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Abstract 
Scattered data is , by definition , irregularly spaced. 
Uniform surface schemes are not well adapted to the 
locally varying nature of such data. Conversely, Tri­
angular B-Spline surfaces [DMS92] are more flexible 
in that they can be built over arbitrary triangula­
tions and thus can be adapted to the scattered data. 
This paper discusses the use of DMS spline surfaces 
for approximation of scattered data. A method is 
provided for automatically triangulating the domain 
containing the points and generating basis functions 
over this triangulation. A surface approximating the 
data is then found by a combination of least squares 
and bending energy minimization. This combina­
tion serves both to generate a smooth surface and 
to accommodate for gaps in the data. Examples are 
presented which demonstrate the effectiveness of the 
technique for mathematical, geographical and other 
data sets. 

Keywords: Scattered Data Approximation, Tri­
angular B-Splines, DMS Splines, Simplex Splines, 
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1 Introduction 

Scattered data fit ting problems come from many 
different areas, including scientific and engineering 
data visualization , mining and mapping, geographic 
information systems, meteorology and other fields 
[Nie93] . Often we would like to visualize the ge­
ometry of the surface that corresponds to a set of 
scattered data in order to better understand the un­
derlying data. 

The problem we address is the fitting of a func­
tional surface F (x, y) to a collection of scattered 
functional data {( Xi, Yi,Zi (Xi,Yi))}. Our goal is to 

find a smooth surface F that is a reasonable approx­
imation to the data. 

The kind of functional surface we choose is the 
DMS spline formulation ([DMS92]). The DMS spline 
surfaces have numerous positive characteristics that 
make them appropriate for this data fit t ing problem, 
including their automatic smoothness properties, the 
ability to define a surface over an arbitrary triangu­
lation (which can be adapted to the local density 
of sampled data) and their "completeness," in that 
all piecewise polynomials of a particular degree over 
a given triangulation can be represented by a DMS 
spline of the same degree. 

Schumaker introduces t he problem of scattered 
data approximation in [Sch76] . Auerbach et al. 
[AMNS91] examine the functional data approxima­
tion problem for the simplex spline space described 
in [H6182, DM82]. We find that they do not fully ad­
dress the problem of producing a good triangulation 
of a data set, nor do they describe how to deal with 
data sets that cause difficulties when using the least 
squares method . In [BHS93], Brunnett et al. discuss 
the use of combined least squares and fairing func­
t ional minimization in the design of quintic tensor 
product B-splines surfaces to achieve Cl-continuous 
surfaces. They do not address the problem of par­
titioning the domain in a manner appropriate to a 
given set of data, in this case the defini t ion of para­
metric knot lines. 

The following describes the organization of the pa­
per. In Section 2 we review the definition of simplex 
splines and that of the DMS spline scheme. In Sec­
tion 3, we examine how a triangulation of the domain 
may be formed that adapts to the distribution of 
sample data. In Section 4, we look at the minimiza­
tion problem used to find the approximating surface, 
namely the least squares method and describe how it 
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can be augmented with a smoothing term in order 
to overcome certain difficulties. Lastly, we present 
our conclusions and suggestions for further work in 
Section 5. Examples fitting quadratic DMS splines 
(wit h Cl continuity) to various data sets appear as 
figures throughout the paper. 

2 D MS splines 

A DMS spline surface is formed as a linear combi­
nation of basis functions. These basis functions are 
defined over a triangulation of jR2. This section ex­
plains how these basis functions are constructed. An 
introduction to this material can be found in [Sei91]. 

Bivariate simplex splines form the individual basis 
functions for t he DMS spline surface [Mic79] . Sim­
plex splines are defined via affine combinations of 
points. Formally, consider a point u and a set of 
points V = {to , . .. , tn+2 }, called knots, from jR2. 

The degree n simplex spline M(ulV) is defined re­
cursively as follows: 

• For n > 0, with V = {to , ... , tn +2}, select three 
points W = {tio' tiJ , t i2 } from V, such that W is 
affinely independent. Then 

2 

M(ulV) = LAj(uIW)M(ulV\{tiJ) (1) 
j=O 

where u = L~=o Aj(uIW)tij and L~=o Aj(uIW) = l. 
• For n = 0, with V = {to , t l , t2}, 

M( It t t) = X[to ,tJ ,t2)(U) 
u 0 , I , 2 21~(t t t)I ' 0 , I , 2 

if u E [to , t 1 , t2) 
otherwise 

(2) 

with [to , t l , t2) being the half-open convex hull I of 
points to , tl and t2 

A slightly modified version of Equation 1 can be 
used to find the derivative of M(ulV) with respect 
to a parametric vector v: 

2 

Dv M(ulV) = n L /lj (v IW)M(ulV\{t;J) (3) 
j=O 

with v = L~=o /l j(V IW )tij and L~=o /l j(v IW) = O. 
Simplex splines possess a number of interesting 

properties. They are piecewise polynomial of degree 

1 u is in [to, tl , t2) if t he set {u + 81) + t~ I 8, t > 0, 8 + t < f} 
is contained within the convex hull of {to , tl , t2}, for some 
E > 0, ~ being the horizontal unit vector in jR2 and 1) a vector 
with positive slope [Sei91 ]. 

27 

n , are zero outside the convex hull of the knots V 
and non-negative within it , and are smooth, in the 
sense that if the knots of V are in general position , 
then M(ulV) exhibits cn-l continuity. 

Simplex splines can now be combined to form 
a spline surface [DMS92] . Let T be an arbitrary 
proper triangulation of jR2 or some bounded domain 
D C jR2 . "Proper" means that every pair of domain 
triangles I , J are disjoint , or share exactly one edge, 
or exactly one vertex. 

To each vertex ti of the triangulation T, we assign 
a knot cloud, which is a sequence of points (knots) 
ti,O, ... , t i,n , where ti ,O == ti . For each triangle ~ = 
(to, tl, t2) ET, we require that (to,i, tl ,j, t2 ,k) always 
form a proper triangle. We then define, for each ~ 
and i + j + k = n, the knot sets 

V/~J· k = {too, ... ,toi,tI0, ... ,tI J·, t20, ... , t2k} (4) 
"" , 1 1 1 " 1 

which yields (n~2) simplex splines M(ul~~,k ). 
The normalized B-splines are then defined as 

ND.. k(u) = dD. kM(u IVA k)' where dD. . k is defined 
'1, , ) , 'I"J , t,J, 2,J, 

to be twice the area of ~(to" tl j , t2k). This normal-
ization ensures that the basis functions sum to one. 

A functional surface F of degree n over the tri­
angulation T with knot net K = {ti ,ll i E Z, l = 
0, ... , n} is then defined as 

F(u) = L 
D.ET Hj+k=n 

with coefficients Cf,j,k E jR . 

cD. kND. k (u) t ,J , 1,J, ' (5) 

These normalized B-spline surfaces demonstrate 
properties similar to B-spline curves, in that they 
are affine invariant, have local control, and exhibit 
the Convex Hull Property. Moreover, every degree n 
piecewise polynomial over a triangulation T can be 
represented as a normalized B-spline surface. 

3 Finding a triangulation 

DMS spline basis functions are defined with respect 
to a triangulation of the domain, so our first task 
is to generate an appropriate triangulation of the 
portion of the domain containing our sampled data. 
Once a set of basis functions has been determined, an 
approximating surface F in the span of these func­
tions can be found by functional minimization, as 
described in Section 4. 

3.1 Properties of a good triangulation 

The triangulation we form should possess the follow­
ing four properties: Property One, all sample points 
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must be contained in some triangle of the triangu­
lation. Property Two, no triangle has too many or 
too few sample points within it, and points within 
each triangle are distributed as uniformly as possi­
ble. Property Three, triangles are not too elongated. 
Property Four, neighbouring triangles are roughly 
comparable in size. 

Property One ensures that all of the data has an 
influence on the final surface. Property Two ensures 
that each data point is well-represented by the sur­
face . Properties Three and Four ensure that we get 
a "good" set of basis functions. Very thin triangles 
could cause numerical problems in evaluation. 

Unfortunately, in extreme cases, our goals may not 
be consistent with one another. For example, if all 
our sample points are nearly collinear, then to satisfy 
Property Two we should probably have elongated 
triangles in our triangulation. This would violate 
Property Three. 

It is clear that some other means of triangulating 
the data points must be used that adapts the size of 
triangles used to the local density of the data. The 
initial temptation is to use the sample (x, y) values 
as vertices of a Delaunay triangulation [For94]. This 
is, of course, ridiculous, as this choice results in an 
explosion of triangles. Another adaptive data struc­
ture commonly used for 2D domains is the quadtree, 
which we will use in the next section in order to build 
a triangulation. 

3.2 Quadtree division of the domain 

We now describe a triangulation scheme that satis­
fies Properties One, Three and Four and partially 
satisfies Property Two. We will rely on the mini­
mization technique of Section 4.2 to ameliorate the 
remaining difficulties with the triangulation scheme. 

We begin by finding a bounding box around the 
data, and generate a quad tree partition of this box 
such that no leaf node contains more than a specified 
number of sample points. The corners of leaf nodes 
generated by the quadtree division can be used as 
vertices of (relatively) equally sized triangles. 

This simple quadtree violates Property Three for 
data sets that contain tight clusters of points. Point 
clusters can cause finely-subdivided areas to be ad­
jacent to far more coarsely subdivided areas , which, 
in turn, generates long thin triangles. This can be 
remedied by requiring that the quadtree be balanced 
[Sam90] . A quadtree is balanced if the depths of two 
adjacent leaf nodes differ by at most one. 

A potential problem exists when the bounding box 

Figure 1: Capping a truncated cone by minimizing 
thin-plate energy 

is a poor fit to the data, that is, when large areas 
within the bounding box contain no data. In this 
case, one could accept user input to decide whether 
to exclude leaf nodes containing no sample points 
from the triangulation. 

3.3 Assigning knot clouds 

Once a triangulation has been formed, knot clouds 
are added to vertices of the triangulation. The knot 
clouds are chosen so as to avoid collinearity of knots 
associated with a particular triangle. The method 
used is similar to the one given in [AMNS91, page 
81]. The selection of the knot clouds then defines 
the basis functions for the surface. 

Knots can also be selected to promote collinearity 
along certain edges of the triangulation. If k + 2 
of the knots used to define a particular DMS basis 
function are placed collinearly, then the continuity of 
the surface along that parametric line will be reduced 
by k. Reduced continuity can be introduced into the 
surface using this method. 

Once a triangulation and its knot clouds have been 
defined, linear combinations of the corresponding 
DMS basis functions can be used to form surfaces . 
In the next section we discuss the problem of selec t­
ing, from among this set of surfaces, some surface F 
that is a good approximation to the data. 
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Figure 2: Top Row: Left , the locations in [0 , 1] x [0 , 1] of data points where the function sin(-rrx) sin(7l'Y) is 
randomly sampled. Middle, quad tree-based t riangulation of the region, showing the knot cloud associated 
with each vertex. Right, surface fit using pure least squares, with control points. Bottom Row: Left , as 
above, but with data missing from the region [0 , 0.5] x [0,0 .5]. Middle, corresponding triangulation with 
knot clouds. Triangles in the lower left corner contain no data. Right, surface fit using a combination of 
least squares and thin plate energy minimization. The front corner of the surface corresponds to the domain 
triangles that have no data. Because of the missing data, this data set cannot be fit without the assistance 
of a smoothing term . 

4 Least squares fitting and 
fairing by minimizing a func­
tional 

In this section , we assume that a fixed set of basis 
functions exists, and that a surface F in the span of 
those functions should be used to approximate the 
data. 

4.1 Least squares minimization 

We use the least squares method (see [HL89, Die93]) 
for approximating a set of functional scattered data. 
Given a surface F(x , y) , the unweighted least squares 
functional LS(F ) = L/(F(XI , Yl) - Zt)2 provides a 
measure of how well F approximates the data. If we 
minimize t his sum, we will obtain a good approxima­
tion to the data. Since F is the linear combination of 
some fixed set of basis functions, the functional LS is 

.. ' '. ~ 

quadratic in their coefficients, and so the minimiza­
tion problem can be expressed as a linear system 
in the coefficients of those basis functions. Standard 
solution techniques form either the observation equa­
tions or normal equations for a given data set [Die93]. 
Both kinds of systems can be solved using standard 
techniques. 

In order to form the individual entries of either of 
these matrices, each basis function (in our case, each 
DMS basis function Ni~,k) must be evaluated at each 
(Xl , yt) location. This poses no particular difficulty, 
as evaluation algorithms for DMS splines based on 
Equation 1 are readily available [PS94, FS93] . 

Formulating the approximation problem as a least 
squares problem has a number of advantages and 
disadvantages. The main advantages of the least 
squares method are that it is simple to understand 
and relatively easy to implement . The chief disad­
vantage is that the solut ion is very sensitive to the 
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Figure 3: Fitting a surface to data taken from a bust of Victor Hugo (data courtesy the University of Waterloo 
Computer Graphics Lab). Top Left, the data points in 3D. Bottom Left, corresponding triangulation with 
knot clouds. Top Middle, surface fit using pure least squares. Top Right, surface fit using mixed least squares 
and thin plate energy minimization (et = 0.25) Bottom Middle/Right, corresponding plots of Gaussian 
curvature. Darker regions have negative curvature, lighter regions have positive curvature. The mixed fit 
surface exhibits far less variation in curvature. 

location of data points with respect to the given set 
of basis functions . A particular basis function may 
have no influence on the value of the least squares 
functional (because it contains no data points within 
its region of support), or a number of basis func­
tions may be linearly dependent with respect to the 
given data. Moreover, the surface determined by the 
least squares approach may very well lie close to data 
points, but may not be very smooth. 

In order to deal with these problems we modify the 
least squares functional to take surface smoothness 
into account. The smoothness factor can be used to 
assign reasonable values to coefficients undetermined 
by the data, by choosing values that make the surface 
as smooth as possible. 

. ' , 
. . 

. . 

4.2 Smoothing by minimizing thin 
plate energy 

"Fairing" is the process of reducing irregularities in 
a surface in order to make it smoother. The typ­
ical fairing process proceeds by defining a fairness 
functional for a given set of surfaces, and finding the 
minimum surface F with respect to that functional. 
Different functionals have been defined and used for 
this purpose [Gre94a, Gre94bJ . 

If we choose a functional that is quadratic in the 
basis function coefficients, then as is the case with 
the least squares functional , it is possible to express 
the minimization problem as a linear system that 
can be solved using matrix techniques. 

Since we are dealing with fun ctional DMS sur-

~
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Figure 4: Geographic elevation data for a portion of lIe D'Orleans, downstream from Quebec City (US 
Geological Survey data set quebec-e [EC85]). Left, data sampled at 21m contour levels (East is to the top). 
Middle, the quadtree-based triangulation with knot clouds. Right, side view of the surface fitted using a 
combination of least squares and thin plate energy minimization, with control net (surface patches lying 
substantially in the St. Lawrence River are darkly coloured). The vertical scale has been exaggerated 40 
times to enhance detail. 

faces , an appropriate smoothing functional is the 
linearized thin plate energy functional J(F(x,y)) 
[Gre94a, Gre94b, CG9l, HKD93l, defined as 

J(F) = L F;x + 2F;y + F;y dx dy. (6) 

The region n can be used to restrict the functional to 
only part of the surface in question, thereby localiz­
ing the smoothing effect. Figure 1 shows a truncated 
cone which has been capped in such a way as to mini­
mize the thin plate energy of the capping surface and 
form a Cl join with the truncated cone. 

When actually minimizing this functional, we form 
a linear system similar to the normal equations used 
for least squares minimization. If we define NI = 
N{j,k and N J = Nl~;',n to be two DMS basis func­
tions (not necessarily distinct) then the individual 
entries EI ,J of this matrix are of the form: 

In order to find this matrix, we must evaluate this 
integral. We can use Equation 3 to express the sec­
ond derivative of each DMS basis function in terms 
of simplex splines of lower order. Once expressions 
for the second derivatives of two basis functions have 
been obtained, we can find the integral of their prod­
uct. It is conceivable to do this numerically, but we 
would like to represent these second derivatives sym­
bolically, so that the integral can be found exactly. 

.. . ~ 

If the DMS spline is of degree two, then each of 
its second derivatives is piecewise constant. It fol­
lows from Equation 3 that each second derivative 
can be expressed as the sum of many special piece­
wise constant functions, where each special function 
is a non-zero constant within a (half-open) triangu­
lar region of the domain and vanishes outside it. Let 
SI = L i Ti and SJ = Lj Tj be second derivatives 
of NI and N J , respectively, represented as sums of 
special piecewise constant functions. The integral of 
their product can be rewritten as: 

L (L Ti)(L Tj ) dx dy 
, J 

L L L TiTj dxdy (8) 
, J 

Integration of the product of two special piecewise 
constant functions can be performed by clipping the 
domain triangle of one against the domain triangle 
of the other. The resulting polygon is then clipped 
against the n region and the area of the result is 
multiplied by the heights of both piecewise constants 
(in [Tra90l, the intersection of two triangles is found 
using linear programming) . The partial results are 
then summed to form the final integral. Since the 
regions of support of most DMS basis functions will 
be disjoint from one another, we can accelerate the 
calculation if we only compute the product of special 
functions that lie in the intersection of the bound-

4·" .... ·· .. ,,····, 
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ing boxes of the two basis functions NI and N J. 

This method deals with the integration problem uni­
formly for degree two surfaces, no matter how the 
knots of any particular basis function are configured. 

The smoothing functional cannot be used on its 
own for scattered data fitting. However, it is easy 
to combine thin plate energy with least squares and 
obtain a functional that, when minimized, tries to 
smooth the surface while fitting the surface to the 
scattered data. 

4.3 Combining least squares and 
smoothing 

One way of combining a smoothing factor with our 
least squares functional is to form a linear combina­
tion of the original least squares functional and the 
thin plate energy functional [BHS93]: 

LSJ(F) = (1-0:) LS(F)+o:J(F), 0 ~ et ~ 1 (9) 

By changing the value of 0:, we can vary the rel­
ative strengths of the least squares approximation 
and the thin plate energy terms. The least squares 
term ensures that the surface approximates the given 
data points, while the smoothness term ensures that 
the surface maintain a certain degree of smoothness, 
and that that basis functions that are either under­
determined or linearly dependent with respect to the 
data are assigned values minimizing bending energy 
(see Figures 2 and 3) 

The process of finding an approximating surface 
can now be summarized. First, the data points are 
used to define a triangulation, based on the quad tree 
approach outlined above. Knot clouds are then as­
signed to each vertex of the triangulation. This de­
fines the DMS basis functions, which gives us a space 
of functions in which to find our approximating sur­
face F. 

In both the purely least squares and mixed least 
squares thin plate energy cases, we evaluate the set of 
basis functions at each sample (x, y) location. When 
minimizing a purely least squares problem, these val­
ues are assembled into an observation matrix and the 
basis function coefficients are calculated using linear 
algebra techniques. 

If we wish to solve a least squares with smooth­
ing problem, then the second derivatives of the ba­
sis functions must also be evaluated symbolically as 
outlined in Section 4.2 using the bounding box of 
the quadtree as the n region. The results of integra­
tion are then placed into a matrix, combined with 
the normal equations assembled for the purely least 

. " . ' .. 

squares solution (taking the 0: factor into account) , 
and the basis function coefficients are found using 
linear algebra techniques. 

5 Conclusions 

We have presented a way of using DMS spline sur­
faces for functional scattered data approximation. 
The method generates a triangulation of the param­
eter domain which, in turn, defines a set of basis 
functions adapted to the local density of the data. A 
surface is then found using either a pure least squares 
method or a combination of least squares and thin­
plate energy minimization. The combined method 
allows data sets to be fit which cannot be fit using 
the least squares method alone. 

Further work should be done in the following ar­
eas. By placing certain knots collinearly it is pos­
sible to have some of a DMS spline surface's trian­
gular patches meet with lower-than-maximal conti­
nuity. This is useful for modeling known discontinu­
ities in the data. This scheme should be extended to 
incorporate into the triangulation parametric edges 
where lower continuity is desired. 

The possibility of finding a different triangulation 
method that completely addresses our triangulation 
goals should be more fully examined. The question 
of finding a "fair" triangulation (in the sense of Prop­
erty Two) should be more completely explored, as it 
is likely that it could be used in a wider setting to 
characterize attributes of a data set. 
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