
231

A Flexible Gesture Interface*

Richard Watson and Paul O'Neill
Computer Vision Group,

Department of Computer Science, Trinity College, Dublin 2. (IRELAND)

email: Richard .Watson@cs.tcd.ie
Tel: +353-1-6081435, Fax: +353-1-6772204

Abstract

This paper describes an interface employing ges­
tures to improve the utility of interaction between a
user and an artificial world populated by graphical
objects. The interface is based on a novel technique
for recognising gestures. Gestures are represented
by what are called approximate splines, sequences of
critical points (local minima and maxima) of the mo­
tion of each degree of freedom of the hand and wrist .
This scheme allows more flexibility in matching a ges­
ture spatially and temporally and reduces the com­
putation required, compared with a full spline curve
fitting approach.

The recognition process remains logically indepen­
dent from the client application and the producers
of its input data. The communications/messaging
protocol has been designed and demonstrated to al­
low the client , gesture interface and data gathering
processes to run on a heterogeneous distributed sys­
tem. Further independence is afforded by separating
the virtual world application specific tokens from the
physical gestures they are mapped onto, allowing for
arbitrary application support for gestures.

Keywords: Gesture Interface, Gesture Classification,
Virtual World Commands.

1 Motivation

A simultaneous improvement in the enabling tech­
nologies and the need for gesture based input to com­
plex applications were the motivating factors for the
recent interest in gesture interfaces. This interest
and relevant research is documented in a previous

'This research was fund ed by the Commission of t he Eu­
ropean Communities under the ESPRIT 11 Framework

paper [1] . The present . paper concentrates on the de­
sign of a gesture interface developed as a response to
that work.

The Gesture Interface which has been developed
as part of the GLAD-IN-ART project, provides this
increase in bandwidth in communicating with appli­
cations. The present system can recognise static ges­
tures, posture-based dynamic gestures, pose-based
dynamic gestures, a "virtual control panel" involv­
ing posture and pose and simple pose-based trajec­
tory analysis of postures. Training the gesture set
is accomplished through the interactive presentation
of a small number of samples of each gesture. The
usefulness of such indirect manipulation as a mode
of interaction is demonstrated by the use of the Ges­
ture Interface to control virtual world actions such as
navigation, panning and zooming of viewpoint and
graphical object manipulation.

2 Approaches to Recognising
Gestures

2.1 First Steps

One of the earliest posture recognition efforts was
by Grimes [2], whose Digital Data Entry Glove was
designed specifically for recognising the signed al­
phabet. Carefully placed sensors registered fingertip
contact , flexion of specific joints, and hand attitude.
Posture recognition was hard-coded into the control
electronics. The advantage of this technique is rapid
and robust posture recognition . The disadvantage is
inflexibility, in that only those postures it was de­
signed for can be recognised.

In 1980, Bolt used a prototype Polhemus 6D pose
tracking system for sensing the direction of a point
in his "Put-that-there" system [3], The sensor was
attached to the user's wrist and pose information

~
~~~ Graphics Interface '95 



232 

enabled the system to (at least) estimate where he 
was pointing at. 

2.2 Template Matching 

VPL's ground breaking work in 1987 [4J used a 
template maching maethod for recognising postures. 
VPL's software also provided hysteresis values for 
each sensor value to widen the range of the match 
once a posture has been recognised , helping the user 
to hold a posture after recognition. Lipscomb [5J also 
used a template matching based method for recog­
nising used for recognising stroke, i.e. 2D, gestures. 
This was a variant of the usual technique where mul­
tiple templates were maintained for each gesture, 
corresponding to increasingly coarse resolutions of 
sensor values. To approach gesture recognition using 
a template matching scheme, gestures would have 
to be recognised as sequences of postures. In this 
technique, trajectories of the degrees of freedom are 
not modelled , hence spatial scaling would be impos­
sible, and temporal scaling although possible, would 
be somewhat inflexible. 

2.3 Neural Networks 

Neural networks have provided several somewhat 
successful systems, notably Fels ' [6J. Fels' work con­
centrated on building a gesture-to-speech interface, 
using a VPL DataGlove connected to a DECtalk 
speech synthesiser via a series of back-propagation 
model neural networks. Brooks [7J also reports use of 
a neural net, (in this case a Kohonen model) to con­
trol a mobile robot by interpreting DataGlove mo­
tion. In ways, this surpasses Fels' work, particularly 
by incorporating dynamic gestures into the system's 
vocabulary. In [8J, Beale and Edwards use a mul­
tilayer perceptron model to classify input into one 
of five postures, taken from the American Sign Lan­
guage. 

2.4 Statistical Classification 

Rubine [9J created not only a gesture recognition sys­
tem, but GRANDMA 1 , an object-oriented toolkit for 
building gesture-based applications based on a statis­
tical pattern matching approach. The gestures con­
sidered in his work consist of the two dimensional 
path of a single point over time that may be input 
with a single pointer, such as a mouse, stylus or touch 
pad . Sturman [lOJ extended Rubine's system to deal 

1 Gesture Recognisers Automated in a Novel Direct Manip­
ulat ion Architecture 

with multi-path gestures using a VPL DataGlove. 
Significantly, the feature analysis was extended to 
three-dimensions and modified to permit continual 
analysis and recognition without explicit start and 
end points. 

2.5 Discontinuity Matching 

The approach taken in this project is a novel one. 
Figure 1 shows how an MCP 2 joint changes as the 
hand posture changes . The features extracted in this 
system, are critical points of the motion of a degree 
of freedom or discontinuities. A discontinuity is a 
peak, trough, or either the start or end of a plateau . 
This first derivative representation is reminiscent of 
a spline approximation to a curve, but without the 
intermediate knots, (control points) . The advantage 
this approach has over the classical template match­
ing approach is that the relevant features are motion 
oriented, necessary for a system that performs ges­
ture recognition. Also, since the discontinuities need 
not be matched at precisely the same points in time 
or space, the system is robust to scaling. 

The other advantage of representing merely criti­
cal points is that the system is less susceptible to in­
put noise. Analysing the input data from the propri­
oceptive glove and the pose calculation module, dis­
continuity extraction can be performed by analysing 
the angular velocity of a degree of freedom. Hand 
jitter is modelled simply by high frequency motion , 
thus the critical points are extracted using a low-pass 
filter. 

The classification stage is a template matching 
process where sequences of discontinuities for each 
degree of freedom are compared against those ex­
tracted. The interface module maintains a set of 
gesture templates, composed of sequences of discon­
tinuities for sequences of degrees of freedom. The 
templates may be viewed as the axes of a multi­
dimensional gesture space; thus the aim of the clas­
sifier is to firstly calculate the axis to which a given 
set of observed motion discontinuities is closest , and 
then to decide whether this is close enough given a 
set of distance metrics. 

The first process of mapping a set of observed dis­
continuities to a gesture subspace i.e. matching se­
quences of discontinuities, can be formulated as a 
finite state acceptor, shown here as the 5-tuple, M : 

M = < Q,I , b,qo, F > 

M accepts an instance of the correct discontinuity 

2Metacorpophlangeal Joints, or Knuckles 

Graphics Interface '95 



CII 
:l 
iV 
> 
E 
o 
"C 

f 
u.. 
'0 
CII 
2:! 
Cl 
CII a 

peak 

peak 

/ .mugh start of plateau 

/ I 
/ I 

/ I 
I 
I 
I 
I 
I 
I 
I 

: Observations start 
>-: ---- from time to. 
to Time 

end of plateau 

Figure 1: Time-space pattern of a MCP joint in per­
forming a gesture 

pattern , for a degree of freedom, j and a gesture 
class, c, where the state set, Q, is the set of partial 
pattern matches, the input alphabet, J , is the set of 
discontinuity types, the transition function, 0, is de­
termined by the temporal sequence of discontinuities 
trained for this template, the initial state, go is the 
first discontinuity in the sequence, and F ~ Q, ac­
ceptable halting states, is the final discontinuity. An 
example discontinuity pattern and its representation 
in t his formulation is shown in Figure 2. A fur ther 

Dof 

st plateau end plateau 
e--e 
I 

I 

/ 
/ 

e min 

Time 

m in st plateau end plateau 

,.---.. ~~ ~/~ -\'-') ('--/) (~) (C» 

Figure 2: Template Discontinuity pattern for a single 
degree of freedom and a labelled digraph correspond­
ing to its FSA. 

stage calculates whether the gesture is acceptable ac­
cording to several fit metrics. T he computation of 
these metrics is desctibed in a further paper [11J . 

." :\ 

233 

3 The Gesture Interface Mod­
ule 

The high-level design of the Gesture Interface Mod­
ule (GIM) is shown in (Figure 3) . The GIM consists 

I !,hyslcal Nom. 
Database 

Application Spednc I 
Name Dalaba.se 

I 
Gesture Interface Module (GIM) C lient Application 

I Gesture Recoanltlon I - -

I Gcstu reTrainiDI I ::a ::a 
(") (") 

I Disk 110 I - -

1 
j 

GIM Conngu ratlon 

Wrist Poses Hand/Ann Postures 

Figure 3: The Gesture Interface Module. 

of a gesture recognition module, a gesture training 
module and an I/O module which handles commu­
nication with the client application (in this case the 
ART subsystem). 

3.1 Inputs 

The Gesture Interface Module receives three streams 
of input : 

- A stream of time-stamped homogeneous trans­
formations describing the pose (position and ori­
entation) of the wrist with respect to the Control 
Space Base Frame. This input stream is gener­
ated by the GESTURE (POSE) subsystem. 

- A stream of time-stamped values describing the 
posture of the hand and arm. Each value gives 
the magnitude of a particular degree of freedom 
of hand/arm posture. This input stream is gen­
erated by the GLAD-IN subsystem (ie. the in­
strumented glove and exoskeleton) 

- A st ream of commands and responses to I/ O re­
quests. This input stream is generated by the 
client application . The client application con­
trols the high-level behaviour of the Gesture In­
terface Module and provides it with I/O ser­
vices. These I/O services are used for commu­
nication with the user (during gesture t raining, 
for example) . 

4
·'··· .. ··· 

:-:. Graphics Interface '95 



234 

3.2 Outputs 

The Gesture Interface Module produces two output 
streams: 

- Each time the Gesture Interface Module recog­
nises a physical gesture it sends at least two dis­
tinct gesture notifications to the client applica­
tion. These notifications are described in Sec­
tion 5. 

- It also responds to commands received from the 
client application and generates I/O service re­
quests. 

4 Gesture Training Module 

The purpose of the Gesture Training Module is 
to semi-automatically compute a representation for 
each physical gesture. The details of the Gesture 
Training Module are described in [ll] . 

5 Gesture Notifications 

The Gesture Interface Module notifies the applica­
tion of the start and end of each gesture. It may 
also notify the application with update information 
concerning the point direction of the forefinger and 
the position of the tip of the forefinger3 . This section 
explains the mechanism through which gesture noti­
fications are issued by the Gesture Interface Module 
and the complementary mechanism through which 
these gestures are accepted by the application (in 
this case the ART subsystem) . 

5.1 Sender 

Gesture notifications are sent by the Gesture Inter­
face Module when a physical gesture is recognised. 
Notifications are only sent when a gesture has been 
positively identified. The two mandatory notifica­
tions are for the start and end of the gesture. 

The end notification may contain physical gesture 
parameters such as temporal and spatial scale. The 
Gesture Interface Module queries the application­
specific database (Fig. 3) to determine whether this 
information is required . Similarly it can determine 
whether the client application should be regularly 
updated over the course of a static gesture about 

3This information is calculated by the Gesture Interface 
using a kinematic model of the hand / wrist s upplied at startup 
by the client . 

the evolving forefinger tip position and point direc­
tion. This update information is supplied via the 
third type of gesture notification: the update notifi­
cation. 

It is possible that a gesture is incorrectly identified 
(confused with another gesture or with normal hand 
motion) . If this gesture is mapped onto an impor­
tant (difficult to reverse) action in the virtual world 
then the results could be disastrous. A simple mech­
anism has been provided whereby a physical gesture 
must be repeated n times consecutively before it is 
notified to the client application . The value of n is 
individually configurable for each application-specific 
gesture and in most cases is set to a value of 1. A 
more sophisticated future solution to this problem 
lies in system interaction with the user to validate 
his intentions. 

It is possible that overlapping gesture notifications 
will be produced by the Gesture Interface Module. 
This depends upon the gesture set used to train the 
Module. The Gesture Interface Module can be con­
figured to react in t hree different ways when this hap­
pens . 

1. Send the gesture notifications in any case. This 
is the default mode of operation. 

2. When an overlapping notification is generated 
send it , but first of all force a conclusion to the 
existing gesture by sending an end notification. 
This is in most cases a counter-intuitive mecha­
nism since it results in a gesture being notified 
as finished even though, physically, it is still con­
tinuing. 

3. Discard any overlapping gesture notifications. 

The latter two handling mechanisms are useful in 
the case where the client application's notification 
handling mechanism is not sufficiently sophisticated 
to deal with concurrent notifications. This is not the 
case with the ART subsystem. 

5.2 Receiver 

The portion of the Gesture Interface residing in the 
client application is responsible for acting on received 
gesture notifications. The following mechanism is 
typical: Each application-specific gesture type has 
three associated handler functions: one each for start 
notifications , update notifications and end notifica­
tions. Each function modifies particular fields in a 
global handler table. This table is examined regu­
larly and its state is used to drive (virtual world) 
actions. 

. ~ "1~ Graphics Interface '95 



For example, while the NAVIGATE ges ture is per­
formed a part icular varia ble in the handler table is 
set. The sta te of this variable is used to drive incre­
mental upda tes of the View Frame pose and Control 
Space Base Frame pose. 

5.3 Gesture Types 

The gesture notification handler is flexible enough 
to allow several different handling mechanisms to be 
used. 

Immediate Action The occurrence of this type 
of gesture causes a particular (virtual world) action 
to be performed exactly once. This type of gesture 
is useful in the creation and deletion of graphical 
objects and in the handling of mouse but ton clicks 
(when the hand is emula ting a point ing device) . 

Repeated Action (Modeless) Between the start 
and end notification of t he gesture a (virtual world) 
action will be performed repeatedly. The number of 
t imes the action is performed depends upon the num­
ber of times that the client application processes the 
handler table. This gesture type is useful for incre­
mental actions such as panning, zooming, pointing, 
navigating etc. 

Repeated A ction (Modal) The overall effect is 
t hat between the star t and end notification of the 
gesture a (virtual world) action will be performed 
repeatedly. When the start notification is received a 
once-off setup action will be performed in the virtual 
world . When the end notification is received a once­
off take-down action will be performed in the virtual 
world . 

This type of gesture is useful for controlling the 
grasp procedure on graphical objects. 

- The fixed pose relationship between the hand 
and t he grasped object is maintained by re­
peated (virtual world) actions. 

- T he fixed pose relationship between the hand 
and the graphical objec t is asserted a t the start 
of t he gesture (through the setup function). 

- The fixed pose rela tionship between the hand 
and the graphical object is deasserted at the end 
of the gesture (through the takedown function). 

Dynamic physical gestures are not suited to the re­
peated action (modal or modeless) mechanism. This 
is because the start notification for a dynamic ges­
ture is not issued until the gesture is completed. 

235 

Cooperating Gestures This type of gesture is 
useful for controlling rotation of the user 's view frame 
(in a Virtual World) . The rota tion is commenced by 
the ROTATE gesture (which as one of its parame­
ters specifies the axis of rotation) . The rota tion is 
terminated by the stop gesture. 

Meta-Gestures Gestures can be mapped to meta­
actions in the client application . An example of this 
type of gesture is quitting from the client application . 

6 Gesture Mapping 

In preceding sections the software design of the Ges­
ture Interface Module has been discussed in detail. 
It is now appropria te to consider how gestural inter­
action may be used profitably by a particular client 
application: the ART subsystem of the GLAD-IN­
ART system in this example case. 

6.1 Grasping an Object. 

The core idea of the GLAD-IN-ART system is that 
of direct manipulation where the interaction between 
the user 's hand and each virtual object is modelled to 
a high level of detail. However, in a simplified version 
of the system, a grasp gesture may be used for object 
manipulation. Under this approach , the user grasps 
a virtual object by clenching his fist beside (or inside) 
the object. The pose (position and orientation) of a 
grasped object is continuously updated (by the ART 
subsystem) in order to maintain a fixed rela tionship 
between the object pose and the pose of the palm 
of the user 's hand. The object is released when the 
user unclenches his fi st . 

6.2 A Point & Click Device. 

The hand may be used as a point ing device. The 
forefinger is used to specify a 3D vector. The ab­
duction angle of the thumb may be compared to a 
threshold , thus allowing motion of the thumb to map 
onto a "button click". The use of the hand as a point­
ing device will enable, in the fu ture, the operation of 
virtual buttons , sliders and pop-up menus. It will 
a lso allow the selection and de-selection of virtual 
and physical objects for subsequent (menu-selected) 
operations. 

Graphics Interface '95 



236 

6.3 Navigation of the Virtual World. 

The user may change the position of his point of view 
in the virtual world using the navigate gesture. The 
forefinger of the hand is used to specify a 3D vec­
tor (as in the point gesture). The user 's point of 
view, and the Control Space Base Frame (and there­
fore the representation of his hand) , is translated 
along this vector at a pre-determined rate4

. (Fig­
ure 4) . Translation stops when the navigate gesture 
is broken. The navigate gesture is distinguished from 
the point gesture by the position of the index finger 
(which , in the case of the navigate gesture, is aligned 
with the forefinger). 

View Frame 

Representation Space (RS) 

~~--."------,-----~ 
Control Space (CS) 

-- -----;:::>-1 

:~- r --l : RSBase 

L /- ~~ Frame 
- CSBase- I 

Frame ,/-
I 

j 

Figure 4: The user 's hand pose is tracked within 
the Control Space. However , the size of the Con­
trol Space may be small compared to the desired 
size of the Virtual World (or Representation Space). 
One solution to this problem is to scale all hand­
motions performed in the Control Space. A pre­
ferred solution is to allow the user to navigate around 
the Representation Space using gestures. The nav­
igate gesture specifies a translation which is incre­
mentally applied to the viewing frame and the Con­
trol Space base frame. Therefore, the positions of 
these frames change with respect to the Representa­
tion Space base frame. 

6.4 Controlling the View Frame Ori­
entation. 

The view frame orientation may be modified by in­
crementally rotating it around a user-specified axis. 
The user specifies t his axis by drawing a circle in 3-
space. The boundary of the circle is drawn by the tip 
of the forefinger of the hand . The drawn circle lies in 

4 It should be noted that t his means that the relat ionship 
between t he Control Space Base Frame and the Virtual World 
Base Frame is not fixed. This is appropriate due to the small 
size of the Control Space with respect to t he des ired s ize of 
the Virtual World . 

a particular plane. The normal vector to this plane, 
when translated to the origin of the view frame, is 
the desired axis of rotation. 

This approach, which may seem complicated at 
first sight, will allow the user to specify the desired 
rotation in a very intuitive fashion (Fig 5). 

The user draws a circle (using the motion of the wrist). 
This circle lies on a particular plane. The normal to this 
plane (when translated to the origin of the viewing frame) 
is the desired axis of rotation. 

Figure 5: The view frame orientation may be mod­
ified by incrementally rotating it around a user­
specified axis. The desired axis of rotation may be 
specified (indirectly) by a circular drawing motion of 
the forefinger. 

The view frame is rotated around the specified axis 
(at a pre-determined pace) until the user performs 
the stop gesture. 

6.5 The Creation & Deletion of Ob­
jects. 

The user may wish to interactively create and delete 
virtual objects. Gestures will allow him to do this in 
a very convenient and natural fashion . Because there 
is no menu-based interface at present , each graphical 
object type (eg. cube or sphere) will be created by its 
own associated physical gesture. There is , however, a 
single delete gesture. When it is issued, the graphical 
object closest to the hand is deleted from the virtual 
world. 

6.6 Finger-Spelling. 

The Gesture Interface Module can be used to recog­
nise the gestural symbols of the Irish Sign Language 
finger-spelling alphabet . These symbols can be used 
in the following ways: the alphabet symbols can be 

Graphics Interface '95 



mapped directly onto virtual world actions (Imple­
mented) or the alphabet symbols can be used to input 
text. 

6.7 Quitting from the System. 

At a given point in his work, the user may wish to 
quit from the GLAD-IN-ART system. This may be 
conveyed by a single gesture.5 

6.8 Reset. 

This command resets all the system coordinate 
frames to their initial poses. It can be used to undo 
the effect of zooms, rotates etc. 

6.9 Toggle Recognition Mode. 

This gesture is used to toggle on whether or not ART 
should act on received gesture notifications . Note 
that if the start notification for a given gesture in­
stance is acted upon then the end notification for 
that gesture will a lso be acted upon regardless of the 
state of the toggle switch. 

6.10 Viewpoint Manipulation. 

Gestures may also be used to directly invoke cer­
tain actions in the graphical representation (ART 
Graphic Presentation Library). The available func­
tions are: 

- Zoom in , Zoom out . 

- P an left , Pan right , Pan up , Pan down. 

- Advance point of view. 

237 

6.11 Viewpoint Control Panel. 

Static gestures may be defined to have a particular 
posture and a particular pose. More accurately, the 
pose of the gesture may be defined to lie within a 
particular (usually small) sub-volume of the Control 
Space. A Control Panel consisting of four such sub­
volumes (within the Control Space) can be imagined. 
The semantics attached to a particular static posture 
are modified by the sub-volume which the wrist is 
lying in. The semantics used in this situation can 
be related to viewpoint manipulation (Fig. 6) . Note 
the similarity between this idea and that of a virtual 
keyboard. 

Control Space Base Plane 

A Static gesture may be defined by both its posture and its pos ition. 

Posture Position Virtual World Action 

(I) N ZOOM_IN 
(I) S ZOOM OUT 
(I) E ROTATE VIEW MERIDIAN. 
( I) W ROTATE VIEW PARALLEL 

(2) N PAN UP 
(2) S PAN DOWN 
(2) E PAN RIGHT 
(2) W PAN LEFT 

(3) N ADVANCE VIEW 
(3) S RESET VIEW 

Figure 6: Through the use of the pose and posture 
of a static gesture it is possible to create a virtual 
control panel for viewpoint manipulation . 

- Rotate point of view meridian , Rotate point of 7 Conclusions 
view parallel. 

The functions are invoked incrementally at regular 
intervals throughout the duration of their associated 
static gesture. 

5 A facili ty o f t he Gesture Interface Module is that for com­
mands with actions that a re occasionally performed or difficult 
to reverse, like quitting , it may be stipulated that a number of 
consecuti ve repet itions of the physical ges ture be performed. 
A database of hardness scores for each comma nd is main­
tained, essentia lly the number of t imes the gesture must be 
repeated before a notification is sent to the client. T his is use­
ful in avo iding actio ns resulting from non-deliberate ac tion or 
a mis- recogni t ion from the interface . 

7.1 Results 

Up to twelve static gestures can be recognised : 
these are all gestures from the Irish single-handed 
deaf alphabet . The following posture-based dy­
namic gestures can be recognised : "Come Here"; 
The initial posture of this gesture is a fl at-hand. The 
forefinger is flexed and then extended again in one 
smooth motion . Variants of this gesture can also be 
recognised: the "Come Here 2" gesture recognises 
two consecutive flexion/extension motions of the 
forefinger , the "Come Here" gesture may be based 

Graphics Interface '95 



238 

upon the ring or middle finger instead of the index 
finger, the "Come Here Combined" gesture recog­
nises a flexion/extension motion of the index finger 
followed by a flexion/extension motion of the middle 
finger. Recognition of this variant demonstrates that 
sequencing constraints can be enforced across degree­
of-freedom boundaries. "Thumb Click". Thumb 
flexion and yaw is brought from its minimum value 
to its maximum value and then back to its minimum 
value in one smooth motion , while the other degrees 
of freedom maintain a static point gesture. This is an 
example of a cooperating gesture (Section 5.3): the 
static gesture for "point" must be active while the 
thumb-click is performed. 

The following pose-based dynamic gestures 
can be recognised based upon their discontinuity pat­
terns: Circle; the user traces a circle in space, with 
his wrist and X gesture; the user traces an X pattern 
in space with his wrist. 

Pose-based motions of the hand, have been recog­
nised through comparison of the start pose of a so­
specified posture-based static gesture with its end 
pose. By comparing the wrist 's end position with its 
start position a naive notion of trajectory is calcu­
lated. If that trajectory is exclusively parallel to one 
of x, y or z axes, the gesture is a candidate for a 
punch gesture. Similarly if, comparing the start and 
end orientations of the wrist the wrist is calculated 
to have rotated 900 along the major axis of the fore­
arm, it may be deemed to have 'turned over'. These 
gestures are termed Post-dynmaic static . 

7.2 Future Work 

Future work will concentrate on development of a 
more flexible discontinuity pattern representation 
which allows variability to be expressed elegantly and 
orientation-invariant descriptions of pose-based ges­
tures. At present the computational task of recognis­
ing gestures is O(n), where n is the number of gesture 
classes (or templates). A method of constructing a 
tree (or hash table) of partial discontinuity sequence 
matches would (in theory) reduce this complexity to 
O(1og n). The integration of the Gesture Interface 
with alternative graphical clients is another immedi­
ate need . 

References 

[1] Richard Watson. A Survey of Gesture 
Recognition Techniques. Technical Report 

.. " ~ 
. . -

TCD-CS-93-11, Department of Computer Sci­
ence, Trinity College Dublin , July 1993. 
Available at ftp://ftp .cs.tcd.ie/pub/tcd/tech­
reports/reports. 93 /TCD-CS-93-11 . ps. Z. 

[2] Gary J . Grimes. Digital data entry glove in­
terface device. Technical Report US Patent 
4,414,537, Bell Telephone Laboratories, Novem­
ber 1983. 

[3] Richard A. Bolt. "put-that-there": Voice and 
gesture at the graphics interface. Computer 
Graphics, 14, No. 3:262- 270, July 1980. 

[4] Thomas G. Zimmerman and Jaron Lanier. 
A hand gesture interface device. ACM 
SIGCHI/GI, pages 189- 192, 1987. 

[5] J .S. Lipscomb. A trainable gesture recogniser. 
Pattern R ecognition, 1991. 

[6] S. Sidney Fels and Geoffrey E . Hinton. Build­
ing adaptive interfaces with neural networks: 
The glove-talk pilot study. In Human-Computer 
Interaction-INTERACT '90, pages 683- 688. 
IFIP , Elsevier Science Publishers B .V. (North­
Holland), 1990. 

[7] Martin Brooks. The dataglove as a man-
machine interface for robotics . In The Sec­
ond IARP Workshop on Medical and Healthcare 
Robotics, Newcastle upon Tyne, UK, September 
5-71989. 

[8] R Beale and A Edwards. Recognising postures 
and gestures using neural networks. In R. Beale 
and Finlay J ., editors , Neural Networks and 
Pattern Recognition in Human Computer Inter­
action. E. Horwood , 1992. 

[9] Dean Rubine. The Automatic Recognition of 
Gestures. PhD thesis, Carnegie Mellon Univer­
sity, December 1991. 

[10] David J . Sturman. Whole Hand Input. PhD the­
sis, Massechusetts Institute of Technology, 1992. 

[11] Richard Watson and Paul O'Neill . Gesture 
Recognition for Manipulation in Artificial Re­
ali ties. In Y Anzai and G Ogawa, editors, Pro­
ceedings of the 6th International Conference on 
Human-Computer Interaction, Pacifico Yoka­
hama, Yokahama, Japan, July 1995. 

4
'~" -' 

. . . . 
:;-. Graphics Interface '95 


