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Abst ract 
We present a technique to construct space 

partitioning trees that can be used to ef­
ficiently represent , operate and manipulate 
geometric models. Our method is based on 
casting the tree construction problem as an 
optimization problem and using evolutionary 
techniques [13, 10, 19] to arrive at a near­
optimal solution. Different metrics and cost 
models are used to evaluate the constructed 
trees. The metrics are aimed at optimiz­
ing criteria that are related to fast rendering, 
spatial operations such as point location and 
ray tracing. Extensions to other applications 
such as multi-resolution representation and 
compression are straightforward. 

1 Introd uction 

Partitioning trees have been extensively used in rep­
resenting geometric sets in various forms: octrees and 
quadtrees [27 , 26], k-d trees [3], binary space par­
titioning trees [22 , 8], to mention a few. Many of 
these representations also act as efficient structures 
for searching, most notably in rendering applications 
[9 , 1, 15], solid modeling [23], shadow computation 
[2 , 5] and global illumination algorithms [4] . In these 
applications, the search structure provides efficient 
access to the underlying model. A classic example of 
this is the use of hierarchical structures to acceler­
ate ray tracing algorithms, where significant benefits 
are accrued by replacing needless intersection calcu­
lations with simpler tests with the hierarchy's parti­
tioning hyperplanes. 

Many partitioning trees can represent the same 
geometric set; in fact , each distinct ordering of parti­
tioning hyperplanes that make up a tree will be a rep­
resentation of the same geometric set , thus there are 
n! different trees representing the same set , assum­
ing n to be the number of partitioning hyperplanes . 
Examining all of them to optimize certain criteria is 
impractical, except for extremely small values of n. 
Thus, various heuristics are typically used to make 

local decisions on the choice of hyperplanes, and this 
has been the widespread choice in constructing hier­
archies [24, 11 , 18, 15] . 

In this work , we are concerned with the problem 
of constructing partitioning trees, specifically, binary 
space partitioning (BSP) trees, which are generaliza­
tions of binary search trees to two or more dimen­
sions. We are interested in constructing trees that 
are near-optimal for certain applications, such as ren­
dering, and spatial operations relevant to geometric 
modeling. We will explore the use evolutionary tech­
niques for representing and constructing BSP trees. 
Evolutionary techniques are based on genetic algo­
ri thms, and will be reviewed briefly in the following 
sections . 

We demonstrate results from an initial implemen­
tation of a particular evolutionary technique for par­
titioning tree construction that has been used to min­
imize the total number of nodes in a BSP tree; ad­
ditionally, we discuss an automatic way to terminate 
the tree construction (and the evolution) process, in 
a manner similar to [17], used for ray tracing hierar­
chies. We also show results of using this technique 
to construct hierarchies appropriate for ray tracing , 
employing a cost function that was developed in [17]. 
Comparisons to a particular hill climbing technique 
and a hierarchy construction algorithm very similar 
to [18] are also described . 

2 Partitioning Trees and Evolu­
tionary Algorithms 

In this section we provide basic definitions , discuss 
various cost models, and briefly survey evolutionary 
algorithms in computer graphics. 

2.1 D efinition 

A partitioning tree can be defined by a set of hyper­
planes used to recursively partition an initially open 
region , and the regions (with their associated domain 
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specific attributes) that are generated by the parti­
tioning. A method is needed to choose a hyperplane 
at each step, as well as a representation for the at­
tributes of each (unpartitioned) region. 

Binary space partitioning trees result when each 
partitioning step subdivides the initial region into 
two halfspaces, followed by recursive subdivision of 
the halfspaces until a termination criterion is satis­
fied. Regions that are unpartitioned are termed cells 
and become leaf nodes of the BSP tree, while the 
internal nodes contain the partitioning hyperplanes. 
Fig. 1 illustrates an example. Partitioning planes 
are indicated by letters and the subdivided (homoge­
neous) regions by numbers. 

Spatial Partitioning Binary Tree 

Fig. 1: Constructing a Partitioning Tree 

Partitioning trees can represent continuous func­
tions by subdivision of an initial domain (possibly in­
finite) into a hierarchical collection of sub-domains ; 
points within each sub-domain i are defined by a 
value-continuous function J; . Points at which fi is 
discontinuous is typically contained within the parti­
tioning hyperplanes. The function can be evaluated 
at any point x by simply following a path from the 
root of the tree to the cell containing the point and 
evaluating J; (x) . The most common use of partition­
ing trees in this form has been in the representation 
and manipulation of polyhedral objects in interactive 
solid modeling [23] and game applications l

. 

2.2 Cost Models 

The overwhelming strategy in building good parti­
tioning trees has been through the use of heuristics; 
a significant amount of work has appeared in build­
ing good search structures for ray tracing. The work 
of Goldsmith and Salmon [11] was the first method 
that had the capability of automatically constructing 
hierarchies of bounding extents. Equally important 

I DOOM uses a simplified version of a partitioning tree 
for visible surface generation. 

was the use of a model that could evaluate the cost of 
the hierarchy during construction. The heuristic used 
can be stated as follows: for rays with an end point at 
a fixed distance from bounding extent, the probabil­
ity that a ray will penetrate the bounding extent is 
proportional to the solid angle subtended by the sur­
face of a bounding volume . At large distances and for 
convex volumes, the solid angle can be approximated 
by the surface area of the extent [31]. A compre­
hensive set of experiments [16] has demonstrated the 
quality of hierarchies constructed using this heuristic. 
Macdonald and Booth [18] used a similar heuristic 
to building partitioning trees with axis-aligned par­
titioners . In this case, the heuristic was to minimize 
the sum of the surface areas on either side of the 
partitioning hyperplane. In [15], it was shown that 
significant improvements in performance can be ob­
tained if the two regions on either side of the binary 
partitioner are enclosed with bounding extents and 
the sum of the surface areas of the bounding extents 
throughout the hierarchy was minimized. A general­
ized cost model was also developed that was appli­
cable to both hierarchies of bounding extents (with 
overlapping regions) as well as those employing par­
titioning hyperplanes (that produce non-overlapping 
regions) , with or without bounding extents around 
objects. 

In [24] , a cost model was presented to work with 
binary space partitioning trees that minimizes ex­
pected cost; probability models were constructed for 
operations such as point location , inserting a line or 
plane into a partitioning tree, and, ray tracing. The 
model can be described as follows (reproduced from 
[24]) : 

T is a leaf 

{ 

0, 
EcosdT] = 1 + p- * EcosdT-] 

+ p+ * Ecos t [T+]' else 

where T is a partitioning tree at T, T+ and T- are 
the positive and negative subtrees, and p+ and p­
are the probability models for the particular oper­
ation whose expected cost is being minimized. For 
instance, the model for point lying within a child re­
gion given that it is within the region of its parent is 
given by the ratio of sizes of the two regions : 

p+ = vol(r+) /vol(r) + pO 

p- = vol(r- )/vol(r) + pO 

which is not unlike Goldsmith 's cost model , except 
that area was being used to calculate the conditional 
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probabilities. pO is the probability of a point lying on 
the partitioning hyperplane. 

Good results were reported from using this model 
to generate multi-resolution representations of ob­
jects [21]. In [32], this model was applied to parti­
tioning tree representations of medical images and the 
resulting trees exhibited good multi-resolution capa­
bility, demonstrated by interactively pruning the tree 
by continuous variation of a global error threshold. 

2.3 Evolutionary Techniques in Com­
puter Graphics 

The idea behind evolutionary techniques (whether ge­
netic algorithms, evolutionary strategies, evolution­
ary programming , genetic programming, to name a 
few) is to mimic the natural principle of genetic in­
heritance and survival of the fittest members of a pop­
ulation . Although there are a few independently de­
veloped and distinct approaches originated from such 
an idea [25 , 29, 7, 13, 14], all evolutionary compu­
tation systems maintain a population of individuals 
representing potential solutions to the problem to be 
solved, incorporate a selection process based on an 
extrinsically imposed fitness measure of each indi­
vidual, and include methods for creating randomly 
perturbed variants of current individuals , which are 
hopefully fitter new individuals. 

Clearly, many evolutionary algorithms can be for­
mulated for a given problem. Such algorithms may 
differ in many ways; they can use different data struc­
tures for implementing a single individual , genetic 
operators for transforming individuals, methods for 
creating an initial population, methods for handling 
constraints of the problem, and parameters (popu­
lation size, probabilities of applying different opera­
tors, etc.). However , they share a common principle: 
a population of individuals undergoes some transfor­
mations, and during this evolution process the indi­
viduals strive for survival. 

The recent work of Karl Sims [30] is perhaps the 
only direct application of evolutionary techniques to 
computer graphics. In this work the author used a 
genetic programming method [14] combined with in­
teractive control of genetic parameters; this resulted 
in successful application of the system to evolving 
plants, images and textures (both 2D and 3D). 

To evolve images, functions such as abs, mod, and, 
bw-noise, calor-noise, warped-calor noise, blur, band­
pass, grad-mag were applied on an initial set of im­
ages. Images that looked ' interesting ' were selected 
by a user for further application of different functions. 
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To generate 3D volume textures , another variable to 
incorporate the third dimension is added, together 
with 3D solid noise generating functions. Solid tex­
tures can be visualized by mapping them onto 3D 
surfaces such as spheres or moving planes, but unless 
powerful hardware is available, previewing them in 
real time is almost impossible. 

By incorporating time as a variable into this pro­
cess, animations can be evolved in a similar manner. 

3 Evolving Partitioning Trees 

In this section we provide a statement of the prob­
lem and discuss details of our evolutionary approach 
(representation, initial population, selection method , 
operators used, evaluation function) . 

3.1 Problem Specification 

Our objective is to construct a 'good' partitioning 
tree that satisfies a particular evaluation criterion or 
cost function in a best way. To cast the tree construc­
tion problem as an evolution programming problem, 
we first recognize that the search space for this prob­
lem is the domain of all possible partitioning trees 
that are defined by a set of partitioning hyperplanes. 
Assuming there are n such partitioners , there are n! 
different trees that define the partitioning of the same 
domain. The key ingredient that distinguishes one 
tree from another is the order in which the partition­
ers are chosen during construction. For instance, the 
tree in Fig. 1 has 5 partitioners and hence 120 possi­
ble trees. 

Thus, our strategy will be to select a random sub­
set of these trees as the chromosomes of our initial 
population and then evolve this population based on 
different criteria. 

3.2 Chromosome Representation and 
Initial Population 

As the ordering of the partitioners distinguishes one 
chromosome from another, each chromosome can be 
represented as a permutation of n integer numbers 
from 1 to n. For example, a permutation 

(3,23,11,17, ... ,5) 

uniquely defines a partitioning tree. 
We create pop...size (population size) of random 

permutations; each permutation corresponds to a 
chromosome. 
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3.3 Selection Process 

We have used a tournament selection in our system: 
pairs of chromosomes are randomly selected from 
the population and their fitness is compared. The 
more fit chromosome from each pair is chosen for the 
new population . For a population of size pop..size, 
pop...size pairs of chromosomes are examined. Since 
pairs are selected at random, duplicate chromosomes 
could appear in the new population . Also, we have 
used the elitist model, where the best (most fit) chro­
mosome in the population is always included in the 
next generation. 

3.4 Genetic Operators 

Crossover and mutation are used to alter the chro­
mosome's genetic material; we discuss them in turn . 

3.4.1 Crossover 

The crossover is similar to the order crossover defined 
by Davis [6] except for the difference in the way the 
operator maintains relative order of the partitioners. 

For a pair of parent chromosomes we select a ran­
dom crossover point C. All components of the first 
parent PI , from position 1 to C (inclusive), are copied 
to offspring 01. The remainder of 01 is populated 
by copying components from P2, from the beginning 
(i.e., from position 1); this copying is done in such a 
way as to avoid duplicate entries in the offspring. 

Offspring 02 is formed in a similar manner, first 
copying from P2 , then from PI. 

The following example illustrates this procedure; 
for the following pair of parents 

Position 
Parent PI 
Parent P2 

1 2 345 
A B C D E 
H F I A C 

6 7 8 9 
F G H I 
E B G D 

and for crossover point at 4 , we get 

Position 
Offspring 01 
Offspring 02 

123 4 5 6 7 8 9 
A B C D H FIE G 
H F I A B C D E G 

The parents , PI and P2 , are replaced by 01 and 
02, respectively. 

3.4.2 Mutation 

The purpose of mutation is to introduce a small ran­
dom change in a chromosome. We have implemented 
this as a simple swap of two randomly chosen mem­
bers of the chromosome being mutated . 

3.5 Chromosome Evaluation 

Evaluation of a chromosome is accomplished by ap­
plying a cost function to the constructed partitioning 
tree implied by this chromosome. We are currently 
experimenting with two different cost functions, tar­
geted at tree construction for rendering applications. 
Our task is to minimize these functions. 

Our first evaluation function returns the tree size, 
in terms of the total number of nodes in the parti­
tioning tree. Operations that entail traversing large 
parts of the tree or the entire tree will clearly perform 
better when there are fewer nodes . A classic example 
is when the partitioning tree is used to generate ob­
jects in priority order, back to front [8]; when used for 
rendering objects in this order, all nodes are visited. 
It is assumed that all objects (or discontinuities) are 
contained within the partitioning hyperplanes. For 
instance, in [8], polygonal objects are rendered in this 
manner and partitioning hyperplanes are determined 
by the planes incident on each (polygonal) face that 
make up the object . This does not preclude using 
non-face partitioners in the tree, though . 

Our second evaluation function is targeted to­
wards constructing trees suitable for accelerating ray 
tracing algorithms. In [17] , a cost model was devel­
oped for hierarchies appropriate for ray tracing The 
cost function can be described as follows : 

where 

C.c(h, s) 

Ctr(h, s) 

CprR(h, s)npr(h, s) 

R(h, s)npl (h, S)Cpl 

The total cost, Ctot , is the sum of Csc(h, s), the cost 
of examining the scene being rendered , and Ctr(h , s), 
the cost involved in traversing the search structure s 
of average height h . Cpr is the average cost of an in­
tersection test with an object primitive, R(h, s) is the 
expected number of regions in the search structure 
examined by each ray and npr(h, s) is the expected 
number of primitives within each region. npl(h, s) is 
the average path length of the tree and Cpl is the 
cost of performing a ray-hyperplane intersection . All 
of these quantities are computed as described in [17] . 
The main difference is the way the cost function is 
being used; in [17], it was used to predict the ter­
mination point of the search structure construction, 
whereas here the cost function will be used to evalu­
ate a population of search structures for selection and 
optimization. 
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4 Experiments 

An evolutionary system has been developed on UNIX 
workstations for constructing partitioning trees. The 
system works in conjunction with SCULPT [23), a 
solid mode ling system under development by Dr. 
Bruce Naylor, AT&T Bell Laboratories, based on 
BSP Trees. All experiments were performed on a 
SGI Indigo-2 running IRIX 5.2. 
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Fig . 3. Percent Decrease in Cost 

The current implementation allows user control 
over chromosome population , mutation and crossover 
probabilities. Only polygonal objects are currently 
supported by this implementation , although this re­
striction will be overcome in the near future. While 
most of the experiments were performed with trees 
comprised of faces incident with hyperplanes, we have 
recently introduced the capability of allowing parti­
tioning hyperplanes that do not necessarily have to 
be incident with any face of the input object. This 
would allow the system to construct better trees in 
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general, both for representation and manipulation of 
polyhedral objects, as well as making it useful for ap­
plications such as ray tracing. Our implementation 
also has the capability to construct k-d trees [3]; in a 
k-d tree, the partitioning hyperplanes are axis-aligned 
(with any of the 3 dimensions), however there is no 
restriction of the location or the particular dimen­
sion used at any stage of the partitioning (a detailed 
study of using k-d trees for ray tracing is described 
in [16]) . A user can control the maximum number of 
hyperplanes that can potentially be used along each 
dimension (equally spaced within the domain of in­
terest) . 

The first evaluation function that has been tested 
on several objects of varying size and characteristics 
returns the total number of nodes in the tree. Fig. 2 
shows a plot of the cost (#nodes) vs. the number 
of iterations for four different objects. In each case, 
the population size was fixed at five times the num­
ber of polygonal faces of the object. Each charac­
teristic is identified by the name of the object being 
tested , followed by the number of faces of the object 
and the population size at which the experiment was 
performed. The smallest sized objects converge to 
a minimum within a few hundred iterations, whereas 
the larger sized objects take longer to converge. Fig. 3 
shows a plot of the percent decrease in the cost as a 
function of the number of iterations. The percent 
decrease is measured by calculating cost differences 
between consecutive points in the plot of Fig. 2 and 
normalizing with respect to first cost value, i.e. the 
cost after the first iteration. In each case, the cost 
decreases by about 25%, except for the 'keyhole' ob­
ject exhibits only a small decrease, because of its high 
convexity. 

Our goal is to be able to use this characteristic as 
a means to terminate the evolution process, when a 
plateau is reached . Some form of a threshold mea­
sure will need to be used in this regard; for instance, 
if the percent decrease is within p%, over some k iter­
ations, then the process can automatically terminate 
and output the best chromosome. Since there is very 
little change in cost in the flat portions of the charac­
teristics, slight differences in the actual termination 
point should have minimal effect on the goodness of 
the tree. 

In Fig . 4, we have plotted each object's character­
istic at both a small population and a relatively large 
population. The small population size is equal to 
the number of polygonal faces of the object while the 
large population is fixed at five times the small pop­
ulation size. It is clear from the plots that increasing 
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t he population size leads to faster convergence. This 
is especially true with the larger objects, where the 
minimum is not reached within 20 ,000 iterations . 
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Fig. 4. Large vs . Small Populations 

Object faces Pop. Trees Time 
Size Const. (Hrs .) 

bird 231 231 19238 4.0 
bookshelf 378 1890 22116 6.0 
brush 279 279 19245 3.2 
clutch 420 420 19534 2.5 
hyperboloid 314 1570 21651 7.5 
keyhole 45 45 18841 0.9 
lamp..stand 1185 5925 29178 18.0 
lilian 1863 1863 35160 19.8 
phone 1228 1228 21013 13.0 
stadium 1250 6250 29921 15.2 

Table 1: Minimizing #Tree Nodes). 

Tree 
Nodes 

281 
685 
309 
267 
1315 
73 

1105 
2863 
1479 
959 

Table 1 shows the results for all of the objects on 
which experiments were performed and the minimum 
cost obtained . Fig. 5 shows some of the objects used 
in the experiments . In all cases, the crossover proba­
bility Pc was set at 0.85 and the mutation probability 
Pm was 0.25. The running times for the system are 
for a maximum of 20,000 iterations (and for construc­
tion of over 20 ,000 trees in most cases). When used 
in a real application with an automatic termination 
threshold, these will be lower , depending on the com­
plexity of the object . 

In order to compare this method of tree construc­
tion to competing m ethods based on local heuris­
tics, a greedy method was implemented based on 
a "sliding window", which defines a local neighbor­
hood. The method chooses a local neighborhood of 
hyperplane candidates, permutes them within the 
neighborhood , evaluates each of the permutations 
(the candidates outside the neighborhood remam 

. , 
. . . 

. . 

constant), and chooses the best among them. The 
candidates under the window that correspond to the 
lowest cost replace the corresponding candidates in 
the original permutation , the window slides over by 
a fixed amount (currently set at 1) and the process 
is repeated . The tree with the lowest cost is always 

retained until the _~~?'.'?U~~. p'~;>cess . 
: ' 

63 : 0 4 1 ~ 5 2 7 , , 
:_--- _ .... _-- --.. -- - - ~ 

Fig. 4. Sliding Window (Greedy Method) 

Fig. 4 shows an example. Here the window is now 
in its 3rd position (with a width of 3). With three 
candidates, six different permutations can be gener­
ated, defining 6 different sequences of hyperplane ids 
and hence, six different trees. All six are typically 
evaluated and the best among these determine the 
order among the candidates 0, 4 and 1. The window 
is next is moved one position so that it now includes 
hyperplane 5. 

Table 2 illustrates the results of using both meth­
ods on five different objects. In each case, the evo­
lution method results in a tree with fewer nodes; the 
difference is more significant on the larger objects . 
A window size of 4 is used for the greedy method , 
but only 30% of the generated permutations (picked 
at random) are evaluated , due to computational con­
straints. In order to make a fair comparison to the 
evolution technique, the total number of evaluations 
is made the same for both methods and the evalu­
ations are done from the same population of chro­
mosomes. For the greedy method , each chromosome 
is evaluated in sequence until the maximum number 
of evaluations has been performed. The evolution 
method is also termina ted when the maximum num­
ber of evaluations has been performed. 

Object Faces Max. Min . #Nodes 
Trees Evolution Greedy 

keyhole 45 5000 71 77 
bird 231 15000 299 369 
brush 279 5000 353 385 
hyperboloid 314 15000 1585 1699 
phone 1228 15000 1769 2215 

Table 2: Evolution vs. Greedy Method . 

The cost function described in Section 3.5 was 
implemented and used with a k-d tree. In our exper­
iments , t he maximum number of axis aligned planes 
(a user controlled parameter) was fixed at 50 along 
each of t he three dimensions. The planes are equally 
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spaced along each dimension. Each of these hyper­
planes is a candidate hyperplane for tree construc­
tion and has a unique id . As before, a population 
of chromosomes is created by generating ids at ran­
dom for each chromosome. The sequence of ids of 
each chromosome determines the order in which the 
hyperplanes are chosen. The hyperplane correspond­
ing to the first id in the sequence becomes the root 
of the tree that partitions the object set into two 
groups (objects that intersect the hyperplane belong 
to both regions). In addition , the partitioning can­
didates are also subdivided into two groups . If for 
instance, a hyperplane aligned with the X axis is the 
chosen binary partitioner, the remaining hyperplanes 
aligned with X will be divided into two groups, lo­
cated on either side of the partitioning hyperplane. 
The remaining candidates, aligned with the Y And 
Z axes, are all orthogonal to the chosen partitioning 
hyperplane and will be replicated on either side of 
the partition. If a region is determined to be a leaf 
cell (see below), then the remaining candidate hyper­
planes are discarded and the objects become part of 
the cell. 

Not all of the hyperplane candidates will neces­
sarily be used in the constructed tree. This is deter­
mined by what constitutes a leaf cell of the tree. In 
our implementation a region becomes a leaf cell if (a) 
the number of objects within a region falls below a 
threshold, (b) the partitioning hyperplane has an in­
tersection with all of the objects in the region or (c) 
there are no partitioners left to partition the region . 
For cases (a) and (b), the hyperplane is discarded 
as there is no benefit to partitioning a region with 
this hyperplane (as far as ray tracing algorithms are 
concerned). Case (c) can be avoided by choosing a 
larger value for the maximum number of hyperplane 
candidates. 

Object R(h , s) n]'f"(h, s) npl(h , s) Ctot 

keyhole 1.78 3.07 11.43 156.17 
bird 1.70 3.23 12.48 159.98 
brush 1.72 3.08 12.13 155.42 
hyperboloid 1.75 3.17 11.58 157.33 
phone 1.80 2.99 12.23 160.94 

Table 3: Minimizing Ctot) using Evolution Method. 

Table 3 shows the application of this cost function 
to five different objects. In each case, a maximum of 
10 ,000 iterations was performed and the population is 
set to be three times the total number of hyperplane 
candidates. Upto 50 hyperplane candidates are lo­
cated in each dimension. In order to better interpret 
these results, a hueristic was used to build the k-d tree 
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using the same set of hyperplane candidates (as used 
in the evolution method). The heuristic [18, 16), min­
imizes the sum of the surface areas of the bounding 
extents of objects across each side of the partition­
ing hyperplane. This was empirically shown in [16] 
to perform well on a number of data sets (many of 
which are from Eric Haines SPD package[12]). The 
hyperplane that minimizes this quantity (among the 
hyperplane candidates for this region) is chosen as 
the partitioning hyperplane. 

Results of using this heuristic on the same set of 
objects is illustrated in Table 4. The costs using the 
evolution method is roughly half of that obtained us­
ing the area heuristic . R(h, s), the expected number 
of visited regions, is significantly lower using the evo­
lution method . A more detailed study is required to 
better understand these parameters, including per­
formance measurement from ray tracing these objects 
using trees generated from both of these techniques. 
Effects of varying the maximum number of hyper­
plane candidates also needs to be studied. 

Object R(h, s) npr(h , s) npl(h , s) C tot 

keyhole 2.76 3.63 16 .61 316 .70 
bird 2.81 3.64 16 .72 323.29 
brush 2.76 3.59 16.71 315.58 
hyperboloid 2.79 3.62 16 .59 318.81 
phone 2.81 3.61 16 .70 321.55 

Table 4: Minimizing Ctot using Area Heuristic. 

5 Conclusions 

Partitioning trees provide a good computational rep­
resentation for a variety of applications, but con­
structing good trees has always been a hard problem, 
because of the number of possible trees. We have 
presented a method using ideas of artificial evolution 
as a way of providing a near-optimal solution. The 
major advantage as we see it , is the ease with which 
the problem can be formulated: most often, what is 
required is a cost function that can evaluate the gen­
erated solutions. 

As to future extensions, a look at the computa­
tional times in Table 1 illustrates the necessity of 
speeding up this technique for its wide acceptance. 
Noting that the tree construction dominates the com­
putation time, we are focusing on improving the con­
struction time using two different approaches. One 
idea is to exploit the coherence of the chromosomes 
between successive generations. It is possible to cache 
frequently occurring subtrees (corresponding to sub­
strings within a chromosome, represented as an array 
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of partitioner ids) and use tree merging [20] to effi­
ciently construct trees for new chromosomes. 

Second, we have noticed that as the trees evolve 
from generation to generation, the nodes of the tree 
closer to the root converge more rapidly than those 
deeper in the tree. This trend can be detected and the 
top level partitioners 'fixed' ; which means a smaller 
chromosome will need to be considered from then on, 
making subsequent evaluations less expensive. Simi­
lar ideas have been explored in [28]. 

We plan to test various crossover and mutation 
operators and study their effects on the tree construc­
tion. We also would like to encode partitioning trees 
and apply evolutionary techniques to minimize the 
total number of bits needed to represent the geomet­
ric set. This is especially important when partition­
ing trees are used to represent discrete sets, for ex­
ample, 2D images [32], for storage and transmission 
applications. It was suggested in [24 , 32] that good 
partitioning trees typically exhibit multi-resolution 
capabilities and it would be interesting to verify this 
premise by building trees using the cost model to re­
duce expected cost in conjunction with artificial evo­
lution . Lastly, it would be a good exercise to go back 
to the cost models suggested in [15 , 11 , 18] and apply 
the evolutionary techniques to study its implications; 
at the very least, this will prove to be a good bench­
marking tool for measuring the effectiveness of cost 
models for different applications . 
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