufmann Publishers, Inc. San Mateo, California.
Marcus, A. (1992). Graphic Design for Electronic
Documents and User Interfaces. ACM press, Tutorial
Series. Addison Wesley. New York

Newell, A. & Simon, H.A. (1972). Human problem
solving. Englewood Cliffs, NJ: Prentice-Hall.

Riddle, P. (1990). Automating Problem Reformulation.
In Benjamin, D. (Ed.) Change of Representation of
Inductive Bias. (pp. 105 - 123). Kluwer Academic
Publishers. Dordrecht.

Roth, S., Kolojejchick, J., Mattis, J. & Goldstein, J.
(1994). Interactive Graphic Design Using Automatic

Presentation Knowledge. In Human Fuctors in
Computing  Systems, ACM-CHI 94 Celebrating
Interdependence. (pp. 112 - 117). Boston,

Massachusetts. April 24 - 28, 1994.

Schmind, C. (1983). Statistical Graphics: Design
Principles and Practices. John Wiley & Sons. New
York.

Seligmann, D., & Feiner, S. (1991).
Generation of Intent Based 3D Illustrations. pp. 123 -
132. In Proceedings ACM SIGGRAPH '91: Computer
Graphics. Volume 25. Number 4. July 1991. Las
Vegas, NV. July 28-August 2.

Automated

. Shneiderman, B. (1992). Designing the User Interfuce:

strategies for effective Human-Computer Interaction.
Second Edition. Addison-Wesley.

. Spring, M. & Jennings, M. (1993). Virtual Reality and

Abstract Data: Virtualizing Information. Virtual
Reality World. Volume 1. Number 1. Spring 1993. pp.

c-m.

. Tufte, E. (1983). The Visual Display of Quuntitative

Information. Cheshire, Connecticut: Graphics Press.
Van Baalen, J. (1992).
Specialized Representations.
Volume 54. pp. 121 - 198.

Automated Design of
Artificial Intelligence.

. Vicente, K., & Rasmussen, J. (1992). Ecological
Interface Design: Theoretical Foundations.  [EEE

Transactions on Systems, Man,
Volume 22. Number 4. July 1992.

and Cybernetics.

&



