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Abstract

While a very effective method for designing objects
is to describe their surfaces using non-linear

parametric representations, these are not
necessarily the best for executing all of the
computations required for modeling and
rendering. These computations include set

operations for CSG, collision detection, ray-surface
intersections, visible surface determination,
shadow calculations, radiosity transfer, and view-
volume clipping, all of which involve computing
intersections, possibly in visibility order.
Intersections are intrinsically easier to compute
using the implicit rather than the parametric
form; however, implicitizing parametric surfaces
can produce polynomials of too high a degree. An
alternative that we introduce in this paper is to

convert the non-linear parametric form into a
piecewise-linear, multi-resolution, implicit form,
viz. the Binary Space Partitioning Tree. This

provides a hierarchical organization of the many
linear pieces, resulting in acceleration of
intersection and visibility calculations. Our method
yields a definition of non-linear sets as infinite
trees which can be adaptively pruned/truncated
to produce a finite tree meeting a target
approximation error. We describe how to construct
such a tree representation of a region of 2-space
whose boundary is a piecewise-Bezier curve of
any degree. We then describe how this
construction can be used in 3-space to build trees
representing generalized cylinders. This provides a
very effective method for constructing multi-
resolution trees that are "good", as measured by
expected cost, for intersections and visibility.

Introduction

Computing intersections and visibility between sets
are very fundamental operations in Geometric
Computation. Intersections (set operations) are
used in geometric modeling for constructive solid
geometry and interference detection, in dynamics
for collision/contact detection, and in rendering for
view-volume clipping/culling. Intersections
combined with visibility orderings are used in
rendering (radiation propagation) for ray-tracing,
beam-tracing, shadow volumes, and radiosity
transfer calculations. The speed and accuracy at
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which these computations can be performed
depends primarily upon the computational
representations of geometry used. Among the
various choices for representations, there is a

fundamental distinction between the parametric
and implicit forms, as well as between linear and
non-linear representations. We will argue below
that sets represented in the implicit form are
intrinsically better suited for intersections than
parametrics because they provide directly a set
membership function. As for the linear/non-linear
dichotomy, computing the intersection between
two sets defined using only linear equations, say
between two polygons, is simple; while the same
computations involving non-linear sets can be far
more complicated or even impractical. We will
describe a solution to the problem of computing
intersections and visibility for the class of solids
known as generalized cylinders, which are objects
that can be defined using at most three curves:

cross-section, profile and path curves.
Translational and rotational swept objects are
special cases of generalized cylinders. In our

method, the curves are defined as piecewise Bezier
curves of any degree and continuity, and we use

these to produce a multi-resolution, piecewise
linear, implicit form, viz. the Binary Space
Partitioning Tree (BSP Tree or, as we prefer,

Partitioning Tree) [Fuchs, Kedem, and Naylor 80].
These trees then provide the representation that
accelerates intersection and visibility calculations.
Currently, the most popular form of non-
linear parametric representations is the B-spline
form (NURB's) [Farin 88]. These can be easily
converted into the piecewise Bezier form by
employing the Blossoming algorithm, and so these
two forms define the same sets. The computation of
intersections between objects defined using
parametric splines can be solved analytically if one
or both objects is first converted into its implicit
form. However, the algebraic degree of bi-
parameter patches of parametric degree n is 2n2.
So for example, bi-cubic patches are of algebraic
degree 18, and the intersection curve between
two such patches is of algebraic degree 182 = 324.
This, of course, makes the algebraic representation
of such an intersection curve impractical. A
standard approach to reducing the complexity of
operations involving non-linear equations is to
approximate the sets by a piecewise linear
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representation. Linear sets, i.e. those define using
only linear equations, have the unique property
among algebraic sets: their intersection curves are
the same degree as the original sets, i.e. of degree
1. But the cost of piecewise linear approximations is
that the number of linear pieces can be quite large
if the error due to the approximation is to be
maintained at an acceptable level. Thus, using
linear approximations constitutes a tradeoff of
algebraic complexity for combinatorial complexity.
So while the algebraic geometry of intersections
has been made simpler, an unorganized set of
linear pieces will require O(n2) operations for both
intersection and visibility calculations. This
deficiency can be ameliorated significantly by
organizing the possibly thousands of pieces into a
hierarchical data structure. If in addition, the
representation has the multi-resolution property
as well, then the number of pieces used for the
approximation can be adaptively selected in order
to meet a target approximation error.

In this paper, we extend the notion of
implicitizing piecewise Bezier curves in 2-space by
presenting a method that uses the de Casteljau
algorithm for recursive midpoint subdivision to
directly generate a 2D Partitioning Tree
representing the curve. We will then describe how
to extend this method to the construction of trees
representing generalized cylinders. In this schema,
sets with non-linear boundaries are represented
by infinite trees whose paths either converge
monotonically to the boundary or terminate inside
or outside the set. Tree pruning, analogous to the
truncation of an infinite series, yields an
approximation whose error is well defined and
easily computed, and introduces a multi-resolution
character to the representation. In addition,
intersections and visibility orderings between sets
represented by independent trees can be
computed by merging their respective trees
[Naylor, Amanatides and Thibault 90]. Tree
merging can be interpreted as merging two
bounding-volume hierarchies, and so is very
efficient. Since the result of merging two trees is
also a tree, all essential properties are preserved,
including the multi-resolution character. If the
Bezier definition has been retained at the
appropriate leaves of the tree, it is possible to grow
trees dynamically in the region in which their
surfaces intersect as part of the tree merging
process, i.e. a lazy evaluation schema (we have not
yet implemented this).

Comparisons to Alternative Approaches

There has been a considerable amount of prior
work addressing the problem of computing
intersections and visibility with parametric
surfaces, and much of it employs hierarchical
subdivision in some fashion. One area of research
has focused on the ray-surface intersection
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problem. One of the earliest solutions used
implicitization, resultants and iterative root finding
[Kajiya 82]. In [Toth 85] multi-variate Newton
iteration is employed, combined with interval
arithmetic in order to solve the problem of finding
a good initial starting point for the iteration. [Joy
and Bhetanabhotla 86] presented a similar
approach using quasi-Newton methods, but use
ray-coherence and spatial subdivision to facilitate
the problem of finding a good starting point. These
methods may prove to be effective for, say bi-
cubic patches (algebraic degree 18), but they
become rapidly less so for higher degrees. Finally,
[Nishita, Sederberg and Kakimoto 90] present a
method most similar to ours based on Bezier
clipping, which for a single ray converges faster
than midpoint subdivision.

Rendering without ray-tracing of parametric
surfaces has relied upon recursive subdivision, e.g.
[Catmull 74]. However, these methods generate a
set of polygons that require, for example, a depth
buffer for visible surface determination. An
exception to this is provided by the scan-line
algorithm in [Lane et al 80].

The first intersection operations between two
Bezier patches appeared in [Carlson 82]. The
method uses recursive subdivision and testing for
intersection between pairs of control polyhedra,
one for each surface. The intersection curve is
represented in the parametric domain of each path
using a quadtree, thus providing trimmed
parametric patches. [Crocker and Reinke 87] also
generate trimmed patches, but they do so by
intersecting approximating surfaces composed of
piecewise linear or quadratic surfaces. [Herzen,
Barr and Zatz 90] construct a hierarchy of
“Jacobean bounding volumes” based on bounds on
the partial derivatives and test for intersection
between bounding volumes. [Snyder 92] applies
interval arithmetic to the intersection problem,
which is loosely speaking a kind of implicit form,
since one is computing membership within boxes.
This, in fact, produces an octree decomposition of
space, although [Snyder 92] does not produce an
explicit octree data structure. However, [Duff 92]
does generate an octree using interval arithmetic,
although the paper does not specifically address
parametrics.

In contrast to these methods, our approach,
currently limited to generalized cylinders,
generates a global evaluation of the surface once,
recording the results in a tree. This tree can then
be used repeatedly in geometric computations
without re-evaluation, and can be used with trees
representing objects generated by alternative
methods, such as from physical sensing or
implicitly defined nonlinear surfaces. For
computing surface-surface intersections, tree
merging provides the same benefits as the various
hierarchical subdivision methods just described,
but with the very important added benefit of
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producing a structure from which a visibility
ordering can be generated. And unlike axis-aligned

schemes, Partitioning Trees can be affinely
transformed. Thus, the benefits of the
evaluation/tree-construction can be reaped in

computing collisions and rendering operations
over a possibly large number of frames of an
animation or interactive sequence.

Similarly for ray-tracing, the single evaluation
is shared by all rays, rather than doing an
independent recursive subdivision for each ray.
Ray-tracing can also exploit the multi-resolution
aspect by adaptively terminating the ray-surface
intersection search at a depth determined by the
size of the projected surface area and the angle of
incidence: the greater the angle of incidence, the
deeper the search, since the highest resolution is
required at silhouettes. This should offset the fact
that the bi-section algorithm inherited of midpoint
subdivision does not converge as fast as the
Newton-type root finder or Bezier clipping; and we
do not have the problem of finding an initial
starting point. Alsoin our approach, when CSG is
used with ray-tracing, the set operations are
performed once, instead of repeatedly for every
frame where every ray is intersected with all

primitives surfaces and set operations are
performed in "ray-space". This can result in
significant savings, since no ray-surface

intersections are computed for subsets of
primitives that are removed by set operations.

Implicits vs. Parametrics

Geometric sets are commonly specified using
continuous functions, and the distinction between
parametric and implicit arises from whether the
set of interest is contained in the range or the
domain of the functions. For parametrics, the set
lies in the range of a vector valued function F: X™
= Y™, where as for implicits, the set lies in the
domain and is defined by a function of the form:
G(Y)=0.

The essence of parametric representations is
their power to enumerate points in the set S. By
enumerating  points in the parameter space, one
generates corresponding points on S in the range.
If the parameter points are vertices of a topological
decomposition K of the parameter space, e.g. a
triangulation, then applying F to K produces an
embedding of K in S. This fact is commonly used to

generate polygonal approximations of
parametrically defined surfaces in 3D. The
enumeration property is also used in polygon

drawing to enumerate all pixels lying with the
projection of a polygon (scan-conversion). In
contrast, implicit functions are of the form G: Y" =
Z!. The set G( Y )= 0is called a hypersurface. We
can use this to define solids (in general, Lebesque
measurable sets) by defining S={YIG(Y)<=0
}. The set is, therefore, defined by a membership

function, also called a characteristic function, which
is a boolean-valued total function that is TRUE
whenever a point is a member of the set. This then
is the essential nature of implicit representations.

The most popular forms of parametric and
implicit functions use polynomials. Sets defined
implicitly by a single polynomial define the class of
sets called Algebraic Sets. Hypersurfaces defined
parametrically by (rational) polynomial coordinate
functions are also algebraic sets, but not all
algebraic sets admit such a rational
parameterization. Thus, the parametrics are a
subset of implicits when only polynomials are
involved. Generating the implicit form of a
parametric hypersurface is accomplished by a
process called implicitization. The algebraic degree
of an algebraic set is simply the degree of the
polynomial of the implicit form, and it gives the
maximum number of intersections between a line
and the hypersurface.

The distinction between sets for which one has
a membership function, as with implicits, and those
for which one has an enumeration function, as
with parametrics, lies at the very foundations of
the theory of computation. In particular, in order
for a countable set to be characterized as
computable, the set must have a computable
membership function. Such sets are called
Recursive Sets. Those sets for which there exist
computable enumerating (or generating) functions
are called Recursively Enumerable Sets. This tell us

that the distinction between implicits and
parametrics is not an artifact say of using
polynomials but corresponds to an important

difference in methods of defining sets. Indeed, the
difference in the computational efficacy of the two
representations can be largely understood in
terms of the difference between membership and
enumeration functions.

Determining set membership is required for
performing any intersection operation. Such
operations include point classification, ray-surface
intersection, clipping to a view-volume, collision

detection, constructive solid geometry, shadow
volumes, continuous-space visible surface
determination, etc. On the other hand,

enumeration is used directly for polygonalization of
a curved surface and scan-conversion of polygons.
It is also used to compute intersections with an
implicit form, as is done when a parametric
representation of a line/ray/edge is substituted
into an implicit equation of a hypersurface. Various
values of the parameter are "enumerated" either
analytically if the degree is 1 or 2, or numerically,
otherwise. So while computing intersections is an
intrinsic property of implicits, a parametric can
quite effectively be paired with an implicit to
perform such operations. Intersections between
two implicits can be computed symbolically by
using Resultants or Grobner Bases, but no such
comparable algorithms are known for two
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parametrics, although there do exist tracing
algorithms for this case. (Here we are considering
recursive subdivision schemes which rely on
testing for intersection of  bounding volumes,
including intervals, to be wusing implicits, since
plane equations are used.)

Historically, the distinction between implicits
and parametrics has been focused on sets defined
by a single c! function. However, given the
importance of piecewise representations, it is
natural to extend the notion to representations
using many such functions. This is already common
practice in the case of B-splines, which are
considered parametrics even though they are only
piecewise-polynomial. We can also consider
boundary representations of linear polytopes as
being a parametric form. This is easy to see by first
noting that when one restricts the degree of B-
splines to be 1, the result is a boundary
representation (although typically with limitations
on the topology of the pieces, say to being 4-sided).
It is also common to parameterize polygons in b-
rep form by specifying texture coordinates at the
vertices. In keeping with this view, we can then
interpret Partitioning Trees as an implicit
representation, since it is composed of a set of
linear polynomials (hyperplanes). Therefore, the
topic of this paper, constructing Partitioning .Trees
from Bezier curves, can be interpreted as a type of
implicitization of parametric curves, in particular, a
linear, multi-resolution implicitization. However,
before describing this construction, we first need
an understanding of what kinds of trees are
desirable.

Good Partitioning Trees

Unlike topological representations, any given set
may be represented by an arbitrary number of
different Partitioning Trees. This is analogous to the
fact that for any computable function, there is a
countably infinite number of syntactically
different programs that compute that function.
Indeed, a Partitioning Tree may be interpreted as a
computation graph that specifies a particular
search of space. Analogous to the property that
not all programs/algorithms are equally efficient,
not all searches/trees are equally effective. Thus
the question arises as to what constitutes goodness
for Partitioning Trees (computing or even defining
the optimal is very problematic). In [Naylor 93],
the notion was introduced of identifying good trees
with those that represent the set as a sequence of
approximations, or actually a tree of
approximations, and which consequently provide a
multi-resolution representation. Various
approximations of the set can be created by
pruning the tree at various depths. This is
analogous to the pruning of decision trees used in
machine learning.
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By way of an introduction to this notion of
goodness, we show in Figure 1 two quite different
ways to represent a convex polygon, only the
second of which employs the sequence of
approximations idea. The tree on the top subdivides
space using lines radiating from the polygonal
center, splitting the number of faces in half at each
step of the recursive subdivision. The hyperplanes
containing the polygonal edges are chosen only
when the number of faces equals one, and so are
last along any path. If the number of polygonal
edges is mn, then the tree is of size O(n) and of depth
O(log n). In contrast, the lower tree uses the idea
of a sequence of approximations. The first three
partitioning hyperplanes form a first
approximation to the exterior while the next three
form a first approximation to the interior. This
divides the set of edges into three sets. For each of
these, we choose the hyperplane of the middle face
by which to partition, and by doing so refine our
representation of the exterior. Two additional
hyperplanes refine the interior and divide the
remaining set of edges into two nearly equal sized
sets. This process proceeds recursively until all
edges are in partitioning hyperplanes. Now this
tree is also of size O(n) and depth O(log n), and
thus the worst case for point classification is the
same for both trees. Yet they appear to be quite
different.

Illustration of bad vs. good trees
Figure 1

This apparent qualitative difference can be
made quantitative by, for example, considering the
expected case for point classification. With the first
tree, all cells are at depth log n, so the expected
case is the same as the worst case regardless of the
sample space from which a point is chosen.
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However, with the second tree, the top three out-
cells would typically constitute most of the sample
space, and so a point would often be classified as
OUT by, on average, two point-hyperplane tests.
Thus the expected case would converge to O(1) as
the ratio of polygon-area/sample-area approaches
0. For line classification, the two trees differ not
only in the expected case but also in the worst case:
O(n) vs. O(log n) (in the bad tree, a query line will
intersect all n radiating lines, but with the good
tree, the process becomes a search for the two
intersection points between the line and the
polygon, each of which takes log n). For merging
two trees (e.g. set operations) the difference is

O(n?) vs. O(n log n). This reduces to O(log n)
when the objects are only contacting each other,
rather than overlapping, as is the typically the
case for collision detection.

The subject of good trees is explored in greater
depth in [Naylor 93], and the main algorithmic
result there is a method for constructing good
trees from a boundary representation using
expected case models to drive a relatively time
consuming search over the space of possible trees.
What we will describe in the rest of this paper is a
schema in which good trees are created directly
from the Bezier form without any expensive
searching. This represents a substantial
improvement in the time required to produce
good, i.e. multi-resolution, trees. To accomplish this,
we will exploit the well known fact that the control
polygon of Bezier curves provides an
approximation of the curve segment and that
recursive subdivision of the control polygon
produces a tree of control polygons that converges
to the curve.

2D Bezier Curve ->Partitioning Tree

We begin with the simplest component of our
schema, which is to take a 2D parametric curve
defined by a set of Bezier control points and
produce a Partitioning Tree that will be, in our
extended sense, an implicit form of the curve. To
obtain an implicit representation, we must use the
curve to induce a classification on space. Usually
this means creating a membership function that
assigns in or out to every point, which in the case
of trees, means classifying the cells of the
partitioning into in-cells and out-cells. However,
this will not suffice for representing non-linear
sets by linear sets, since the later can only
approximate the former. Instead of using the usual
2-valued logic, we use a 3-valued logic in which
the third value will be on. This will be used to
denote a region of space in which the boundary of
the set is known to lie, but in which we do not yet
know exactly where it lies, at least in terms of the
tree representation. An on-region can be
interpreted as a region of uncertainty with regard
to the classification of points into in and out. In
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and out-cells are regions of
uncertainty can be

contrast, in-cells
certainty. However, this
reduced to an arbitrarily small amount through
recursive subdivision of the Bezier curve. Note
that the on value, while it indicates the presence of
the (d-1)-dimensional boundary, will be used as a
classification of a d-dimensional region, i.e. the
same dimension as the in and out regions, and so
all three types are treated uniformly.

For our Bezier curve to tree conversion, there
is no restriction on the parametric degree, i.e. on
the number of control points. But we do require for
the construction given below that the curve
segment be convex. A sufficient though not
necessary condition for convexity is for the control
polygon to be convex, a consequence of the
variation diminishing property of Bezier curves. If
this is not the case, and the curve/control-polygon
does not self-intersect, we can subdivide the curve
into convex pieces by splitting the curve at every
inflection point (0 curvature). The parametric
values of the inflection points can be found
numerically with recursive subdivision: simply
perform midpoint subdivision until all sub-curve
control polygons are convex. Inflection points occur
between two consecutive control polygons that do
not "agree in sign", i.e. that do not when taken
together form a convex polygon. We can then
perform a single subdivision for each inflection
point, taken in increasing parametric order, to
obtain a collection of convex curve segments.

In Figure 2, we show on the top a quadratic
Bezier curve specified by 3 control points, along
with a single midpoint subdivision step. In the
remainder of Figure 2, we show the beginnings of
the corresponding Partitioning Tree. The initial tree
is a bounding triangle which completely contains
the curve segment and whose vertices are the
control points. We assign to the outside of the
bounding triangle the classification of out, and
within the triangle we assign the classification of
on.

P1

/" our Lc N\

Bezier with
Figure 2

i

Quadratic initial tree



Any on-region containing a Bezier control
polygon can be refined by a single application of
the midpoint subdivision algorithm to the control
points. This produces the parametric midpoint of
the curve, the tangent line through this point,
and the two sets of control points for each half of
the curve. Since the curve segment is convex, it
lies completely to one side of the tangent line. We
can add a node to the tree, as shown in Figure 3,
with the tangent line as the partitioning
hyperplane so that only one child region contains
the curve, and this region will be designated by
convention as an out-cell. Now for each half of the
split curve, the two tangent lines at its endpoints
are already partitioning hyperplanes of the tree.
We can complete a bounding triangle for the
segment by simple adding to the tree the line
connecting the two endpoints. Doing this for both
curve-halves also creates a fourth triangular
region that lies completely to one side of the
original curve segment, and we choose to designate
it as an in-cell. We have thus refined our
knowledge about the location of the boundary and
have created two independent curve segments
lying in on-regions. We can recursively apply this
process of subdividing the curve and adding tree
nodes indefinitely. The lower illustration in Figure
3 shows one additional level in the process. (For a
somewhat similar approach, see [Gunther and
Dominguez 93].)

Tree representation of midpoint subdivision
Figure 3

The tree produced by this process, which we
refer to as a segment-tree, is a multi-resolution,
piecewise-linear, implicit representation of the
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Bezier curve segment. And when we interpret the
tree as a computation graph, the tree is in some
sense a 'remembering" of the recursive
subdivision. We can also define an infinite tree that
converges to the curve and which can be
truncated at any level of the tree. For any given
truncation, an absolute measure of the error of the
representation introduced by truncation is the
sum of the areas of all on-regions, which in the
limit is 0. We call this metric a covering metric since
we are measuring the size of a collection of disjoint
open sets that cover a lower dimensional set. This
metric is much simpler to compute than the
Hausdorff metric and more accurate than max-
distance metric. It is also similar to the definition of
the Hausdorff-Besicovitch dimension used to define
the fractal dimension of a set!.

For higher degree curves, we have two choices
for constructing a tree, which in the quadratic case
are identical. Either we can "remember" every step
in the subdivision process by adding a degree
dependent number of tree nodes, or we can imitate
the quadratic case by adding only three nodes per
subdivision, a possibility afforded by the fact that
our construction depends only upon convexity. We
have chosen the later, since it produces smaller
trees, and makes the tree construction process
independent of the degree of the curve. This
independence will prove useful later when we
discuss the construction of generalized cylinders.
Figure 4 illustrates the cubic case.

P1 P2

PO P3

Cubic Bezier subdivision with tree
Figure 4

Piecewise- Bezier ->Partitioning Tree

In Figure 5, we illustrate a piecewise Bezier

quadratic curve that is Cl. The set of control points
are of two types: those located at the segment
endpoints, indicated by solid circles, and those that
may be considered as ‘"internal", indicated by
hollow circles. The internal control points are in fact
the same points as the set of B-spline control points
needed to define the same curve, and are labeled

with Bn. In the Bezier form, C! can be maintained
by constraining the segment endpoints to lie on the

I The fractal dimension is the exponential rate at which the
number of elements in a covering varies with the radius of the
open sets used in the covering.
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line determined by the two intervening internal
control points. Movement of these control points
has the effect on the corresponding B-spline
definition of changing the knot spacing (the "non-
uniform" aspect of NURB's). A somewhat analogous
correspondence between a B-spline definition and
a piecewise Bezier definition exists for all degrees
and may be obtained through the use of the
Blossoming algorithm. Thus, the original curve
definition may be a NURB, even though our
method of constructing segment-trees requires
the Bezier form. However, for low degree curves,
we have actually found that the Bezier form to be
more intuitive as a user interface, since it replaces
adjusting knot spacing with manipulating control
points. It is also very easy for the user to specify
segments differing in degree within the same
curve.

T4

Bezier specification of a region of 2-space
Figure 5§

Given a piecewise Bezier definition of a curve
that is closed and does not self intersect, we will
now address building a single tree representing a
region of 2-space whose boundary is such a curve.
The idea is to build individual segment-trees for
each convex Bezier curve segment (see Figure 5
lower half), and then merge these trees together
to form a single tree. There are three parts to this.
The first is to apply the methods above to produce
a collection of segment-trees. The second is to
determine for each segment whether it is a
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"convex" segment or 'concave" segment; i.e.
whether the internal control points lie in the
exterior of the set or in the interior. The later case,
which occurs in Figure 5 for T2, will require the
segment tree to be complemented (actually, just
the subtree inside the outer most bounding
triangle). The third part is to "fill in" the interior of
the region that lies inside the B-spline control
polygon, but does not lie within any segment tree
(indicated in Figure 5 by the lightly shaded
region). The vertices of this polygonal region are a
subset of the Bezier control points. They are either
the curve segment endpoints, if the segment-tree
is uncomplemented, or the internal control points
of complemented segment-trees. We construct a
tree for this region using the standard b-rep ->
tree conversion routine, and then union the result
with the collection of segment-trees. This yields the
desired single tree representing the region of 2-
space bounded by the curve.

Generalized

Tree Representation of

Cylinders

We will now address applying the foregoing 2-
space curve representation schema to the problem
of creating 3-space objects. In particular, we will
describe how to construct a good tree for the class
of objects called generalized cylinders (for a recent
paper on these, see [Snyder and Kajiya 92]). This
class is obtained by extending the ideas embodied
in swept objects. They constitute a rich class of
objects, which include rotational and translational
sweeps, and they are very easy to design since
they are specified using a few 2-space curves
"drawn" on a flat surface. When combined with set
operations, many commercially manufactured
objects can be designed using generalized cylinders
as the primary "free form" modeling primitive.

The simplest member of the class of generalized
cylinders is the translational swept object. This is
the set defined by "sweeping" a 2-space curve
along some fixed direction in 3-space. Such an
object can be defined by "placing" the curve in the
xy-plane and letting the sweeping occur along the
z-axis. All other translational sweeps can be
obtained by affinely transforming this form. To
generate a Partitioning Tree of such an object, all
that is needed is to take the 2-space tree created
from a curve, treat it as an infinite cylinder, and
intersect it with two halfspaces orthogonal to the z-
axis corresponding to the limits of the sweep. This
can be accomplished simply by making the two
bounding halfplanes the first two nodes of the tree
and then placing the curve tree "in-between" these
by attaching it as the "in-child" of the second plane.

It is customary to employ three curves to
define generalized cylinders. The first corresponds
to the curve used to define translational sweeps,
and is often called the cross-section-curve. The
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second replaces the axis of translational sweeps
with a curve, called the path-curve, which is
usually constrained so that the object does not
self-intersect. The third provides scaling of the
cross-section curve as it is swept along the path,
and is often referred to as the profile-curve. As an
example of this, rotational swept objects (surfaces
of revolution) are specified by a circle for the
cross-section, a straight line for the path (axis of
revolution), while the profile plays the traditional
role of the user specified curve to be revolved.

To build trees of generalized cylinders, we will
begin by describing the construction of a subclass
in which we restrict the path-curve to be a
straight line, as with surfaces of revolution. Thus,
we are only concerned with the cross-section and
profile curves. The approach we take is to, in effect,
simulate the sweeping of the cross-section curve
along the z-axis, which can also be thought of as
the time axis of the sweeping process. Since we are
constructing a piecewise linear approximation, we
will sample time (z) at a finite number of points and
interpolate between these. The value of the swept
cross-section curve at each sampled point is
obtained by translating the curve to the plane
orthogonal to the z-axis containing the sample, and
then scaling the curve symmetrically in xy by an
amount equal to the distance of the profile curve
from the z-axis. To create the swept surface, we
then need to interpolate linearly between these
transformed cross-section curves.

Now to build a tree representing this object, we
simply emulate what we have just outlined using
an approach first described in [lhm and Naylor 91]
(however, in that work the cross-section curve
was derived from a digitized representation of the
curve, rather than a Bezier definition). We first
generate a linear approximation of the profile-
curve using the usual Bezier subdivision. The z-
values of the resulting vertices will serve as our
sample points. We then build a good tree
representing this subdivision of the z-axis into
intervals, creating a collection of horizontal planes
subdividing 3-space. This tree will be the "top" part
of the entire tree (see Figure 6). Within each
interval, we will place a 3-space cross-section
subtree that interpolates between the two
transformed cross-sections lying in the z-planes
which bound the interval. This subtree can be
generated by applying an inverse perspective
transform to the original untransformed cross-
section tree lying in the xy-plane. This transform
will map the planes of this tree, which are all
orthogonal to the xy-plane, to a set of planes each
of which contains a specified center of projection.
This center of projection lies on the z-axis, and is
found by intersecting with the z-axis the line
containing the profile-curve line segment
corresponding to the target interval. The
projection plane is the xy-plane. The result can
then be translated and scaled so that the cross-
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section curve lying in the xy-plane is mapped to
the lower of the two swept versions of the curve.

h1 @

h2

h3

/
ci c2 c3 c4

Tree representation of a generalized
cylinder (undeformed case)
Figure 6

However, this method does not allow for
independent adaptive subdivision of the two cross-
sections required to reflect their differing sizes. If
this is desired, then we must approach the problem
differently while not allowing the introduction of
"cracks". To do this, we must repeat the cross-
section tree generation algorithm for each 3-space
cross-section independently. We will now need to
generate segment-trees that interpolate between
two transformed convex Bezier segments.
Therefore, we transform two copies of the Bezier
control points as determined by the target profile
segment and simultaneously subdivide both
curves adaptively. The partitioning hyperplanes,
which in the 2-space case where determined by
two control points, must now contain four control
points, two from each curve. However, all four
points are coplanar (otherwise the first method
using the perspective transformation would not
work) and so a single partitioning plane is produced
(from any three of these points), analogous to the
2-space case. Now since adaptive subdivision
permits the two curves to terminate subdivision at
differing levels, we must deal with cracks. This can
be achieved by only a slight modification to what
we have described. We will continue to, in effect,
subdivide the terminated curve, but using only
the linear form, i.e. two control points. We will also
"bias" the choice of which three control points to
use to produce the partitioning hyperplane. These
will be the two control points from the
unterminated curve plus the control point from
the other "linear curve" generated by midpoint
subdivision. This will produce a triangular face of
the object instead of a quadrilateral one produced
when both curves are being subdivided.

We are now prepared to augment this tree
construction method in order to permit more
general path-curves, and so obtain the class of
generalized cylinders. We will interpret the effect of
the path curve as specifying a "spinal deformation”
of an object whose path curve (spine) is a straight
line, i.e. as deforming the type of object whose
construction we have just described. The path-
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curve will be interpreted as defining a special kind
of deformation of space. In particular, we will define
it in terms of a mapping of horizontal planes to a set
of planes whose normals are tangent to the path-
curve (see Figure 7 for a hand-drawn illustration).
More precisely, we treat the undeformed spine as
having a uniform parameterization, say P(t). For
each value of t, we can compute a corresponding
point on the path-curve, Q(t), and the tangent
vector Q'(t). We then define the mapping to be the
3-space translation and rotation which maps P(t)

to Q(t) and P'(t) to Q'(t) (of course P'(t) is always

the z-direction).
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Spinal

deformation of generalized cylinder

Figure 7

The spinal deformation can be easily applied
during the segment-tree generation process. Since
our control points have been constrained to lie in
horizontal planes, we can apply the above
transformation directly to these and proceed as
before, with one exception. Whereas previously, we
could generate a single partitioning hyperplane
that would contain four control points, forming a
quadrilateral, the deformation obviates this
property, and so in general we must generate two
partitioning hyperplanes, each containing three of
the control points forming two triangles. An
additional issue arises whenever the spinal
deformation results in parts of the object lying on
both sides of what was in the undeformed case a
horizontal plane. This case can be handled using
tree partitioning and merging algorithms [Naylor,
Anamatides and Thibault 90]. For any formerly
"horizontal" tree node T, its two deformed subtrees
T- and T+, can be partitioned by T.hp, producing
four trees, T--, T+-, T-+ and T++. The new T- is
created by merging T-- and T+-, and similarly for
the new T+ (see Figure 8).
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"extreme"
Figure 8

Treatment of deformation

Examples

We now show a few examples of our work. In
Picture 1, we illustrate the design of a mushroom.
Shown are the three curves, in this case all
rational quartic curves, defining the generalized
cylinder as well as the resulting object. The lines on
the object show the edges of the polyhedral faces,
which also constitute all of the intersections
between the tree and the boundary of the object.
Notice the absense of split faces. Picture 2 shows
another object defined using rational cubic curves,
two of which contain inflection points, and where
only C% is maintained. If one looks closely, it is
possible to discern where cracks are avoided by
using triangular rather than quadrilateral faces.
Pictures 3 and 4 give other examples. In Picture 4,
the radish body and stem are two separate objects
unioned together.

Future Work

The work presented here is based on curves.
Individual surface patches are not explicitly
created and manipulated but rather are defined as
the cross-product of two curves. The obvious next
extension to this work 1is to apply the ideas
presented here to arbitrary surface patches. We
have considered this issue at sufficient length to
know that solutions exist, but we have yet to begin
implementations. A second and very important
avenue for improving this work it to provide the
ability to continue Bezier subdivision at a leaf node
on demand. With such a capability, the tree
merging algorithm could refine the approximations
of two surfaces in the neighborhood of their
intersection curve to whatever extent was needed
to meet the desired error tolerance.
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Figure 2

Figure 1

Above: A sample workspace shows an
object being modeled. Its cross section, side
view and axis are each being defined using
quartic Bezier curves.

Left: Bezier curve segments with inflections
can appear in the cross section, as shown
here, or in the side view or axis.
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Figure 3

Pumpkin and Radishes
The radish tops were created separately from the bottoms and later joined to
make the radish object.

Figure 4

Two Mushrooms
The illustration of the sample workspace shows the mushroom object in the
process of being created.
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