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Abstract 

Box splines are a multivariate extension of uniform 
univariate B-splines. Direct evaluation of a box 
spline basis function can be difficult , but they have a 
relatively simple Fourier transform and can therefore 
be evaluated with an inverse FFT. Symmetry, recur­
sive evaluation of the coefficients, and parallelization 
can be used to optimize performance. A windowing 
function can also be used to reduce truncation ar­
tifacts. We explore all these options in the context 
of a high-performance parallel implementation. Our 
goal is the provision of an empirical touchstone for 
the inverse FFT evaluation of box spline basis fun c­
tions. 

Keywords: Box spline evaluation. B-splines. Fast 
Fourier Transforms (FFT). Parallelism. 

M ultivariate box splines [6] have several prop­
erties that would be useful in the context of a 

splat-based volume renderer [13, 15], but one: they 
lack an efficient and general evaluation technique. 

This paper is a detailed analysis of the optimiza­
tion of the inverse FFT evaluation technique, which 
is one possible but underexploited approach to solv­
ing this problem. Since the Fourier transform of a 
box spline basis function is known and has a simple 
closed form, samples of it can be evaluated on a grid 
and a multivariate inverse FFT can be used to evalu­
ate a grid of samples of the spline. The inverse FFT 

algorithm is not difficult in concept. Achieving ad­
equate performance, however, requires attention to 
detail and it is this detail that we are attempting to 
present in this paper. We optimize both the inverse 
FFT and the evaluation of the coefficients to achieve 

an absolute evaluation rate compatible with interac­
tive volume rendering. We also employ Parzen win­
dowing to avoid negative values and ringing artifacts 
in the output. 

Our implementation runs in parallel on a 16-
processor shared memory multiprocessor. We can 
draw some useful qualitative conclusions from the 
behaviour of our implementation. The most impor­
tant observed property of the inverse FFT algorithm 
is the fact that it is insensitive to high multiplicies 
in the box spline. This is potentially very useful in 
the context of splat volume rendering, where the box 
spline is formed from the projection of a tensor prod­
uct B-spline reconstruction kernel. 

This document is organized as follows: first we 
review basic B-spline and box spline theory, so the 
paper will be self-contained. Then, we compare the 
inverse FFT evaluation technique with other exist­
ing evaluation methods. Many evaluation techniques 
have been developed for particular box splines as 
used in computer aided geometric design (CAGD), but 
some of these techniques do not apply to the render­
ing application we have in mind. After presenting the 
naIve algorithm, we give the details of the symmetry 
optimizations, windowing, and coefficient recurrence 
optimizations. Finally, we present empirical results 
from our implementation. 

Box Splines and B-Splines 

Box splines are one possible multivariate generaliza­
tion of the univariate B-splines [4, 5, 7,3]. The uni­
form univariate B-spline basis functions of order n, 
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Bn (x), can be defined by recursive convolution: 

Bo(x) = 8(x), 

r Bn- I (x - t) dt. 
l [o, I) 

Here 8(x) is the Dirac delta distribution defined by 
J </J(x - t)8(t)dt = </J(x) for any continuous cfi(x). 

The support of Bn(x) is given by [O,n); this asym­
metry can be a nuisance, so the centered spline 
Bnc(x) = Bn(x + n/2) with support on [-n/2, n/2) 
is often very useful. 

Also pertinent to this discussion is the Fourier 
transform of Bn (x), 

~ (l-ex
iW
p(-iW») n Bn(w) = 

where i2 = -1 . The Fourier transform of the cen­
tered spline Bnc (x) is simpler: 

sinc n (w/2), 

where sinc(v) = sin(v)/v for v =1= 0 and sinc(O) = 1. 
Because the centered spline is symmetric, its Fourier 
transform is real. Because either spline basis is real, 
both Fourier transforms possess (Hermetian) sym­
metry. 

Box spline basis functions can be defined similar­
ily, but because they are multivariate we first need 
to introduce some extra structure. The m x n di­
rection vector matrix 3 is defined as an ordered se­
quence of m-dimensional column vectors ei: 3 = 
[el' e2' . . . , en] · If a direction vector ei is repeated f..L 
times, we say it has multiplicity f..L. 

The box spline basis function Mn(xI3), with x E 
Rm, can then be defined recursively by 

Mo(xI0) 

Mn(xI3) 

8(x), 

r Mn-I(x - tenI3\en) dt. 
l [o,I) 

Here 3\en means the vector en is removed from 3 . 
Box splines have a multivariate Fourier transform 
given by 

M,,(wI3) = ITn 1 - exp( -iw . eJ . 
iw·e · 

i= I ' 

(1) 

As with the B-splines, we can define a centered 
form. Let c = ~ L i e i; then define Mnc(xI 3 ) = 
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Mn(x + cI3). The Fourier transform of the centered 
box spline is 

n 

IT sinc (w . ed 2). (2) 
i=I 

If we only have r unique direction vectors e j' with 
multiplicities denoted by f..Lj, then 

r 

IT sincJLi(w ·e)2). (3) 
j=I 

For CAGD purposes, the integral of the box spline 
is often normalized to 1 by dividing by Idet 31. Since 
3 is rectangular, evaluation of this determinant re­
quires some thought [6]. The vectors ei contained in 
3 are also often limited to zm, so the basis functions 
can be used in grids to form spline surfaces. For 
rendering purposes, neither of these limitations are 
mandatory, and so we will not mention them further. 

Some properties of box splines are useful. First , 
they reduce to tensor product B-splines if the num­
ber of unique direction vectors r is equal to m, the 
dimension of the parameter space. Second, a box 
spline with r unique direction vectors is the projec­
tion of a tensor product B-spline basis function in r 
dimensions. Third, the convolution of two box spline 
basis functions can be found by simply concatenating 
their direction vector matrices. Finally, box splines 
satisfy recurrence and subdivision relationships that 
are very similar to those of the uniform univariate 
B-splines. 

Taken together, some interesting graphics and sig­
nal processing applications can be envisioned, par­
ticularly if we also consider the connection of the 
univariate B-splines to digital signal processing [12]. 
Many CAGI;> applications have already been consid­
ered in the literature; some examples are given in 
[8, 6, 3]. Our work, however , is primarily motivated 
by the potential application of box splines to vol­
ume rendering, particularly "splat" volume render­
ing [13, 14, 15] with tensor-product B-spline recon­
struction kernels . The primary difficulty with this 
application is the lack of a truly efficient evaluation 
technique for box splines. In the next section we re­
view some evaluation techniques, and point out some 
of the properties of the inverse FFT algorithm which 
are particularly appealing. 
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Evaluation Taxonomy 

Box spline evaluation is, in general, more difficult 
than univariate B-spline evaluation. This is mostly 
due to the increased flexibility that box splines pro­
vide. With care, efficient algorithms can be obtained 
for useful subclasses of box splines that possess ad­
equate structure. General evaluation algorithms can 
exploit one or more of the following properties of box 
splines: (1) recurrence (possibly preceeded by a mu 1-
tivariate truncated power function decomposition), 
(2) two-scale subdivision, or (3) the Fourier trans­
form. Other specialized techniques for CAGD appli­
cations, such as Bezier patch decomposition [9]' are 
not germane to this dicussion because they depend 
on a static configuration of direction vectors. In ren­
dering applications this may not be true, as can be 
seen from the comparison given in Figure 1. 

Of the relevant evaluation techniques, only recur­
rence is exact. Unfortunately, it can be very expen­
sive. For completely general box splines the cost in­
creases combinatorically with the number of direc­
tion vectors. With care, on restricted classes of box 
splines, this explosion can be contained somewhat, 
but a large amount of arithmetic is still needed for 
every sample. 

Subdivision leads to an approximate iterative tech­
nique which converges quadratically. The continu­
ous inverse Fourier transform of the box spline can 
only be approximated with a discrete inverse Fourier 
transform, so inverse FFT evaluation is also an ap­
proximation. Both of these techniques share the 
property that a large number of samples are com­
puted at once, and in fact they have similar asymp­
totic complexity measures. 

Strangely, inverse FFT evaluation has not been 
looked at seriously in the literature [6]. The result­
ing evaluation algorithm is, however, asymptotically 
relatively efficient for high multiplicity box splines 
and is appropriate for some computer architectures, 
i.e. parallel machines or machines with a DSP co­
processor . Since parallel machines are often used for 
volume rendering, and high multiplicity box splines 
are potentially useful in that application, it is worth­
while to investigate the inverse FFT approach. 

Certain optimizations can be made based on the 
real and symmetric nature of both the Fourier trans­
form and the centered box spline that can reduce 

.' , 
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the overall computational load by a factor of four. 
We also derive a recursive technique to evaluate the 
Fourier coefficients, the starting point of the evalua­
tion technique, with very few trigonometric evalua­
tions. 

Figure 1: Box splines for volume rendering have to 
be more flexible than those used in geometric design. 
On the left is the Zwart-Powell element often used in 
CAGD and finite element analysis; on the right, one 
instance of the projection of a tensor product of three 
tent functions (second order univariate B-splines), 
as would be used for a trilinear reconstruction kernel 
in volume rendering. Also shown are the discontinu­
ity maps of these splines. 

The Inverse FFT Algorithm 

The Fourier transform of an uncentered box spline 
(1) is in general complex but exhibits conjugate 
symmetry as Mn(xI2) is real. The Fourier trans­
form of the centered box spline (2 ,3) is even simpler: 

Mnc(wI2) is not only symmetric about w = 0, but 
entirely real. The naIve FFT evaluation algorithm 
proceeds as follows: 

1. Choose spatial sample spacings 6.xe and a 
bounding box containing the support of the box 
spline. Let Xl be the length of the bounding 

4
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box, t::.Xi the sample sfacing, and Ni the num­
ber of samples in the et . dimension. For a radix-
2 FFT algorithm, Ni should be a power of two. 
Compute the spacing of the frequency samples: 
t::.Wl = 27r / Xl for all e. 

2. Create a periodized version Mncq, (wI3) of 

Mnc(wI3) by replicating a base period in the 
frequency domain, 0 = x i[-Ot/2,Ot/2), with 
Ol = Nit::.Wl. Any energy in Mnc(wI3) outside 
of the base period will contribute to truncation 
error. 

3. Create Mncq,[kI3] by sampling Mncq,(wI3) at 
kt::.w = (k1 t::.Wl , k2t::.W2, ' " ,kst::.ws) with 0 ~ 
ki ~ Ni - 1. 

4. ~indow if necessarL to avoid ringing artifacts: 
Mncwq,[kI3] = w[k]Mnc</> [kI3]. 

5. Perform an inverse m-dimensional FFT on 
Mncw</>[kI3] to obtain Mncw</> UI3]. 

6. Unpack the data from the FFT by permuting 
quadrants and shifting the center by cs, if re­
quired: 

MnOt::.x - csl3) ~ 

Mncw</> [O + N/2) mod NI3) . 

Basically, the infinite support of the Fourier trans­
form of a box spline is truncated and discretized, 
possibly weighted with a window function, and then 
inverted. 

We can easily compute samples of Mnc(wI3)j how­
ever, these are samples of the continuous Fourier 
transform, not the discrete Fourier transform (OFT) 

which is what the inverse FFT algorithm expects. 
Sampling in space and frequency implies periodicity 
in both space and frequency for the OFT. Therefore, 
a true OFT is periodic as well as sampled, and the 
inverse will also be periodic. Given one period of a 
OFT, the FFT computes one period of the result. 

Fortunately, box splines and their transforms go 
to zero, or nearly to zero, towards the edges of their 
domains. The box spline Mnc(xI3) goes to zero ex­
actly outside its support (which can be computed in 

linear time), while the transform Mnc(wI3) goes to 
zero as n;==l(w, ej)-Ili . To approximate a Fourier 
transform by a OFT, one has to window a part of the 

. . 
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sampled integral Fourier transform and use it as a 
base period which is then implicitly replicated. 

The simplest window is rectangular, i.e. just a 
finite number of raw samples. Truncation will ac­
tually give the best least-squares approximation [1], 
but this fact doesn't guarantee that the approxima­
tion will be free of objectionable artifacts for all ap­
plications. 

Because of periodicity in space, one must be care­
ful to separate spatial duplicates to avoid having non­
zero samples from one period overlap with non-zero 
samples of another. This can be ensured by using a 
spatial period which contains a bounding box around 
the support of the box spline. Radix 2 FFT algo­
rithms also require data dimensions which are perfect 
powers of two, and so the dimensions of the bounding 
box, Ni, must be rounded up to the nearest power of 
two. More general FFT algorithms are possible, but 
at the very least each Ni should be highly composite, 
i.e. a product of a few small integer factors. Conse­
quently, when evaluating the amortized cost of each 
computed sample with the support of a box spline, 
the proportion of samples wasted within this bound­
ing box will be important. If the minimal bound­
ing box containing the support of a two-dimensional 
box spline covers, for example, a 257 x 129 square, a 
512 x 512 radix-2 FFT will be required. At least 3/4 of 
the computation will be wasted, although the extra 
samples in frequency will contribute somewhat to the 
accuracy. Depending on the shape of the support, 
it may be possible to pack the periods more tightly 
together than the minimax bounding box would sug­
gest, although the conditions for this situation can be 
so easily violated that it is better to be conservative. 

The required inverse FFT is of course multivariate 
for the evaluation of multivariate splines. A multi­
variate FFT can be computed directly using a spe­
cialized FFT algorithm. The kernel of the multivari­
ate OFT is separable, so a multivariate FFT can also 
be performed by univariate FFTS applied to each di­
mension in turn. The multiple univariate transforms 
within a dimension can be computed independently, 
as can the generation of the coefficients, and so this 
algorithm is naturally highly parallel. Some commu­
nication cost is incurred when the data needs to be 
transposed for transforms across the various dimen­
sions. 

4
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Symmetry Optimizations 

The symmetry of Mnc(wI3) means that we can im­
mediately halve our initial work by only computing 
half the samples in Mnc4> [kI3], then infer the rest 
by reflection. The symmetry condition for DFT co­
efficients in the standard FFT order is Mnc4>[kI3] = 

M~C4>[N - k 13]' for real Mnc4> UI3]. Symmetry also 
allows us to make some savings in the computation 
of the FFT itself. 

In the following we assume m = 2 for simplic­
ity, and also because this will be the most com­
mon case. Assume we compute a two dimen­
sional inverse FFT by computing all the column in­
verse transforms followed by all the row inverses. 
The algorithm would proceed by computing real 
values of Mn c4> [kl , k213] located at all (kl' k2) E 
{O, 1, . .. ,Nd2} x {O, 1, ... ,N2 - I}, then would 
compute all the inverse column transforms to derive 
half of an intermediate transform b[kl' k2]. Columns 

kl = {Nd2 + 1, .. . ,NI - I} in Mnc[kl , k21 3] 
are reflections of columns kl = {I, . . . ,Nd2 - I} 
in Mnc[kl , k213]; the discrete version of the sym­
metry noted above is Mnc[k l , k213] = Mnc[NI -
kl' N2 - k213] . This implies that the correspond­
ing coefficients in columns {NI / 2 + 1, . .. ,NI - I} 
of b[ kl' k2] are the complex conjugates of those 
for their corresponding computed columns: b[NI -

kl ' k2] = b* [kl' k2] . Equivalently, since the samples 
in Mn c4> [k l , k213] are real and therefore their Fourier 
transforms are even, b[NI - kl' N2 - k2] = b[kl ' k2]. In 
the second phase of the algorithm, we need to per­
form row inverse FFT's to obtain the values of the 
centered box spline. Since the centered box spline is 
also even in a two-dimensional sense, we only need 
to compute N 2 / 2 + 1 row inverses, then use the sym­
metry of the box spline itself to fill in the remaining 
values. 

Exploitation of symmetry in this way gains a fac­
tor of two over the na·ive algorithm. Another factor 
of two can be gained by exploiting the fact that both 
the centered box spline and its transform are real, 
while the FFT calculates with complex arithmetic. 
By packing one column of coefficients in the real part 
and one in the imaginary part of the data passed to 
an FFT routine , then using even and odd properties 
to unpack the result , we can double our through­
put . Likewise, for the second phase we can set up 

the coefficients so that two rows can be computed at 
once, doubling throughput at that stage as well. In 
the following we describe these optimizations more 
precisely. 

In the first, column transformation stage, create a 
set of NI /4+ 1 complex coefficient columns as follows : 

CWI, k2 ] = 

{ 

Mn c4> [2£1 , k213 ] + iMnc4>[2£1 + 1, k2 13] 
(for II < Nd4); 

Mnc4>[2£I' k213] (for II = Nd4) . 

Since all values of Mnc 4> [k l , k213] are real, 

Mn c4> [2£I' k2 13 ] 

Mnc4> [2£1 + l,k213] 

~{a[ll' k2]}, 

~{a[ll' k2]}. 

Note that because NI /2 + 1 is odd, one of the packed 
columns in a has a zero imaginary part. Let a[PI' k2 ] 

contain the inverse univariate FFT of each of the 
columns in a[ll' k2] . To unpack each column, we ex­
ploit the facts that FFTS of real signals are even, FFTS 
of imaginary signals are odd, superposition holds, an 
inverse FFT can be computed by taking the conju­
gate of the FFT of a conjugated signal, and symmetry 
properties hold [2] to derive the formulae 

b[jl, k2] = 

(a[jd2, k2] + a*[jd 2, N2 - k2]) /2 
(for jl mod 2 = 0, jl < Nd2); 

-i (a[it / 2, k2] - a* [it /2, N2 - k2]) / 2 
(for jl mod 2 = l , jl < Nd2); 

a[Nd4] (for jl = Nd2); 
b* [NI - jl , k2 ] (for it > NI). 

We will now be taking the inverse FFTs of the 
first N2/ 2 + 1 rows of b[it, k2] to determine the first 
N2 /2 + 1 rows of the box spline; the rest can be in­
ferred by symmetry. Note that we have expressed 
the symmetry in b above so the rows k2 > N 2/2 
never have to be calculated. Since we know the re­
sult will be real, we would like to pack the coefficients 
so we can compute two rows at once. Again, we can 
use the odd/even relationship to derive new packed 
row coefficients CUI, l2 ] that will have the appropri­
ate properties: 

qh, l2 ] = 

{ 
b[jl, 2£2] + ib[jl , 212 + 1] (for l2 < N 2/ 4); 
b[jl, 2£2] (for l2 = N 2/4). 
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Note again that since Nd 4 + 1 is odd by assumption 
the last transform only computes the inverse trans­
form of one signal. Since b is complex, however, all 
rows will have generally nonzero real and imaginary 
parts. The row-wise inverse FFT c of c will be the 
desired box spline values, in FFT order and packed 
into the real and imaginary parts: 

M nc,p[il,j213] = 

{ 
~{c[il,12/2]} (for 12 mod 2 = 0); 
SS'{c[jl,12/2]} (for 12 mod 2 = 1). 

The refined algorithm, including all the above 
symmetry considerations for two dimensions, is given 
below. Similar optimizations could be made for 
higher dimensions. 

1. Center the box spline and choose spatial sample 
spacings, bounding box, etc. 

2. Model Mnc(wI3) by Mnc,p(wI3). 

3. Create Mnc,p[kI3] by sampling Mnc,.;(wI3) 
at k~w (kl~Wl' k2~W2) with kl E 
{O, 1 ... Nd2} and k2 E {O, 1, .. . N2 - I}. 

4. Window if necessary to create Mncw,p[kI3]. 

5. Create a by packing the sampled coefficients. 

6. Take inverse FFTS of all columns in a to create 
a. 

7. Convert a to c, i.e. unpack and repack using the 
formulas for b. Only the non-redundant entries 
in b need to be computed. 

8. Take inverse FFTS of all rows in c to create c. 

9. Unpack the real and imaginary parts of c and re­
flect and shift as necessary to obtain the values 
of the box spline in natural order. Shift the cen­
ter back to its correct location if an uncentered 
box spline was required. 

In summary, by exploiting symmetries we have re­
duced the overall FFT computation cost by nearly a 
factor of four, while reducing memory cost by nearly 
a factor of two. The extra overhead incurred is lim­
ited to a slightly more complicated transposition that 
involves some addition . 

.. 
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Windowing 

Windowing functions are used to modify the effect 
bandlimiting has on the FFT approximation. Essen­
tially, a window function is a filter that smooths a 
signal in the spatial domain so that it may be better 
approximated by an FFT. By a standard result, the 
lowest RMS error is actually achieved if a rectangular 
window (truncation) is used [1], but the RMS metric 
may be inappropriate for applications that require 
local error bounds or conditions such as nonnegativ­
ity. 

Because box splines are already fairly smooth for 
most configurations of direction vectors, a window 
function may be unnecessary. However the Parzen 
window is easy to implement and may be useful in 
some circumstances. The univariate Parzen window, 

(l-lw/wNI) X[-WN,WN) (w) 

X[-wN /2,WN /2) (w) * X[-wN /2,WN /2) (w), 

is a "tent" function which decreases from 1 at w = 0 
to 0 at the Nyquist frequency WN = ws /2, half the 
sampling frequency, in both directions. A multivari­
ate window function would be formed with a tensor 
product. This window and its inverse Fourier trans­
form is shown in Figure 2. 

0

1 jl==parzen-:--~=-. W;rnlo. 

I I I 

0.5 
·f N 0 f N 

,,,",, T,,",fo~ A 
0~~T=T=r=~~~~~~~T=T=r=T 

·16 ·14 ·12 ·10 ·8 ·6 ·4 ·2 0 2 4 6 8 10 12 14 16 

Figure 2: The Parzen (tent) window function, along 
with its inverse Fourier transform. 

We call the inverse Fourier transform the impulse 
response of the window function, since it is the image 
that would result from convolution with an impulse; 
the Fourier transform of an impulse is a constant at 
all frequencies. The effect of multipling by a win­
dow function in the frequency domain is, according 

4
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to the duality principle, equivalent to convolving by 
the window function's impulse response in the spatial 
domain. Hence, the shape of the impulse responses 
of these functions gives us an idea of their spatial 
properties. 

Since the Parzen window can be recognized as a 
second order uniform B-spline basis function, which 
is the convolution of two box functions, its impulse 
response is a squared sinc: wp(x) = sinc2 (x/4), 
which has multiple modes and decreases at infinity 
by l/x 2 but is always positive. The function wp(x) 
is sometimes called the Fejer kernel and its posit iv­
ity ensures the absence of overshoot. In particular, 
no negative values can occur in the output since the 
spline is also totally positive. 

Extensions to the Parzen window include the uni­
variate B-spline basis functions, which converge to 
the Gaussian window function. Using B-spline win­
dows requires dividing the domain into more than 
two sections, which is slightly inconvenient. Fourier 
inverses of even order B-splines will share the posi­
tivity of the Fejer kernel, since their transforms will 
be of the form sinc2k (x/2k) with kEN. 

Coefficient Evaluation 

In addition to computing the inverse FFT, we also 
need to compute the input coefficients. Each sam­
ple of the box spline's Fourier transform Mnc(xl=:) 
requires r sine evaluations, divisions, and exponen­
tiations if =: contains r unique direction vectors. 
Trigonometric functions and divisions can be fairly 
expensive. Trigonometric functions consume a bud­
get of 10 to 50 floating-point multiplications on a 
range of high-performance machines [10] . Division, 
while not as expensive, cannot usually be pipelined. 

Some optimizations are possible. Since we need 
to compute so many equally spaced samples we can 
take advantage of trigonometric recurrences to in­
crementally compute the sine values. The exponen­
tiation can be done in sublinear time by iterating 
multiplications. For common multiplicity values, ex­
ponentiation can be performed at a cost of only a 
few multiplications which can be written explicitly 
to maximize pipelining. For example, exponentia­
tion by four, probably the maximum multiplicity in 
practice, requires only two multiplications. 

The following recurrence can be used to compute 

sequential trigonometric coefficient values: 

sin(.6.wj) = (4) 

2 cos(.6.w) sin(.6.w(j -1)) - sin(.6.w(j - 2)). 

The value 2 cos(.6.w) is a constant which only needs 
to be computed once during preparation. In addi­
tion to this constant, initialization of the recurrence 
requires the evaluation of two samples of the sine 
function, which can be used going both forwards and 
backwards from O. In a parallel implementation, ini­
tializing and scanning each row still leaves a large 
number of independent work packets. After initial­
ization, this recurrence requires only a single mul­
tiplication and an addition per sine sample. This 
can be accomplished in a multiply-accumulate (MAC) 
operation, which many processors have as a single 
instruction and which typically maximizes floating­
point performance. 

Error for Recursive Sine Evaluation 

Iteration w max reI err: max abs err: 
1000 165.3 7.7 x 10-14 9.4 X 10- 13 

2000 330.5 1.4 x 10-13 2.4 X 10-10 

3000 495.8 2.0 x 10-13 2.4 X 10-10 

Error for Recursive Sinc Evaluation 

Iteration w max reI err: max abs err: 
1000 165.3 4.9 x 10-16 9.2 x 1O---r.r 
2000 330.5 4.9 x 10-16 2.4 X 10-10 

3000 495.8 4.9 x 10-16 2.4 X 10-10 

Figure 3: Empirical error of sine and sinc evaluation 
via recurrence. 

Since the sine recurrence in (5) is only marginally 
stable, we need to evaluate how accurate it is in 
practice. In Figure 3 we empirically compare direct 
evaluation of sine and sinc functions to the incre­
mental approach, using IEEE double-precision float­
ing point . Note that the error increases slightly the 
farther we stray from the initialization; however , if 
we start at low frequency values and work up to the 
less important1 high frequencies, the effect of the er­
ror can be masked. The error is further masked by 
the division, which damps the amplitude of the coef-

1 Perceptually speaking; of course the truth of this state­
ment depends on the application . 
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ficients with the highest error. Even after 3000 sam­
ples (far more than we will typically need in practice) 
we still maintain 10 digits of precision. 

The division in the sinc introduces a singularity 
which must be dealt with to maintain the robustness 
of the algorithm. In the context of a two-dimensional 
grid of coefficients, this singularity will not necessar­
ily occur at the zero frequency of the row, since it 
occurs along a line which cuts across the row being 
evaluated. The most efficient and robust approach to 
dealing with the singularity is to compute its position 
for each sine factor and work outwards from it. This 
results in an uncluttered inner loop that can be ef­
fectively optimized. The windowing function should 
be evaluated and applied in a separate step. 

An Implementation 

An implementation of the FFT evaluation algorithm 
was performed on a shared memory multiprocess­
ing machine: the Pulsus G2 from ISG Technologies. 
This machine had 16 RIse processors (M88110's) 
connected via a hierarchy of buses to a large global 
memory. Every four processors also shared 512K of 
fast static memory. The implementation used the 
symmetry optimizations outlined above, as well as 
selectable direct or recursive coefficient evaluation. 
Parallelism was performed on a row-column basis, 
with automatic load balancing using a work packet 
server. Two barriers were needed to synchronize 
the processors after the coefficient computation and 
for the transition between row and column FFT'S . 

Parzen windowing was implemented. Some sample 
evaluations are shown in Figure 5. 

In this section we use this implementation as an 
empirical example to extract some qualitative prop­
erties of the FFT algorithm, in an attempt to charac­
terize the niches for which it is suited. Our empirical 
results are contained in Figure 4. 

Figure 4a compares the execution times for vari­
ous problem sizes and various numbers of processors. 
Note that for small problem sizes, the processors sat­
urate quickly and serial overhead quickly destroys 
efficiency. In the case of the smaller problem size ex­
ecution time actually increases as the number of pro­
cessors is increased. Larger problem sizes can more 
efficiently use a larger number of processors. This 
leads to our first observation: for a parallel imple-
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mentation of the inverse FFT evaluation algorithm, 
larger resolutions are more efficient. This observa­
tion, which is a standard expectation for all parallel 
programs, is somewhat confused by the fact that on 
cache-based architectures, problem sizes larger than 
the cache size can affect efficiency as well. This par­
ticular machine has only a 4K data cache per pro­
cessor, and cache misses result in expensive global 
memory accesses. On a more balanced architecture 
this would be less of a problem. 

From the results in Figure 4b we see that the in­
verse FFT algorithm is relatively insensitive to mul­
tiplicities, an important characteristic that distin­
guishes it from the others we have mentioned (re­
currence and subdivision). The difference in execu­
tion times between a 3rd and a 12th order spline is 
only 3%, if the order increases only by adding mul­
tiplicities. This leads to our second qualitative ob­
servation: multiplicities have little impact on perfor­
mance. Note that in this implementation exponenti­
ation was implemented using pg f-Lll multiplications. 

Finally, in Figure 4c we compare direct evaluation 
of the Fourier coefficients to recursive evaluation. In 
direct evaluation a separate call to sinO is made 
for every sample. In recursive evaluation, there are 
only two calls to sin 0 and one to cos 0 per row 
per unique direction vector, with all other samples 
derived via a recurrence. A division is required for 
every sample in both cases. As is shown in the table, 
the performance increment is significant, at least for 
this machine which requires approximately 50 float­
ing point operations for evaluation of the sine. Direct 
evaluation of the coefficients dominates the evalua­
tion of the inverse FFT, while recursive evaluation 
is nearly negligible compared to the inverse FFT. On 
other processors with more efficient trigonometry the 
difference may be less significant, although we can 
still expect a factor of ten improvement. In all cases, 
evaluation of the coefficients via recurrence should be 
negligible. We should note that the implementation 
of the FFT that we use (from [11]) also uses a recur­
rence to avoid extraneous trigonometric evaluations. 
This is not a highly optimized version of the FFT, and 
a better implementation could probably improve the 
FFT timings. In particular, a radix-4 or radix-8 algo­
rithm would reduce the memory to processor band­
width by reducing the number of stages required in 
the FFT algorithm. 
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Conclusions 

In summary, we have observed the following: (1) a 
parallel implementation of the inverse FFT algorithm 
can achieve significant speedup on a shared mem­
ory architecture; (2) larger grid resolutions are more 
efficient; (3) the FFT evaluation algorithm is rela­
tively insensitive to multiplicities, growing only by 
O(1g ILL) but with a very small scale factor; and (4) 
direct evaluation of the coefficients consumes a sig­
nificant fraction of the execution time, but recursive 
evaluation is effectively negligible relative to the cost 
of the inverse FFT. 

These properties indicate that the inverse FFT al­
gorithm is indeed suitable for some rendering appli­
cations, in particular splat-based volume rendering. 

For two-dimensional splines, we can conclude from 
the asymptotic complexity of the FFT algorithm that 

this algorithm takes 0 (rIg (L: j ILj) + 19 N) time 

per sample, where r is the number of unique direc­
tion vectors, the ILj are the multiplicities of each di­
rection vector, and N is the maximum resolution. 
To achieve this, however, O(N2) samples need to be 
evaluated, and it should be remembered that the ap­
plication of the FFT does require some small amount 
of approximation. 
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(a) Performance vs. Number of Processors 
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(b) Performance vs. Multiplicity 

Multiplicity ms Hz ratio 
1 128.39 7.79 1.00 
2 130.50 7.66 0.98 
3 132.93 7.52 0.97 
4 132.34 7.56 0.97 

(c) 2D FFT vs. Coefficient Evaluation 

Problem Size FFT Dir. Rec. 
ms ms ms 

128 x 128 16.05 25.72 2.96 
256 x 256 32.98 51.44 5.87 
512 x 512 108.55 213.81 19.52 

FFT/ FFT/ Dir./ 
Dir. Rec. Rec. 

128 x 128 0.624 5.42 8.689 
256 x 256 0.641 5.61 8.763 
512 x 512 0.508 5.56 10.95 

Figure 4: (a) Averages over 100 runs, three direc­
tion box spline, 16 processors, uniform multiplicity 1. 
Efficiency is the ratio between the speedup (relative 
to a single processor) and the number of processors 
used. (b) Averages over 100 runs, 512 x 512 problem 
size, recursive coefficient evaluation, three direction 
box spline, 16 processors, uniform multiplicities. (c) 
Averages over 100 runs of the evaluation of a three 
direction box spline of uniform multiplicity 1. 
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Figure 5: FFT centered box spline evaluation exam­
ples. On the left are 256 x 256 unwindowed Fourier 
transforms, and on the right the resulting spline. 
Each spline has three unique direction vectors, with 
multiplicity increasing from top to bottom. 
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