
263

N ear-Optimal Construction of Partitioning Trees
by Evolutionary Techniques

T. Cassen K. R. Subramanian Z. Michalewicz

Department of Computer Science
The University of North Carolina at Charlotte

Charlotte, NC 28223
{tjc,krs,zbyszek }@uncc.edu

Abst ract
We present a technique to construct space

partitioning trees that can be used to ef­
ficiently represent , operate and manipulate
geometric models. Our method is based on
casting the tree construction problem as an
optimization problem and using evolutionary
techniques [13, 10, 19] to arrive at a near­
optimal solution. Different metrics and cost
models are used to evaluate the constructed
trees. The metrics are aimed at optimiz­
ing criteria that are related to fast rendering,
spatial operations such as point location and
ray tracing. Extensions to other applications
such as multi-resolution representation and
compression are straightforward.

1 Introd uction

Partitioning trees have been extensively used in rep­
resenting geometric sets in various forms: octrees and
quadtrees [27 , 26], k-d trees [3], binary space par­
titioning trees [22 , 8], to mention a few. Many of
these representations also act as efficient structures
for searching, most notably in rendering applications
[9 , 1, 15], solid modeling [23], shadow computation
[2 , 5] and global illumination algorithms [4] . In these
applications, the search structure provides efficient
access to the underlying model. A classic example of
this is the use of hierarchical structures to acceler­
ate ray tracing algorithms, where significant benefits
are accrued by replacing needless intersection calcu­
lations with simpler tests with the hierarchy's parti­
tioning hyperplanes.

Many partitioning trees can represent the same
geometric set; in fact , each distinct ordering of parti­
tioning hyperplanes that make up a tree will be a rep­
resentation of the same geometric set , thus there are
n! different trees representing the same set , assum­
ing n to be the number of partitioning hyperplanes .
Examining all of them to optimize certain criteria is
impractical, except for extremely small values of n.
Thus, various heuristics are typically used to make

local decisions on the choice of hyperplanes, and this
has been the widespread choice in constructing hier­
archies [24, 11 , 18, 15] .

In this work , we are concerned with the problem
of constructing partitioning trees, specifically, binary
space partitioning (BSP) trees, which are generaliza­
tions of binary search trees to two or more dimen­
sions. We are interested in constructing trees that
are near-optimal for certain applications, such as ren­
dering, and spatial operations relevant to geometric
modeling. We will explore the use evolutionary tech­
niques for representing and constructing BSP trees.
Evolutionary techniques are based on genetic algo­
ri thms, and will be reviewed briefly in the following
sections .

We demonstrate results from an initial implemen­
tation of a particular evolutionary technique for par­
titioning tree construction that has been used to min­
imize the total number of nodes in a BSP tree; ad­
ditionally, we discuss an automatic way to terminate
the tree construction (and the evolution) process, in
a manner similar to [17], used for ray tracing hierar­
chies. We also show results of using this technique
to construct hierarchies appropriate for ray tracing ,
employing a cost function that was developed in [17].
Comparisons to a particular hill climbing technique
and a hierarchy construction algorithm very similar
to [18] are also described .

2 Partitioning Trees and Evolu­
tionary Algorithms

In this section we provide basic definitions , discuss
various cost models, and briefly survey evolutionary
algorithms in computer graphics.

2.1 D efinition

A partitioning tree can be defined by a set of hyper­
planes used to recursively partition an initially open
region , and the regions (with their associated domain

~
~1~ Graphics Interface '95

264

specific attributes) that are generated by the parti­
tioning. A method is needed to choose a hyperplane
at each step, as well as a representation for the at­
tributes of each (unpartitioned) region.

Binary space partitioning trees result when each
partitioning step subdivides the initial region into
two halfspaces, followed by recursive subdivision of
the halfspaces until a termination criterion is satis­
fied. Regions that are unpartitioned are termed cells
and become leaf nodes of the BSP tree, while the
internal nodes contain the partitioning hyperplanes.
Fig. 1 illustrates an example. Partitioning planes
are indicated by letters and the subdivided (homoge­
neous) regions by numbers.

Spatial Partitioning Binary Tree

Fig. 1: Constructing a Partitioning Tree

Partitioning trees can represent continuous func­
tions by subdivision of an initial domain (possibly in­
finite) into a hierarchical collection of sub-domains ;
points within each sub-domain i are defined by a
value-continuous function J; . Points at which fi is
discontinuous is typically contained within the parti­
tioning hyperplanes. The function can be evaluated
at any point x by simply following a path from the
root of the tree to the cell containing the point and
evaluating J; (x) . The most common use of partition­
ing trees in this form has been in the representation
and manipulation of polyhedral objects in interactive
solid modeling [23] and game applications l

.

2.2 Cost Models

The overwhelming strategy in building good parti­
tioning trees has been through the use of heuristics;
a significant amount of work has appeared in build­
ing good search structures for ray tracing. The work
of Goldsmith and Salmon [11] was the first method
that had the capability of automatically constructing
hierarchies of bounding extents. Equally important

I DOOM uses a simplified version of a partitioning tree
for visible surface generation.

was the use of a model that could evaluate the cost of
the hierarchy during construction. The heuristic used
can be stated as follows: for rays with an end point at
a fixed distance from bounding extent, the probabil­
ity that a ray will penetrate the bounding extent is
proportional to the solid angle subtended by the sur­
face of a bounding volume . At large distances and for
convex volumes, the solid angle can be approximated
by the surface area of the extent [31]. A compre­
hensive set of experiments [16] has demonstrated the
quality of hierarchies constructed using this heuristic.
Macdonald and Booth [18] used a similar heuristic
to building partitioning trees with axis-aligned par­
titioners . In this case, the heuristic was to minimize
the sum of the surface areas on either side of the
partitioning hyperplane. In [15], it was shown that
significant improvements in performance can be ob­
tained if the two regions on either side of the binary
partitioner are enclosed with bounding extents and
the sum of the surface areas of the bounding extents
throughout the hierarchy was minimized. A general­
ized cost model was also developed that was appli­
cable to both hierarchies of bounding extents (with
overlapping regions) as well as those employing par­
titioning hyperplanes (that produce non-overlapping
regions) , with or without bounding extents around
objects.

In [24] , a cost model was presented to work with
binary space partitioning trees that minimizes ex­
pected cost; probability models were constructed for
operations such as point location , inserting a line or
plane into a partitioning tree, and, ray tracing. The
model can be described as follows (reproduced from
[24]) :

T is a leaf

{

0,
EcosdT] = 1 + p- * EcosdT-]

+ p+ * Ecos t [T+]' else

where T is a partitioning tree at T, T+ and T- are
the positive and negative subtrees, and p+ and p­
are the probability models for the particular oper­
ation whose expected cost is being minimized. For
instance, the model for point lying within a child re­
gion given that it is within the region of its parent is
given by the ratio of sizes of the two regions :

p+ = vol(r+) /vol(r) + pO

p- = vol(r-)/vol(r) + pO

which is not unlike Goldsmith 's cost model , except
that area was being used to calculate the conditional

Graphics Interface '95

probabilities. pO is the probability of a point lying on
the partitioning hyperplane.

Good results were reported from using this model
to generate multi-resolution representations of ob­
jects [21]. In [32], this model was applied to parti­
tioning tree representations of medical images and the
resulting trees exhibited good multi-resolution capa­
bility, demonstrated by interactively pruning the tree
by continuous variation of a global error threshold.

2.3 Evolutionary Techniques in Com­
puter Graphics

The idea behind evolutionary techniques (whether ge­
netic algorithms, evolutionary strategies, evolution­
ary programming , genetic programming, to name a
few) is to mimic the natural principle of genetic in­
heritance and survival of the fittest members of a pop­
ulation . Although there are a few independently de­
veloped and distinct approaches originated from such
an idea [25 , 29, 7, 13, 14], all evolutionary compu­
tation systems maintain a population of individuals
representing potential solutions to the problem to be
solved, incorporate a selection process based on an
extrinsically imposed fitness measure of each indi­
vidual, and include methods for creating randomly
perturbed variants of current individuals , which are
hopefully fitter new individuals.

Clearly, many evolutionary algorithms can be for­
mulated for a given problem. Such algorithms may
differ in many ways; they can use different data struc­
tures for implementing a single individual , genetic
operators for transforming individuals, methods for
creating an initial population, methods for handling
constraints of the problem, and parameters (popu­
lation size, probabilities of applying different opera­
tors, etc.). However , they share a common principle:
a population of individuals undergoes some transfor­
mations, and during this evolution process the indi­
viduals strive for survival.

The recent work of Karl Sims [30] is perhaps the
only direct application of evolutionary techniques to
computer graphics. In this work the author used a
genetic programming method [14] combined with in­
teractive control of genetic parameters; this resulted
in successful application of the system to evolving
plants, images and textures (both 2D and 3D).

To evolve images, functions such as abs, mod, and,
bw-noise, calor-noise, warped-calor noise, blur, band­
pass, grad-mag were applied on an initial set of im­
ages. Images that looked ' interesting ' were selected
by a user for further application of different functions.

265

To generate 3D volume textures , another variable to
incorporate the third dimension is added, together
with 3D solid noise generating functions. Solid tex­
tures can be visualized by mapping them onto 3D
surfaces such as spheres or moving planes, but unless
powerful hardware is available, previewing them in
real time is almost impossible.

By incorporating time as a variable into this pro­
cess, animations can be evolved in a similar manner.

3 Evolving Partitioning Trees

In this section we provide a statement of the prob­
lem and discuss details of our evolutionary approach
(representation, initial population, selection method ,
operators used, evaluation function) .

3.1 Problem Specification

Our objective is to construct a 'good' partitioning
tree that satisfies a particular evaluation criterion or
cost function in a best way. To cast the tree construc­
tion problem as an evolution programming problem,
we first recognize that the search space for this prob­
lem is the domain of all possible partitioning trees
that are defined by a set of partitioning hyperplanes.
Assuming there are n such partitioners , there are n!
different trees that define the partitioning of the same
domain. The key ingredient that distinguishes one
tree from another is the order in which the partition­
ers are chosen during construction. For instance, the
tree in Fig. 1 has 5 partitioners and hence 120 possi­
ble trees.

Thus, our strategy will be to select a random sub­
set of these trees as the chromosomes of our initial
population and then evolve this population based on
different criteria.

3.2 Chromosome Representation and
Initial Population

As the ordering of the partitioners distinguishes one
chromosome from another, each chromosome can be
represented as a permutation of n integer numbers
from 1 to n. For example, a permutation

(3,23,11,17, ... ,5)

uniquely defines a partitioning tree.
We create pop...size (population size) of random

permutations; each permutation corresponds to a
chromosome.

Graphics Interface '95

266

3.3 Selection Process

We have used a tournament selection in our system:
pairs of chromosomes are randomly selected from
the population and their fitness is compared. The
more fit chromosome from each pair is chosen for the
new population . For a population of size pop..size,
pop...size pairs of chromosomes are examined. Since
pairs are selected at random, duplicate chromosomes
could appear in the new population . Also, we have
used the elitist model, where the best (most fit) chro­
mosome in the population is always included in the
next generation.

3.4 Genetic Operators

Crossover and mutation are used to alter the chro­
mosome's genetic material; we discuss them in turn .

3.4.1 Crossover

The crossover is similar to the order crossover defined
by Davis [6] except for the difference in the way the
operator maintains relative order of the partitioners.

For a pair of parent chromosomes we select a ran­
dom crossover point C. All components of the first
parent PI , from position 1 to C (inclusive), are copied
to offspring 01. The remainder of 01 is populated
by copying components from P2, from the beginning
(i.e., from position 1); this copying is done in such a
way as to avoid duplicate entries in the offspring.

Offspring 02 is formed in a similar manner, first
copying from P2 , then from PI.

The following example illustrates this procedure;
for the following pair of parents

Position
Parent PI
Parent P2

1 2 345
A B C D E
H F I A C

6 7 8 9
F G H I
E B G D

and for crossover point at 4 , we get

Position
Offspring 01
Offspring 02

123 4 5 6 7 8 9
A B C D H FIE G
H F I A B C D E G

The parents , PI and P2 , are replaced by 01 and
02, respectively.

3.4.2 Mutation

The purpose of mutation is to introduce a small ran­
dom change in a chromosome. We have implemented
this as a simple swap of two randomly chosen mem­
bers of the chromosome being mutated .

3.5 Chromosome Evaluation

Evaluation of a chromosome is accomplished by ap­
plying a cost function to the constructed partitioning
tree implied by this chromosome. We are currently
experimenting with two different cost functions, tar­
geted at tree construction for rendering applications.
Our task is to minimize these functions.

Our first evaluation function returns the tree size,
in terms of the total number of nodes in the parti­
tioning tree. Operations that entail traversing large
parts of the tree or the entire tree will clearly perform
better when there are fewer nodes . A classic example
is when the partitioning tree is used to generate ob­
jects in priority order, back to front [8]; when used for
rendering objects in this order, all nodes are visited.
It is assumed that all objects (or discontinuities) are
contained within the partitioning hyperplanes. For
instance, in [8], polygonal objects are rendered in this
manner and partitioning hyperplanes are determined
by the planes incident on each (polygonal) face that
make up the object . This does not preclude using
non-face partitioners in the tree, though .

Our second evaluation function is targeted to­
wards constructing trees suitable for accelerating ray
tracing algorithms. In [17] , a cost model was devel­
oped for hierarchies appropriate for ray tracing The
cost function can be described as follows :

where

C.c(h, s)

Ctr(h, s)

CprR(h, s)npr(h, s)

R(h, s)npl (h, S)Cpl

The total cost, Ctot , is the sum of Csc(h, s), the cost
of examining the scene being rendered , and Ctr(h , s),
the cost involved in traversing the search structure s
of average height h . Cpr is the average cost of an in­
tersection test with an object primitive, R(h, s) is the
expected number of regions in the search structure
examined by each ray and npr(h, s) is the expected
number of primitives within each region. npl(h, s) is
the average path length of the tree and Cpl is the
cost of performing a ray-hyperplane intersection . All
of these quantities are computed as described in [17] .
The main difference is the way the cost function is
being used; in [17], it was used to predict the ter­
mination point of the search structure construction,
whereas here the cost function will be used to evalu­
ate a population of search structures for selection and
optimization.

Graphics Interface '95

4 Experiments

An evolutionary system has been developed on UNIX
workstations for constructing partitioning trees. The
system works in conjunction with SCULPT [23), a
solid mode ling system under development by Dr.
Bruce Naylor, AT&T Bell Laboratories, based on
BSP Trees. All experiments were performed on a
SGI Indigo-2 running IRIX 5.2.

,-,----,---,---,---" lIb.JI6Um

,

t::==

iii'"~
j.bOM:m0141f"·
"'Y~1c:.021;·---

Fig. 2. Large Populations

,-,------r--,---.,-----,-, hLi.Ui6jjljI3
SO.OO iiiodl...lm:mo-

uoo (---
"..)
,. .. I , ... /.

I ./
,.,

,-------------

10.00 IlOO 10"

j,iK.M:IUUlill---­
(~-y~-_lf_ffi- ---

Fig . 3. Percent Decrease in Cost

The current implementation allows user control
over chromosome population , mutation and crossover
probabilities. Only polygonal objects are currently
supported by this implementation , although this re­
striction will be overcome in the near future. While
most of the experiments were performed with trees
comprised of faces incident with hyperplanes, we have
recently introduced the capability of allowing parti­
tioning hyperplanes that do not necessarily have to
be incident with any face of the input object. This
would allow the system to construct better trees in

267

general, both for representation and manipulation of
polyhedral objects, as well as making it useful for ap­
plications such as ray tracing. Our implementation
also has the capability to construct k-d trees [3]; in a
k-d tree, the partitioning hyperplanes are axis-aligned
(with any of the 3 dimensions), however there is no
restriction of the location or the particular dimen­
sion used at any stage of the partitioning (a detailed
study of using k-d trees for ray tracing is described
in [16]) . A user can control the maximum number of
hyperplanes that can potentially be used along each
dimension (equally spaced within the domain of in­
terest) .

The first evaluation function that has been tested
on several objects of varying size and characteristics
returns the total number of nodes in the tree. Fig. 2
shows a plot of the cost (#nodes) vs. the number
of iterations for four different objects. In each case,
the population size was fixed at five times the num­
ber of polygonal faces of the object. Each charac­
teristic is identified by the name of the object being
tested , followed by the number of faces of the object
and the population size at which the experiment was
performed. The smallest sized objects converge to
a minimum within a few hundred iterations, whereas
the larger sized objects take longer to converge. Fig. 3
shows a plot of the percent decrease in the cost as a
function of the number of iterations. The percent
decrease is measured by calculating cost differences
between consecutive points in the plot of Fig. 2 and
normalizing with respect to first cost value, i.e. the
cost after the first iteration. In each case, the cost
decreases by about 25%, except for the 'keyhole' ob­
ject exhibits only a small decrease, because of its high
convexity.

Our goal is to be able to use this characteristic as
a means to terminate the evolution process, when a
plateau is reached . Some form of a threshold mea­
sure will need to be used in this regard; for instance,
if the percent decrease is within p%, over some k iter­
ations, then the process can automatically terminate
and output the best chromosome. Since there is very
little change in cost in the flat portions of the charac­
teristics, slight differences in the actual termination
point should have minimal effect on the goodness of
the tree.

In Fig . 4, we have plotted each object's character­
istic at both a small population and a relatively large
population. The small population size is equal to
the number of polygonal faces of the object while the
large population is fixed at five times the small pop­
ulation size. It is clear from the plots that increasing

Graphics Interface '95

268

t he population size leads to faster convergence. This
is especially true with the larger objects, where the
minimum is not reached within 20 ,000 iterations .

cr-----r--,.--..,-----n loiu.ui6jjJji3

,
1.10

I."

15.00

mf.;;:TI6'J:Tur­
..... :llll:m.····
p.;o;.-.'tuJ,-a- -­
i :11$iI.6Bo- -
"''''']2.$ii.ltlO -

Fig. 4. Large vs . Small Populations

Object faces Pop. Trees Time
Size Const. (Hrs .)

bird 231 231 19238 4.0
bookshelf 378 1890 22116 6.0
brush 279 279 19245 3.2
clutch 420 420 19534 2.5
hyperboloid 314 1570 21651 7.5
keyhole 45 45 18841 0.9
lamp..stand 1185 5925 29178 18.0
lilian 1863 1863 35160 19.8
phone 1228 1228 21013 13.0
stadium 1250 6250 29921 15.2

Table 1: Minimizing #Tree Nodes).

Tree
Nodes

281
685
309
267
1315
73

1105
2863
1479
959

Table 1 shows the results for all of the objects on
which experiments were performed and the minimum
cost obtained . Fig. 5 shows some of the objects used
in the experiments . In all cases, the crossover proba­
bility Pc was set at 0.85 and the mutation probability
Pm was 0.25. The running times for the system are
for a maximum of 20,000 iterations (and for construc­
tion of over 20 ,000 trees in most cases). When used
in a real application with an automatic termination
threshold, these will be lower , depending on the com­
plexity of the object .

In order to compare this method of tree construc­
tion to competing m ethods based on local heuris­
tics, a greedy method was implemented based on
a "sliding window", which defines a local neighbor­
hood. The method chooses a local neighborhood of
hyperplane candidates, permutes them within the
neighborhood , evaluates each of the permutations
(the candidates outside the neighborhood remam

. ,
. . .

. .

constant), and chooses the best among them. The
candidates under the window that correspond to the
lowest cost replace the corresponding candidates in
the original permutation , the window slides over by
a fixed amount (currently set at 1) and the process
is repeated . The tree with the lowest cost is always

retained until the _~~?'.'?U~~. p'~;>cess .
: '

63 : 0 4 1 ~ 5 2 7 , ,
:_--- _ _-- --.. -- - - ~

Fig. 4. Sliding Window (Greedy Method)

Fig. 4 shows an example. Here the window is now
in its 3rd position (with a width of 3). With three
candidates, six different permutations can be gener­
ated, defining 6 different sequences of hyperplane ids
and hence, six different trees. All six are typically
evaluated and the best among these determine the
order among the candidates 0, 4 and 1. The window
is next is moved one position so that it now includes
hyperplane 5.

Table 2 illustrates the results of using both meth­
ods on five different objects. In each case, the evo­
lution method results in a tree with fewer nodes; the
difference is more significant on the larger objects .
A window size of 4 is used for the greedy method ,
but only 30% of the generated permutations (picked
at random) are evaluated , due to computational con­
straints. In order to make a fair comparison to the
evolution technique, the total number of evaluations
is made the same for both methods and the evalu­
ations are done from the same population of chro­
mosomes. For the greedy method , each chromosome
is evaluated in sequence until the maximum number
of evaluations has been performed. The evolution
method is also termina ted when the maximum num­
ber of evaluations has been performed.

Object Faces Max. Min . #Nodes
Trees Evolution Greedy

keyhole 45 5000 71 77
bird 231 15000 299 369
brush 279 5000 353 385
hyperboloid 314 15000 1585 1699
phone 1228 15000 1769 2215

Table 2: Evolution vs. Greedy Method .

The cost function described in Section 3.5 was
implemented and used with a k-d tree. In our exper­
iments , t he maximum number of axis aligned planes
(a user controlled parameter) was fixed at 50 along
each of t he three dimensions. The planes are equally

4
'····

.-;-. Graphics Interface '95

spaced along each dimension. Each of these hyper­
planes is a candidate hyperplane for tree construc­
tion and has a unique id . As before, a population
of chromosomes is created by generating ids at ran­
dom for each chromosome. The sequence of ids of
each chromosome determines the order in which the
hyperplanes are chosen. The hyperplane correspond­
ing to the first id in the sequence becomes the root
of the tree that partitions the object set into two
groups (objects that intersect the hyperplane belong
to both regions). In addition , the partitioning can­
didates are also subdivided into two groups . If for
instance, a hyperplane aligned with the X axis is the
chosen binary partitioner, the remaining hyperplanes
aligned with X will be divided into two groups, lo­
cated on either side of the partitioning hyperplane.
The remaining candidates, aligned with the Y And
Z axes, are all orthogonal to the chosen partitioning
hyperplane and will be replicated on either side of
the partition. If a region is determined to be a leaf
cell (see below), then the remaining candidate hyper­
planes are discarded and the objects become part of
the cell.

Not all of the hyperplane candidates will neces­
sarily be used in the constructed tree. This is deter­
mined by what constitutes a leaf cell of the tree. In
our implementation a region becomes a leaf cell if (a)
the number of objects within a region falls below a
threshold, (b) the partitioning hyperplane has an in­
tersection with all of the objects in the region or (c)
there are no partitioners left to partition the region .
For cases (a) and (b), the hyperplane is discarded
as there is no benefit to partitioning a region with
this hyperplane (as far as ray tracing algorithms are
concerned). Case (c) can be avoided by choosing a
larger value for the maximum number of hyperplane
candidates.

Object R(h , s) n]'f"(h, s) npl(h , s) Ctot

keyhole 1.78 3.07 11.43 156.17
bird 1.70 3.23 12.48 159.98
brush 1.72 3.08 12.13 155.42
hyperboloid 1.75 3.17 11.58 157.33
phone 1.80 2.99 12.23 160.94

Table 3: Minimizing Ctot) using Evolution Method.

Table 3 shows the application of this cost function
to five different objects. In each case, a maximum of
10 ,000 iterations was performed and the population is
set to be three times the total number of hyperplane
candidates. Upto 50 hyperplane candidates are lo­
cated in each dimension. In order to better interpret
these results, a hueristic was used to build the k-d tree

269

using the same set of hyperplane candidates (as used
in the evolution method). The heuristic [18, 16), min­
imizes the sum of the surface areas of the bounding
extents of objects across each side of the partition­
ing hyperplane. This was empirically shown in [16]
to perform well on a number of data sets (many of
which are from Eric Haines SPD package[12]). The
hyperplane that minimizes this quantity (among the
hyperplane candidates for this region) is chosen as
the partitioning hyperplane.

Results of using this heuristic on the same set of
objects is illustrated in Table 4. The costs using the
evolution method is roughly half of that obtained us­
ing the area heuristic . R(h, s), the expected number
of visited regions, is significantly lower using the evo­
lution method . A more detailed study is required to
better understand these parameters, including per­
formance measurement from ray tracing these objects
using trees generated from both of these techniques.
Effects of varying the maximum number of hyper­
plane candidates also needs to be studied.

Object R(h, s) npr(h , s) npl(h , s) C tot

keyhole 2.76 3.63 16 .61 316 .70
bird 2.81 3.64 16 .72 323.29
brush 2.76 3.59 16.71 315.58
hyperboloid 2.79 3.62 16 .59 318.81
phone 2.81 3.61 16 .70 321.55

Table 4: Minimizing Ctot using Area Heuristic.

5 Conclusions

Partitioning trees provide a good computational rep­
resentation for a variety of applications, but con­
structing good trees has always been a hard problem,
because of the number of possible trees. We have
presented a method using ideas of artificial evolution
as a way of providing a near-optimal solution. The
major advantage as we see it , is the ease with which
the problem can be formulated: most often, what is
required is a cost function that can evaluate the gen­
erated solutions.

As to future extensions, a look at the computa­
tional times in Table 1 illustrates the necessity of
speeding up this technique for its wide acceptance.
Noting that the tree construction dominates the com­
putation time, we are focusing on improving the con­
struction time using two different approaches. One
idea is to exploit the coherence of the chromosomes
between successive generations. It is possible to cache
frequently occurring subtrees (corresponding to sub­
strings within a chromosome, represented as an array

Graphics Interface '95

270

of partitioner ids) and use tree merging [20] to effi­
ciently construct trees for new chromosomes.

Second, we have noticed that as the trees evolve
from generation to generation, the nodes of the tree
closer to the root converge more rapidly than those
deeper in the tree. This trend can be detected and the
top level partitioners 'fixed' ; which means a smaller
chromosome will need to be considered from then on,
making subsequent evaluations less expensive. Simi­
lar ideas have been explored in [28].

We plan to test various crossover and mutation
operators and study their effects on the tree construc­
tion. We also would like to encode partitioning trees
and apply evolutionary techniques to minimize the
total number of bits needed to represent the geomet­
ric set. This is especially important when partition­
ing trees are used to represent discrete sets, for ex­
ample, 2D images [32], for storage and transmission
applications. It was suggested in [24 , 32] that good
partitioning trees typically exhibit multi-resolution
capabilities and it would be interesting to verify this
premise by building trees using the cost model to re­
duce expected cost in conjunction with artificial evo­
lution . Lastly, it would be a good exercise to go back
to the cost models suggested in [15 , 11 , 18] and apply
the evolutionary techniques to study its implications;
at the very least, this will prove to be a good bench­
marking tool for measuring the effectiveness of cost
models for different applications .

6 Acknowledgements

Our thanks to Bruce Naylor , AT&T Bell Laborato­
ries, who has granted us access to SCULPT, on which
this system is being built. This work was funded in
part by funds provided by the University of North
Carolina at Charlotte.

References

[1] James Arvo and David Kirk. Fast ray trac­
ing by ray classification. Computer Graphics,
21(4) :269-278, July 1987.

[2] A.T. Campbell, III and Donald S. Fussell . Adap­
tive mesh generation for global diffuse illumina­
tion. Computer Graphics, 24(4):155-164, August
1990.

[3] Jon Louis Bentley. Data structures for range
searching. Computing Surveys, 11(4) , December
1979.

. >

[4] A.T . Campbell. Modeling Global Diffuse Illumi­
nation for Image Synthesis. PhD thesis, Dept.
of Computer Sciences, The University of Texas
at Austin, December 1991.

[5] Norman Chin and Steven Feiner. Near real-time
shadow generation using bsp trees. Computer
Graphics , 23(3) :99-106, July 1989.

[6] L. Davis . Genetic Algorithms and Simulated An­
nealing. Morgan Kaufmann Publishers, 1987.

[7] L.J . Fogel, A.J . Owens, and M.J . Walsh. Ar­
tificial Intelligence through Simulated Evolution.
Wiley, 1966.

[8] Henry Fuchs, Zvi M. Kedem , and Bruce F . Nay­
lor. On visible surface generation by a priori tree
structures. Computer Graphics, 14(3) : 124- 133 ,
July 1980.

[9] Andrew S. Glassner. Space subdivision for fast
ray tracing. IEEE Computer Graphics and Ap­
plications, 4(10):15- 22, October 1984.

[10] D. Goldberg.
Optimization,
Wesley, 1989.

Genetic Algorithms in Search,
and Machine Learning. Addison-

[11] Jeff Goldsmith and John Salmon. Automatic
creation of object hierarchies for ray trac­
ing. IEEE Computer Graphics and Applications,
pages 14-20, May 1987.

[12] Eric A. Haines. A proposal for standard graph­
ics environments. IEEE Computer Graphics and
Applications, pages 3- 5, November 1987.

[13] J. Holland. Adaptation in Natural and Artifi­
cial Systems. University of Michigan Press , Ann
Arbor , 1975.

[14] J. Koza. Genetic Programming. MIT Press ,
1992 .

[15] K.R.Subramanian . Adapting Search Structures
to Scene Characteristics for Ray Tracing. PhD
thesis, Dept. of Computer Sciences, The Univer­
sity of Texas at Austin, December 1990.

[16] K.R.Subramanian and Donald S. Fussell. Fac­
tors affecting performance of ray tracing hierar­
chies. Technical Report TR-90-21, Department
of Computer Sciences, The University of Texas
at Austin, July 1990.

4
·· .. '··'··,

, . , .
:: ... Graphics Interface '95

[17] K.R.Subramanian and Donald S. Fussell. Auto­
matic termination criteria for ray tracing hierar­
chies. In Proceedings of Graphics Interface '91,
Calgary, Alberta, Oct. 3-7, 1991.

[18] J. David Macdonald and Kellog S. Booth.
Heuristics for ray tracing using space subdivi­
sion. Visual Computer, 6(3), June 1990.

[19] Z. Michalewicz. Genetic Algorithms + Data
Structures = Evolution Programs. Springer­
Verlag, 1994.

[20] Bruce Naylor, William Thibault, and Bruce
Naylor. Merging bsp trees yields polyhedral set
operations. Computer Graphics, 24(4):115-124,
August 1990.

[21] Bruce F. Naylor. Personal Communication.

[22] Bruce F. Naylor . A Priori Based Techniques for
Determining Visibility Priority for 3-D Scenes.
PhD thesis, The University of Texas at Dallas,
May 1981.

[23] Bruce F. Naylor. Interactive solid modeling us­
ing partitioning trees. In Proceedings of Graphics
Interface '92, Vancouver, CA, May, 1992.

[24] Bruce F. Naylor. Constructing good partitioning
trees. In Proceedings of Graphics Interface '93,
Toronto, CA, May, 1993.

271

[25] 1. Rechenberg. Evolutionsstrategie: Optimierung
technischer Systeme nach Prinzipien der biolo­
gischen Evolution. Frommann-Holzboog Verlag,
1973.

[26] Hanan Samet. Applications of Spatial Data
Structures. Addison Wesley, 1990.

[27] Hanan Samet. The Design and Analysis of Spa­
tial Data Structures. Addison Wesley, 1990.

[28] N. Schraudolph and R. Belew. Dynamic param­
eter encoding for genetic algorithms. Macine
Learning, 9(1), June 1992.

[29] H.-P. Schwefel. Numerical Optimization for
Computer Models. Wiley, 1981.

[30] Karl Sims. Artificial evolution for computer
graphics. Computer Graphics, 25(4), July 1991.

[31] 1. Stone. Theory of Optimal Search, pages 27-
28 . Academic Press, New York, 1975.

[32] K.R. Subramanian and Bruce F. Naylor. Rep­
resenting medical images with partitioning trees.
In Proceedings of Visualization '92, Boston, MA,
Oct. 19-23, 1992.

Fig. 5. (Clockwise from Top Left) (1) Lilian (2) Clutch (3) Lamp Stand
(4) Keyhole (5) Brush (6) Phone

4·
·'·· .. "···

, " \ .

;; .. Graphics Interface '95

