
34

Optimized Evaluation of Box Splines via the Inverse FFT

Michael D. McCool

Computer Graphics Laboratory
Department of Computer Science, University of Waterloo, Waterloo, Ontario, N2L 3G 1

mmccool@watcgl.uwaterloo.ca http://www.cgl.uwaterloo.ca/-mmccool/
Tel: (519) 888 4567 x4422

Abstract

Box splines are a multivariate extension of uniform
univariate B-splines. Direct evaluation of a box
spline basis function can be difficult , but they have a
relatively simple Fourier transform and can therefore
be evaluated with an inverse FFT. Symmetry, recur­
sive evaluation of the coefficients, and parallelization
can be used to optimize performance. A windowing
function can also be used to reduce truncation ar­
tifacts. We explore all these options in the context
of a high-performance parallel implementation. Our
goal is the provision of an empirical touchstone for
the inverse FFT evaluation of box spline basis fun c­
tions.

Keywords: Box spline evaluation. B-splines. Fast
Fourier Transforms (FFT). Parallelism.

M ultivariate box splines [6] have several prop­
erties that would be useful in the context of a

splat-based volume renderer [13, 15], but one: they
lack an efficient and general evaluation technique.

This paper is a detailed analysis of the optimiza­
tion of the inverse FFT evaluation technique, which
is one possible but underexploited approach to solv­
ing this problem. Since the Fourier transform of a
box spline basis function is known and has a simple
closed form, samples of it can be evaluated on a grid
and a multivariate inverse FFT can be used to evalu­
ate a grid of samples of the spline. The inverse FFT

algorithm is not difficult in concept. Achieving ad­
equate performance, however, requires attention to
detail and it is this detail that we are attempting to
present in this paper. We optimize both the inverse
FFT and the evaluation of the coefficients to achieve

an absolute evaluation rate compatible with interac­
tive volume rendering. We also employ Parzen win­
dowing to avoid negative values and ringing artifacts
in the output.

Our implementation runs in parallel on a 16-
processor shared memory multiprocessor. We can
draw some useful qualitative conclusions from the
behaviour of our implementation. The most impor­
tant observed property of the inverse FFT algorithm
is the fact that it is insensitive to high multiplicies
in the box spline. This is potentially very useful in
the context of splat volume rendering, where the box
spline is formed from the projection of a tensor prod­
uct B-spline reconstruction kernel.

This document is organized as follows: first we
review basic B-spline and box spline theory, so the
paper will be self-contained. Then, we compare the
inverse FFT evaluation technique with other exist­
ing evaluation methods. Many evaluation techniques
have been developed for particular box splines as
used in computer aided geometric design (CAGD), but
some of these techniques do not apply to the render­
ing application we have in mind. After presenting the
naIve algorithm, we give the details of the symmetry
optimizations, windowing, and coefficient recurrence
optimizations. Finally, we present empirical results
from our implementation.

Box Splines and B-Splines

Box splines are one possible multivariate generaliza­
tion of the univariate B-splines [4, 5, 7,3]. The uni­
form univariate B-spline basis functions of order n,

Graphics Interface '95

Bn (x), can be defined by recursive convolution:

Bo(x) = 8(x),

r Bn- I (x - t) dt.
l [o, I)

Here 8(x) is the Dirac delta distribution defined by
J </J(x - t)8(t)dt = </J(x) for any continuous cfi(x).

The support of Bn(x) is given by [O,n); this asym­
metry can be a nuisance, so the centered spline
Bnc(x) = Bn(x + n/2) with support on [-n/2, n/2)
is often very useful.

Also pertinent to this discussion is the Fourier
transform of Bn (x),

~ (l-ex
iW
p(-iW») n Bn(w) =

where i2 = -1 . The Fourier transform of the cen­
tered spline Bnc (x) is simpler:

sinc n (w/2),

where sinc(v) = sin(v)/v for v =1= 0 and sinc(O) = 1.
Because the centered spline is symmetric, its Fourier
transform is real. Because either spline basis is real,
both Fourier transforms possess (Hermetian) sym­
metry.

Box spline basis functions can be defined similar­
ily, but because they are multivariate we first need
to introduce some extra structure. The m x n di­
rection vector matrix 3 is defined as an ordered se­
quence of m-dimensional column vectors ei: 3 =
[el' e2' . . . , en] · If a direction vector ei is repeated f..L
times, we say it has multiplicity f..L.

The box spline basis function Mn(xI3), with x E
Rm, can then be defined recursively by

Mo(xI0)

Mn(xI3)

8(x),

r Mn-I(x - tenI3\en) dt.
l [o,I)

Here 3\en means the vector en is removed from 3 .
Box splines have a multivariate Fourier transform
given by

M,,(wI3) = ITn 1 - exp(-iw . eJ .
iw·e ·

i= I '

(1)

As with the B-splines, we can define a centered
form. Let c = ~ L i e i; then define Mnc(xI 3) =

35

Mn(x + cI3). The Fourier transform of the centered
box spline is

n

IT sinc (w . ed 2). (2)
i=I

If we only have r unique direction vectors e j' with
multiplicities denoted by f..Lj, then

r

IT sincJLi(w ·e)2). (3)
j=I

For CAGD purposes, the integral of the box spline
is often normalized to 1 by dividing by Idet 31. Since
3 is rectangular, evaluation of this determinant re­
quires some thought [6]. The vectors ei contained in
3 are also often limited to zm, so the basis functions
can be used in grids to form spline surfaces. For
rendering purposes, neither of these limitations are
mandatory, and so we will not mention them further.

Some properties of box splines are useful. First ,
they reduce to tensor product B-splines if the num­
ber of unique direction vectors r is equal to m, the
dimension of the parameter space. Second, a box
spline with r unique direction vectors is the projec­
tion of a tensor product B-spline basis function in r
dimensions. Third, the convolution of two box spline
basis functions can be found by simply concatenating
their direction vector matrices. Finally, box splines
satisfy recurrence and subdivision relationships that
are very similar to those of the uniform univariate
B-splines.

Taken together, some interesting graphics and sig­
nal processing applications can be envisioned, par­
ticularly if we also consider the connection of the
univariate B-splines to digital signal processing [12].
Many CAGI;> applications have already been consid­
ered in the literature; some examples are given in
[8, 6, 3]. Our work, however , is primarily motivated
by the potential application of box splines to vol­
ume rendering, particularly "splat" volume render­
ing [13, 14, 15] with tensor-product B-spline recon­
struction kernels . The primary difficulty with this
application is the lack of a truly efficient evaluation
technique for box splines. In the next section we re­
view some evaluation techniques, and point out some
of the properties of the inverse FFT algorithm which
are particularly appealing.

Graphics Interface '95

36

Evaluation Taxonomy

Box spline evaluation is, in general, more difficult
than univariate B-spline evaluation. This is mostly
due to the increased flexibility that box splines pro­
vide. With care, efficient algorithms can be obtained
for useful subclasses of box splines that possess ad­
equate structure. General evaluation algorithms can
exploit one or more of the following properties of box
splines: (1) recurrence (possibly preceeded by a mu 1-
tivariate truncated power function decomposition),
(2) two-scale subdivision, or (3) the Fourier trans­
form. Other specialized techniques for CAGD appli­
cations, such as Bezier patch decomposition [9]' are
not germane to this dicussion because they depend
on a static configuration of direction vectors. In ren­
dering applications this may not be true, as can be
seen from the comparison given in Figure 1.

Of the relevant evaluation techniques, only recur­
rence is exact. Unfortunately, it can be very expen­
sive. For completely general box splines the cost in­
creases combinatorically with the number of direc­
tion vectors. With care, on restricted classes of box
splines, this explosion can be contained somewhat,
but a large amount of arithmetic is still needed for
every sample.

Subdivision leads to an approximate iterative tech­
nique which converges quadratically. The continu­
ous inverse Fourier transform of the box spline can
only be approximated with a discrete inverse Fourier
transform, so inverse FFT evaluation is also an ap­
proximation. Both of these techniques share the
property that a large number of samples are com­
puted at once, and in fact they have similar asymp­
totic complexity measures.

Strangely, inverse FFT evaluation has not been
looked at seriously in the literature [6]. The result­
ing evaluation algorithm is, however, asymptotically
relatively efficient for high multiplicity box splines
and is appropriate for some computer architectures,
i.e. parallel machines or machines with a DSP co­
processor . Since parallel machines are often used for
volume rendering, and high multiplicity box splines
are potentially useful in that application, it is worth­
while to investigate the inverse FFT approach.

Certain optimizations can be made based on the
real and symmetric nature of both the Fourier trans­
form and the centered box spline that can reduce

.' ,
" ~

the overall computational load by a factor of four.
We also derive a recursive technique to evaluate the
Fourier coefficients, the starting point of the evalua­
tion technique, with very few trigonometric evalua­
tions.

Figure 1: Box splines for volume rendering have to
be more flexible than those used in geometric design.
On the left is the Zwart-Powell element often used in
CAGD and finite element analysis; on the right, one
instance of the projection of a tensor product of three
tent functions (second order univariate B-splines),
as would be used for a trilinear reconstruction kernel
in volume rendering. Also shown are the discontinu­
ity maps of these splines.

The Inverse FFT Algorithm

The Fourier transform of an uncentered box spline
(1) is in general complex but exhibits conjugate
symmetry as Mn(xI2) is real. The Fourier trans­
form of the centered box spline (2 ,3) is even simpler:

Mnc(wI2) is not only symmetric about w = 0, but
entirely real. The naIve FFT evaluation algorithm
proceeds as follows:

1. Choose spatial sample spacings 6.xe and a
bounding box containing the support of the box
spline. Let Xl be the length of the bounding

4
,··'

. .
:: .. Graphics Interface '95

box, t::.Xi the sample sfacing, and Ni the num­
ber of samples in the et . dimension. For a radix-
2 FFT algorithm, Ni should be a power of two.
Compute the spacing of the frequency samples:
t::.Wl = 27r / Xl for all e.

2. Create a periodized version Mncq, (wI3) of

Mnc(wI3) by replicating a base period in the
frequency domain, 0 = x i[-Ot/2,Ot/2), with
Ol = Nit::.Wl. Any energy in Mnc(wI3) outside
of the base period will contribute to truncation
error.

3. Create Mncq,[kI3] by sampling Mncq,(wI3) at
kt::.w = (k1 t::.Wl , k2t::.W2, ' " ,kst::.ws) with 0 ~
ki ~ Ni - 1.

4. ~indow if necessarL to avoid ringing artifacts:
Mncwq,[kI3] = w[k]Mnc</> [kI3].

5. Perform an inverse m-dimensional FFT on
Mncw</>[kI3] to obtain Mncw</> UI3].

6. Unpack the data from the FFT by permuting
quadrants and shifting the center by cs, if re­
quired:

MnOt::.x - csl3) ~

Mncw</> [O + N/2) mod NI3) .

Basically, the infinite support of the Fourier trans­
form of a box spline is truncated and discretized,
possibly weighted with a window function, and then
inverted.

We can easily compute samples of Mnc(wI3)j how­
ever, these are samples of the continuous Fourier
transform, not the discrete Fourier transform (OFT)

which is what the inverse FFT algorithm expects.
Sampling in space and frequency implies periodicity
in both space and frequency for the OFT. Therefore,
a true OFT is periodic as well as sampled, and the
inverse will also be periodic. Given one period of a
OFT, the FFT computes one period of the result.

Fortunately, box splines and their transforms go
to zero, or nearly to zero, towards the edges of their
domains. The box spline Mnc(xI3) goes to zero ex­
actly outside its support (which can be computed in

linear time), while the transform Mnc(wI3) goes to
zero as n;==l(w, ej)-Ili . To approximate a Fourier
transform by a OFT, one has to window a part of the

. .

37

sampled integral Fourier transform and use it as a
base period which is then implicitly replicated.

The simplest window is rectangular, i.e. just a
finite number of raw samples. Truncation will ac­
tually give the best least-squares approximation [1],
but this fact doesn't guarantee that the approxima­
tion will be free of objectionable artifacts for all ap­
plications.

Because of periodicity in space, one must be care­
ful to separate spatial duplicates to avoid having non­
zero samples from one period overlap with non-zero
samples of another. This can be ensured by using a
spatial period which contains a bounding box around
the support of the box spline. Radix 2 FFT algo­
rithms also require data dimensions which are perfect
powers of two, and so the dimensions of the bounding
box, Ni, must be rounded up to the nearest power of
two. More general FFT algorithms are possible, but
at the very least each Ni should be highly composite,
i.e. a product of a few small integer factors. Conse­
quently, when evaluating the amortized cost of each
computed sample with the support of a box spline,
the proportion of samples wasted within this bound­
ing box will be important. If the minimal bound­
ing box containing the support of a two-dimensional
box spline covers, for example, a 257 x 129 square, a
512 x 512 radix-2 FFT will be required. At least 3/4 of
the computation will be wasted, although the extra
samples in frequency will contribute somewhat to the
accuracy. Depending on the shape of the support,
it may be possible to pack the periods more tightly
together than the minimax bounding box would sug­
gest, although the conditions for this situation can be
so easily violated that it is better to be conservative.

The required inverse FFT is of course multivariate
for the evaluation of multivariate splines. A multi­
variate FFT can be computed directly using a spe­
cialized FFT algorithm. The kernel of the multivari­
ate OFT is separable, so a multivariate FFT can also
be performed by univariate FFTS applied to each di­
mension in turn. The multiple univariate transforms
within a dimension can be computed independently,
as can the generation of the coefficients, and so this
algorithm is naturally highly parallel. Some commu­
nication cost is incurred when the data needs to be
transposed for transforms across the various dimen­
sions.

4
····-- ,

:; .. Graphics Interface '95

38

Symmetry Optimizations

The symmetry of Mnc(wI3) means that we can im­
mediately halve our initial work by only computing
half the samples in Mnc4> [kI3], then infer the rest
by reflection. The symmetry condition for DFT co­
efficients in the standard FFT order is Mnc4>[kI3] =

M~C4>[N - k 13]' for real Mnc4> UI3]. Symmetry also
allows us to make some savings in the computation
of the FFT itself.

In the following we assume m = 2 for simplic­
ity, and also because this will be the most com­
mon case. Assume we compute a two dimen­
sional inverse FFT by computing all the column in­
verse transforms followed by all the row inverses.
The algorithm would proceed by computing real
values of Mn c4> [kl , k213] located at all (kl' k2) E
{O, 1, . .. ,Nd2} x {O, 1, ... ,N2 - I}, then would
compute all the inverse column transforms to derive
half of an intermediate transform b[kl' k2]. Columns

kl = {Nd2 + 1, .. . ,NI - I} in Mnc[kl , k21 3]
are reflections of columns kl = {I, . . . ,Nd2 - I}
in Mnc[kl , k213]; the discrete version of the sym­
metry noted above is Mnc[k l , k213] = Mnc[NI -
kl' N2 - k213] . This implies that the correspond­
ing coefficients in columns {NI / 2 + 1, . .. ,NI - I}
of b[kl' k2] are the complex conjugates of those
for their corresponding computed columns: b[NI -

kl ' k2] = b* [kl' k2] . Equivalently, since the samples
in Mn c4> [k l , k213] are real and therefore their Fourier
transforms are even, b[NI - kl' N2 - k2] = b[kl ' k2]. In
the second phase of the algorithm, we need to per­
form row inverse FFT's to obtain the values of the
centered box spline. Since the centered box spline is
also even in a two-dimensional sense, we only need
to compute N 2 / 2 + 1 row inverses, then use the sym­
metry of the box spline itself to fill in the remaining
values.

Exploitation of symmetry in this way gains a fac­
tor of two over the na·ive algorithm. Another factor
of two can be gained by exploiting the fact that both
the centered box spline and its transform are real,
while the FFT calculates with complex arithmetic.
By packing one column of coefficients in the real part
and one in the imaginary part of the data passed to
an FFT routine , then using even and odd properties
to unpack the result , we can double our through­
put . Likewise, for the second phase we can set up

the coefficients so that two rows can be computed at
once, doubling throughput at that stage as well. In
the following we describe these optimizations more
precisely.

In the first, column transformation stage, create a
set of NI /4+ 1 complex coefficient columns as follows :

CWI, k2] =

{

Mn c4> [2£1 , k213] + iMnc4>[2£1 + 1, k2 13]
(for II < Nd4);

Mnc4>[2£I' k213] (for II = Nd4) .

Since all values of Mnc 4> [k l , k213] are real,

Mn c4> [2£I' k2 13]

Mnc4> [2£1 + l,k213]

~{a[ll' k2]},

~{a[ll' k2]}.

Note that because NI /2 + 1 is odd, one of the packed
columns in a has a zero imaginary part. Let a[PI' k2]

contain the inverse univariate FFT of each of the
columns in a[ll' k2] . To unpack each column, we ex­
ploit the facts that FFTS of real signals are even, FFTS
of imaginary signals are odd, superposition holds, an
inverse FFT can be computed by taking the conju­
gate of the FFT of a conjugated signal, and symmetry
properties hold [2] to derive the formulae

b[jl, k2] =

(a[jd2, k2] + a*[jd 2, N2 - k2]) /2
(for jl mod 2 = 0, jl < Nd2);

-i (a[it / 2, k2] - a* [it /2, N2 - k2]) / 2
(for jl mod 2 = l , jl < Nd2);

a[Nd4] (for jl = Nd2);
b* [NI - jl , k2] (for it > NI).

We will now be taking the inverse FFTs of the
first N2/ 2 + 1 rows of b[it, k2] to determine the first
N2 /2 + 1 rows of the box spline; the rest can be in­
ferred by symmetry. Note that we have expressed
the symmetry in b above so the rows k2 > N 2/2
never have to be calculated. Since we know the re­
sult will be real, we would like to pack the coefficients
so we can compute two rows at once. Again, we can
use the odd/even relationship to derive new packed
row coefficients CUI, l2] that will have the appropri­
ate properties:

qh, l2] =

{
b[jl, 2£2] + ib[jl , 212 + 1] (for l2 < N 2/ 4);
b[jl, 2£2] (for l2 = N 2/4).

Graphics Interface '95

Note again that since Nd 4 + 1 is odd by assumption
the last transform only computes the inverse trans­
form of one signal. Since b is complex, however, all
rows will have generally nonzero real and imaginary
parts. The row-wise inverse FFT c of c will be the
desired box spline values, in FFT order and packed
into the real and imaginary parts:

M nc,p[il,j213] =

{
~{c[il,12/2]} (for 12 mod 2 = 0);
SS'{c[jl,12/2]} (for 12 mod 2 = 1).

The refined algorithm, including all the above
symmetry considerations for two dimensions, is given
below. Similar optimizations could be made for
higher dimensions.

1. Center the box spline and choose spatial sample
spacings, bounding box, etc.

2. Model Mnc(wI3) by Mnc,p(wI3).

3. Create Mnc,p[kI3] by sampling Mnc,.;(wI3)
at k~w (kl~Wl' k2~W2) with kl E
{O, 1 ... Nd2} and k2 E {O, 1, .. . N2 - I}.

4. Window if necessary to create Mncw,p[kI3].

5. Create a by packing the sampled coefficients.

6. Take inverse FFTS of all columns in a to create
a.

7. Convert a to c, i.e. unpack and repack using the
formulas for b. Only the non-redundant entries
in b need to be computed.

8. Take inverse FFTS of all rows in c to create c.

9. Unpack the real and imaginary parts of c and re­
flect and shift as necessary to obtain the values
of the box spline in natural order. Shift the cen­
ter back to its correct location if an uncentered
box spline was required.

In summary, by exploiting symmetries we have re­
duced the overall FFT computation cost by nearly a
factor of four, while reducing memory cost by nearly
a factor of two. The extra overhead incurred is lim­
ited to a slightly more complicated transposition that
involves some addition .

..

. .

39

Windowing

Windowing functions are used to modify the effect
bandlimiting has on the FFT approximation. Essen­
tially, a window function is a filter that smooths a
signal in the spatial domain so that it may be better
approximated by an FFT. By a standard result, the
lowest RMS error is actually achieved if a rectangular
window (truncation) is used [1], but the RMS metric
may be inappropriate for applications that require
local error bounds or conditions such as nonnegativ­
ity.

Because box splines are already fairly smooth for
most configurations of direction vectors, a window
function may be unnecessary. However the Parzen
window is easy to implement and may be useful in
some circumstances. The univariate Parzen window,

(l-lw/wNI) X[-WN,WN) (w)

X[-wN /2,WN /2) (w) * X[-wN /2,WN /2) (w),

is a "tent" function which decreases from 1 at w = 0
to 0 at the Nyquist frequency WN = ws /2, half the
sampling frequency, in both directions. A multivari­
ate window function would be formed with a tensor
product. This window and its inverse Fourier trans­
form is shown in Figure 2.

0

1 jl==parzen-:--~=-. W;rnlo.

I I I

0.5
·f N 0 f N

,,,",, T,,",fo~ A
0~~T=T=r=~~~~~~~T=T=r=T

·16 ·14 ·12 ·10 ·8 ·6 ·4 ·2 0 2 4 6 8 10 12 14 16

Figure 2: The Parzen (tent) window function, along
with its inverse Fourier transform.

We call the inverse Fourier transform the impulse
response of the window function, since it is the image
that would result from convolution with an impulse;
the Fourier transform of an impulse is a constant at
all frequencies. The effect of multipling by a win­
dow function in the frequency domain is, according

4
·,·''-

:;. Graphics Interface '95

40

to the duality principle, equivalent to convolving by
the window function's impulse response in the spatial
domain. Hence, the shape of the impulse responses
of these functions gives us an idea of their spatial
properties.

Since the Parzen window can be recognized as a
second order uniform B-spline basis function, which
is the convolution of two box functions, its impulse
response is a squared sinc: wp(x) = sinc2 (x/4),
which has multiple modes and decreases at infinity
by l/x 2 but is always positive. The function wp(x)
is sometimes called the Fejer kernel and its posit iv­
ity ensures the absence of overshoot. In particular,
no negative values can occur in the output since the
spline is also totally positive.

Extensions to the Parzen window include the uni­
variate B-spline basis functions, which converge to
the Gaussian window function. Using B-spline win­
dows requires dividing the domain into more than
two sections, which is slightly inconvenient. Fourier
inverses of even order B-splines will share the posi­
tivity of the Fejer kernel, since their transforms will
be of the form sinc2k (x/2k) with kEN.

Coefficient Evaluation

In addition to computing the inverse FFT, we also
need to compute the input coefficients. Each sam­
ple of the box spline's Fourier transform Mnc(xl=:)
requires r sine evaluations, divisions, and exponen­
tiations if =: contains r unique direction vectors.
Trigonometric functions and divisions can be fairly
expensive. Trigonometric functions consume a bud­
get of 10 to 50 floating-point multiplications on a
range of high-performance machines [10] . Division,
while not as expensive, cannot usually be pipelined.

Some optimizations are possible. Since we need
to compute so many equally spaced samples we can
take advantage of trigonometric recurrences to in­
crementally compute the sine values. The exponen­
tiation can be done in sublinear time by iterating
multiplications. For common multiplicity values, ex­
ponentiation can be performed at a cost of only a
few multiplications which can be written explicitly
to maximize pipelining. For example, exponentia­
tion by four, probably the maximum multiplicity in
practice, requires only two multiplications.

The following recurrence can be used to compute

sequential trigonometric coefficient values:

sin(.6.wj) = (4)

2 cos(.6.w) sin(.6.w(j -1)) - sin(.6.w(j - 2)).

The value 2 cos(.6.w) is a constant which only needs
to be computed once during preparation. In addi­
tion to this constant, initialization of the recurrence
requires the evaluation of two samples of the sine
function, which can be used going both forwards and
backwards from O. In a parallel implementation, ini­
tializing and scanning each row still leaves a large
number of independent work packets. After initial­
ization, this recurrence requires only a single mul­
tiplication and an addition per sine sample. This
can be accomplished in a multiply-accumulate (MAC)
operation, which many processors have as a single
instruction and which typically maximizes floating­
point performance.

Error for Recursive Sine Evaluation

Iteration w max reI err: max abs err:
1000 165.3 7.7 x 10-14 9.4 X 10- 13

2000 330.5 1.4 x 10-13 2.4 X 10-10

3000 495.8 2.0 x 10-13 2.4 X 10-10

Error for Recursive Sinc Evaluation

Iteration w max reI err: max abs err:
1000 165.3 4.9 x 10-16 9.2 x 1O---r.r
2000 330.5 4.9 x 10-16 2.4 X 10-10

3000 495.8 4.9 x 10-16 2.4 X 10-10

Figure 3: Empirical error of sine and sinc evaluation
via recurrence.

Since the sine recurrence in (5) is only marginally
stable, we need to evaluate how accurate it is in
practice. In Figure 3 we empirically compare direct
evaluation of sine and sinc functions to the incre­
mental approach, using IEEE double-precision float­
ing point . Note that the error increases slightly the
farther we stray from the initialization; however , if
we start at low frequency values and work up to the
less important1 high frequencies, the effect of the er­
ror can be masked. The error is further masked by
the division, which damps the amplitude of the coef-

1 Perceptually speaking; of course the truth of this state­
ment depends on the application .

Graphics Interface '95

ficients with the highest error. Even after 3000 sam­
ples (far more than we will typically need in practice)
we still maintain 10 digits of precision.

The division in the sinc introduces a singularity
which must be dealt with to maintain the robustness
of the algorithm. In the context of a two-dimensional
grid of coefficients, this singularity will not necessar­
ily occur at the zero frequency of the row, since it
occurs along a line which cuts across the row being
evaluated. The most efficient and robust approach to
dealing with the singularity is to compute its position
for each sine factor and work outwards from it. This
results in an uncluttered inner loop that can be ef­
fectively optimized. The windowing function should
be evaluated and applied in a separate step.

An Implementation

An implementation of the FFT evaluation algorithm
was performed on a shared memory multiprocess­
ing machine: the Pulsus G2 from ISG Technologies.
This machine had 16 RIse processors (M88110's)
connected via a hierarchy of buses to a large global
memory. Every four processors also shared 512K of
fast static memory. The implementation used the
symmetry optimizations outlined above, as well as
selectable direct or recursive coefficient evaluation.
Parallelism was performed on a row-column basis,
with automatic load balancing using a work packet
server. Two barriers were needed to synchronize
the processors after the coefficient computation and
for the transition between row and column FFT'S .

Parzen windowing was implemented. Some sample
evaluations are shown in Figure 5.

In this section we use this implementation as an
empirical example to extract some qualitative prop­
erties of the FFT algorithm, in an attempt to charac­
terize the niches for which it is suited. Our empirical
results are contained in Figure 4.

Figure 4a compares the execution times for vari­
ous problem sizes and various numbers of processors.
Note that for small problem sizes, the processors sat­
urate quickly and serial overhead quickly destroys
efficiency. In the case of the smaller problem size ex­
ecution time actually increases as the number of pro­
cessors is increased. Larger problem sizes can more
efficiently use a larger number of processors. This
leads to our first observation: for a parallel imple-

41

mentation of the inverse FFT evaluation algorithm,
larger resolutions are more efficient. This observa­
tion, which is a standard expectation for all parallel
programs, is somewhat confused by the fact that on
cache-based architectures, problem sizes larger than
the cache size can affect efficiency as well. This par­
ticular machine has only a 4K data cache per pro­
cessor, and cache misses result in expensive global
memory accesses. On a more balanced architecture
this would be less of a problem.

From the results in Figure 4b we see that the in­
verse FFT algorithm is relatively insensitive to mul­
tiplicities, an important characteristic that distin­
guishes it from the others we have mentioned (re­
currence and subdivision). The difference in execu­
tion times between a 3rd and a 12th order spline is
only 3%, if the order increases only by adding mul­
tiplicities. This leads to our second qualitative ob­
servation: multiplicities have little impact on perfor­
mance. Note that in this implementation exponenti­
ation was implemented using pg f-Lll multiplications.

Finally, in Figure 4c we compare direct evaluation
of the Fourier coefficients to recursive evaluation. In
direct evaluation a separate call to sinO is made
for every sample. In recursive evaluation, there are
only two calls to sin 0 and one to cos 0 per row
per unique direction vector, with all other samples
derived via a recurrence. A division is required for
every sample in both cases. As is shown in the table,
the performance increment is significant, at least for
this machine which requires approximately 50 float­
ing point operations for evaluation of the sine. Direct
evaluation of the coefficients dominates the evalua­
tion of the inverse FFT, while recursive evaluation
is nearly negligible compared to the inverse FFT. On
other processors with more efficient trigonometry the
difference may be less significant, although we can
still expect a factor of ten improvement. In all cases,
evaluation of the coefficients via recurrence should be
negligible. We should note that the implementation
of the FFT that we use (from [11]) also uses a recur­
rence to avoid extraneous trigonometric evaluations.
This is not a highly optimized version of the FFT, and
a better implementation could probably improve the
FFT timings. In particular, a radix-4 or radix-8 algo­
rithm would reduce the memory to processor band­
width by reducing the number of stages required in
the FFT algorithm.

Graphics Interface '95

42

Conclusions

In summary, we have observed the following: (1) a
parallel implementation of the inverse FFT algorithm
can achieve significant speedup on a shared mem­
ory architecture; (2) larger grid resolutions are more
efficient; (3) the FFT evaluation algorithm is rela­
tively insensitive to multiplicities, growing only by
O(1g ILL) but with a very small scale factor; and (4)
direct evaluation of the coefficients consumes a sig­
nificant fraction of the execution time, but recursive
evaluation is effectively negligible relative to the cost
of the inverse FFT.

These properties indicate that the inverse FFT al­
gorithm is indeed suitable for some rendering appli­
cations, in particular splat-based volume rendering.

For two-dimensional splines, we can conclude from
the asymptotic complexity of the FFT algorithm that

this algorithm takes 0 (rIg (L: j ILj) + 19 N) time

per sample, where r is the number of unique direc­
tion vectors, the ILj are the multiplicities of each di­
rection vector, and N is the maximum resolution.
To achieve this, however, O(N2) samples need to be
evaluated, and it should be remembered that the ap­
plication of the FFT does require some small amount
of approximation.

Acknow ledgements

This research was performed while the author was
a Ph.D. candidate at the Dynamic Graphics Project
at the University of Toronto under the supervision
of Eugene Fiume. The Dynamic Graphics project
receives generous support from NSERC and the In­
formation Technology Research Centre (ITRC). ISG
Technologies kindly loaned DGP the parallel ma­
chine, the Pulsus G2, upon which this implemen­
tation was performed.

References

[1] R. N. Bracewell. The Fourier Transform and Its
Applications. McGraw-Hill, 1978.

[2] E. O. Brigham. The Fast Fourier Transform.
Prentice Hall, 1974.

[3] C. K. Chui. Multivariate Splines. SIAM, 1988.

[4] C. de Boor and K. H611ig. Recurrence relations
for multivariate B-splines. Proceedings of the
American Mathematical Society, 85(3):397-400,
1981.

[5] C. de Boor and K. H611ig. B-splines from par­
allelepipeds. Journal d'Analyse Mathematique,
42:99-115, 1983.

[6] C. de Boor, K. H611ig, and S. Riemenschneider.
Box Splines. Academic Press, 1994.

[7] K. H611ig. Box splines. In Collection: Ap­
proximation Theory V (College Station, Tex.,
1986), pages 71-95. Academic Press, Boston,
MA, 1986.

[8] K. H611ig. Box-spline surfaces. In Collection:
Mathematical methods in computer aided geo­
metric design (Oslo, 1988), pages 385-402. Aca­
demic Press, Boston, MA, 1989.

[9] Ming Jun Lai. Fortran subroutines for B-nets
of box splines on three- and four-directional
meshes. Numerical Algorithms, 2(1):33-38,
1992.

[10] M. D. McCool. Analytic Signal Processing for
Computer Graphics using Multivariate Polyhe­
dral Splines. May 1995. University of Waterloo
Department of Computer Science Tech Report
CS-95-05.

[11] W. H. Press, B. P. Flannery, S. A. Teukolsky,
and W. T. Vetterling. Numerical Recipes. Cam­
bridge University Press, 1989.

[12] M. Unser, A. Aldroubi, and M. Eden. B-spline
signal processing. IEEE Transactions on Signal
Processing, 41(2):821-848, February 1993.

[13] L. Westover. Interactive volume rendering. In
Chapel Hill Workshop on Volume Visualization,
pages 9-16, Chapel Hill, North Carolina, May
1989.

[14] L. Westover. Footprint evaluation for volume
rendering. Computer Graphics (SIGGRAPH '90
Proceedings), 24(4):367-376, August 1990.

[15] J. Wilhelms and A. Van Gelder. A coherent
projection approach for direct volume render­
ing. Computer Graphics (SIGGRAPH '91 Pro­
ceedings), 25(4):275-284, July 1991.

Graphics Interface '95

(a) Performance vs. Number of Processors

100

128 x 128

N
I

256 x 256

512 x 512
0

1 2 8 16

128 x 128
O~~.----.--------.-------------~---.-

1 2 8 16

Number of Processors

(b) Performance vs. Multiplicity

Multiplicity ms Hz ratio
1 128.39 7.79 1.00
2 130.50 7.66 0.98
3 132.93 7.52 0.97
4 132.34 7.56 0.97

(c) 2D FFT vs. Coefficient Evaluation

Problem Size FFT Dir. Rec.
ms ms ms

128 x 128 16.05 25.72 2.96
256 x 256 32.98 51.44 5.87
512 x 512 108.55 213.81 19.52

FFT/ FFT/ Dir./
Dir. Rec. Rec.

128 x 128 0.624 5.42 8.689
256 x 256 0.641 5.61 8.763
512 x 512 0.508 5.56 10.95

Figure 4: (a) Averages over 100 runs, three direc­
tion box spline, 16 processors, uniform multiplicity 1.
Efficiency is the ratio between the speedup (relative
to a single processor) and the number of processors
used. (b) Averages over 100 runs, 512 x 512 problem
size, recursive coefficient evaluation, three direction
box spline, 16 processors, uniform multiplicities. (c)
Averages over 100 runs of the evaluation of a three
direction box spline of uniform multiplicity 1.

43

Figure 5: FFT centered box spline evaluation exam­
ples. On the left are 256 x 256 unwindowed Fourier
transforms, and on the right the resulting spline.
Each spline has three unique direction vectors, with
multiplicity increasing from top to bottom.

Graphics Interface '95

