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While a ve ry effective method for designing obj ects 
is to describe their surfaces using non-linear 
parametric representations, th ese are not 
necessarily the best for executing all of the 
computations required for mode ling and 
rendering. Th ese computations include set 
operations for CSG, collision detection, ray-surface 
intersec tions, visible surface determination , 
shadow calculations, radiosity transfer, and view
volume clipping, all of which involve computing 
intersec tions, possibly in visibility order. 
Intersections are intrinsically easie r to compute 
using the implicit rath er than th e parametric 
form; however, implicitizing parametric su rfaces 
can produce polynomials of too high a degree. An 
alternative that we introduce in this paper is to 
convert the non-linear parametric form into a 
piecewise-linear, multi-reso lution , implicit form, 
viz. the Binary Space Partitionin~ I..r.£.L... This 
provides a hierarchical organiza tion of the many 
lin ear pie ces, resulting in acceleration of 
intersection and visibility ca lculations. Our method 
yie lds a definition of non-linear sets as infinite 
trees which can be adaptively pruned/truncated 
to produ ce a finite tree meeting a target 
approximation error. We describe how to construct 
such a tree representation of a region of 2-space 
whose boundary is a piecewise-Bezier cu rve of 
allY deg re e. We th en describe how this 
construction can be used in 3-space to build trees 
representing generalized cylinders. This pro vides a 
very effec ti ve method fo r constructing multi
resolution trees that are "good ", as measured by 
expected cost, for intersections and visibility. 

lintr od u c ti o n 

Computing intersections and visibility between sets 
are very fundamenta l operat ions in Geometric 
Computation . Intersections (set operations) are 
used in geometric modeling for constructive solid 
geometry and interference detection , in dynamics 
for collision/contact detection, and in renderin g for 
view-volume c lipping/culling . Intersection s 
combined with visibility orderings are used in 
rendering (radi a tion propagation ) for ray- tracing, 
beam- tracing , shadow volumes, and radi os ity 
transfer calculations. The speed and accuracy at 

.. . ' . ~ 

and Lois Rogers 
Laboratories 
Hill , NJ 

which these computations can be performed 
depends primarily upon the computational 
representations of geometry used . Among the 
various choices for representations, there is a 
funda mental distinction between the parametric 
and implicit forms, as well as between linear and 
non-linear representations . We will argue below 
that sets represented in the implicit form are 
intrinsically better suited for intersection s than 
parametrics because they provide directly a set 
membership function. As for the linear/non -linear 
dichotomy, computing the intersection between 
two sets defined using only linear equations, say 
between two polygons , is simple; while the same 
computations involving non-linear se ts can be far 
more complicated or even impractical. We will 
describe a so lution to the problem of computing 
intersections and visibility for the c lass of so lids 
known as generalized cylinders , which are objec ts 
that can be defined using at most three curves: 
cross-section , profile and p a th cu r ves. 
Translationa l and rota tional swept objects are 
spec ial cases of generalized cylinders . In our 
method , the curves are defined as piecewise Bez ier 
curves of any degree and continuity, and we use 
these to produce a multi-resolution , pi ecewise 
linear , implicit form , viz. th e Binary Space 
Partitioning Tree (BSP Tree or , as we prefer , 
Partitioning Tree) [Fuchs , Kedem , and Naylor 80]. 
These trees then provide the representation that 
accelerates intersection and visibility calculations. 

Currently, the most popul ar form of non
linear parametric representations is the B-spline 
form (NU RB 's) [Farin 88]. These can be easily 
converted into the piecewise Bez ier form by 
employing the Blossoming algorithm , and so these 
two forms define the same sets. The computation of 
intersec tions between objects defined us ing 
parametric splines can be solved analy tically if one 
or both objects is first converted into its implicit 
fo rm . However , the algebraic deg ree of bi
parameter patches of parametric degree n is 2n2 . 
So for example, bi-cubic patches are of a lgebraic 
degree 18 , and the intersection curve be tween 
two such patches is of a lgebraic degree 182 = 324. 
This, of course, makes the algebraic representat ion 
of such an intersection curve imprac ti ca l. A 
standard approach to reducing the complexity of 
operations involving non-linear eq uations is to 
approximate th e sets by a piece wise lin ea r 
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representation . Linear sets, i.e. those define using 
only linea r equations, have the unique property 
among a lgebraic sets : their intersection curves are 
the same degree as the original sets, i.e. of degree 
I . But the cost of piece wise linear approximations is 
that the number of linear pieces can be quite large 
if the error due to the approximation is to be 
maintained at an acce ptable level. Thus, using 
lin ear approximations constitutes a tradeoff of 
algebraic complexi ty for combinatorial complexity. 
So while the algebraic geometry of intersections 
has been made simpler, an unorganized set of 
linear pieces will require 0(n2 ) operations for both 
intersection and visi bi Ii ty calcu lations. This 
deficiency can be ameliorated significantly by 
organizing the possibly thousands of pieces into a 
hierarc hica l da ta s truc ture . If in addition, the 
representation has the multi-reso lution property 
as well , then the number of pieces used for the 
approximation can be adaptively selected in order 
to meet a target approximation error. 

In thi s paper , we extend the notion of 
implicitizing piecewise Bezier curves in 2-space by 
presenting a method that uses the de Casteljau 
algorithm for recursive midpoint subdivision to 
directly ge ner a te a 2D Partitioning Tree 
representing the curve. We will then describe how 
to ex tend this method to the construction of trees 
representing generalized cylinders. In this schema, 
sets with non-linear boundaries are represented 
by infinite trees whose pa th s either converge 
monotonically to the boundary or terminate inside 
or outside the set. Tree pruning , analogous to the 
trunca ti on of a n infinite series, yields an 
approxi mation whose error is well defined and 
easily computed, and introduces a multi-resolution 
character to the representation. In addition, 
intersections and visibility orderings between sets 
represented by independ e nt tree s can be 
comp uted by merging their respective trees 
[N ay lor , Amanatides and Thibault 90]. Tree 
merging can be interpreted as merging two 
bo unding-volume hierarchies , and so is very 
efficient. Since the result of merging two trees is 
a lso a tree, a ll essential properties are preserved , 
inc luding th e multi-resolution character. If the 
Bez ier definition has been retained at the 
appropriate leaves of the tree, it is possible to grow 
trees dyn amically in th e region in which their 
surfaces intersec t as pa rt of the tree merging 
process, i .e. a lazy evaluation schema (we have not 
yet implemented this). 

lCo mp a r iso n s t o A lt e r n a ti v e Ap p r oac h es 

There has been a considerable amount of prior 
work addressing the problem of 
inte rsectio ns and visibility with 
surfaces , and much of it e mploy s 
subdivision in some fas hi on. One area 
has focused o n th e ray-surface 
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problem . One of the earliest solutions used 
implicitization , resultants and iterative root finding 
[Kajiya 82] . In [Toth 85] multi-variate Newton 
iteration is employed, combined with interval 
arithmetic in order to solve the problem of finding 
a good initi al starting point for the iteration . [Joy 
and Bhetan abhotla 86] presented a similar 
approach using quasi-Newton methods, but use 
ray -coherence and spatial subdivision to faci litate 
the problem of finding a good starting point. These 
methods may prove to be effective for , say bi
cubic patches (algebraic degree 18), but they 
become rapidly less so for higher degrees. Finally , 
[Nishita, Sederberg and Kakimoto 90] present a 
method most similar to ours based on Bezier 
clipping, which for a single ray converges faster 
than midpoint subdivision. 

Rendering without ray-tracing of parametric 
surfaces has relied upon recursive subdivision, e.g. 
[Catmull 74] . However, these methods generate a 
set of polygons that require, for example, a depth 
buffer for visible surface determination. An 
exception to thi s is provided by the scan-line 
algorithm in [Lane et al 80]. 

The first intersection operations between two 
Bezier patches appeared in [Carlson 82] . The 
method uses recursive subdivision and testing for 
inte rsection between pairs of control polyhedra, 
one for each surface . The intersection curve is 
represented in the parametric domain of each path 
using a quadtree , thus providing trimmed 
parametric patches . [Crocker and Reinke 87] also 
generate trimmed patches , but they do so by 
intersec ting approximating surfaces composed of 
piecewise linear or qu adratic surfaces. [Herzen , 
Barr and Zatz 90] construct a hierarchy of 
"Jacobean bounding volumes" based on bounds on 
the parti al derivatives and test for intersec tion 
between bounding volumes. [Snyder 92] applies 
interval ari thmetic to the intersection problem , 
which is loosely speaking a kind of implicit form, 
since one is computing membership within boxes . 
Thi s, in fact, produces an octree decom position of 
space, although [Snyder 92] does not produce an 
explicit octree data structure. However, [Duff 92] 
does generate an octree using interval arithmetic, 
although the paper does not specifically address 
parametric s . 

In contrast to these methods, our approach, 
currently limited to generalized cylinders, 
generates a global evaluation of the surface once, 
recording the results in a tree . This tree can then 
be used repeatedly in geometric computations 
without re-evaluation, and can be used with trees 
representing objects generated by alternative 
methods , such as from physical se nsing or 
implicitly defined nonlinear surfaces. For 
co mputing surface -s urface intersections, tree 
merg ing provides the same benefits as the various 
hierarchi cal subdiv ision methods just described , 
but with the very important added benefit of 
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producing a structure from which a visibility 
ordering can be generated. And unlike axis-aligned 
schemes, Partitioning Trees can be affinely 
transformed . Thus, the benefits of the 
evaluation/tree-construction can be reaped in 
computing collisions and rendering operations 
over a possi bly large number of frames of an 
animation or interactive sequence . 

Similarly for ray-tracing, the single evaluation 
is shared by all rays, rather than doing an 
independent recursive subdivision for each ray. 
Ray-tracing can also exploit the multi-resolution 
aspect by adaptively terminating the ray-surface 
intersection search at a depth determined by the 
size of the projected surface area and the angle of 
incidence: the greater the angle of incidence, the 
deeper the search, since the highest resolution is 
required at silhouettes. This should offset the fact 
that the bi-section algorithm inherited of midpoint 
subdivision does not converge as fast as the 
Newton-type root finder or Bezier clipping; and we 
do not have the problem of finding an initial 
starting point. Also in our approach, when CSG is 
used wi th ray-tracing, the se t operations are 
performed once, instead of repeatedly for every 
frame where every ray is intersected with all 
pri ml tl ves surfaces and set operations are 
performed in "ray-space". Thi s can result in 
significant savings, since no ray-surface 
intersections are computed for subsets of 
primitives that are removed by set operations. 

llmp licits vs.lP'arametrics 

Geometric sets a re commonly specified using 
continuous functions , and the distinction between 
parametric and implicit arises from whether the 
set of interest is contained in the range or the 
domain of the functions. For parametrics, the set 
lies in the range of a vector valued function F: Xm 
~ y n, where as for implicits, the set lies in the 
domain and is defined by a function of the form: 
G(Y) = O. 

The essence of parametric representations is 
their power to enumerate points in the set S. By 
enumerating points in the parameter space, one 
generates corresponding points on S in the range . 
If the parameter points are vertices of a topological 
decomposition K of the parameter space, e.g. a 
triangulation, then applying F to K produces an 
embedding of K in S. This fact is commonly used to 
generate polygon a l approximations of 
parametrically defined surfaces in 3D. The 
enumeration property is also used in polygon 
drawing to enumerate a ll pixels lying with the 
projection of a polygon (scan-conversion). In 
contrast, implicit functions are of the form G: yn =) 

Zl The set G( Y ) = 0 is called a hypersurface. We 
can use this to define so lids (in general, Lebesque 
measurable sets) by defining S == { Y I G( Y ) <= 0 
}. The set is, therefore, defined by a memb ership 
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function, also called a characteristic function, which 
is a boolean-valued total function that is TRUE 
whenever a point is a member of the set. This then 
is the essential nature of implicit representations. 

The most popular forms of parametric and 
implicit functions use polynomials . Sets defined 
implicitly by a single polynomial define the class of 
sets called Algebraic Sets. Hypersurfaces defined 
parametrically by (rational) polynomial coordinate 
functions are also algebraic sets, but not all 
algebraic sets admi t such a ration a l 
parameterization. Thus, the parametrics are a 
subset of implicits when only polynomi als are 
involved. Generating the implicit form of a 
parametric hypersurface is accomplished by a 
process called implicitization. The algebraic degree 
of an algebraic set is simply the degree of the 
polynomial of the implicit form , and it gives the 
maximum number of intersection s between a line 
and the hypersurface. 

The distinction between sets for which one has 
a membership function , as with implicits, and those 
for which one has an enumeration function , as 
wi th parametrics, lies at the very foundations of 
the theory of computation. In parti cular, in order 
for a countable set to be characterized as 
co mputable , the set mu s t have a computable 
me mbership function. Such se ts are ca lled 
Recursive Sets. Those se ts for which there exist 
computable enumerating (or generati ng) functions 
are called Recursively Enumerable Sets . This tell us 
that the distinction between implicits and 
parametrics is not an artifact say of using 
polynomials but corresponds to an important 
difference in methods of defining sets. Indeed , th e 
difference in the computational efficacy of the two 
representation s can be largely understood in 
terms of the difference between membership and 
enumeration functions. 

Determining set membership is required for 
performing any intersection operation . Such 
operations inc lude point classification , ray-sur face 
intersection , clipping to a view-volume, collision 
detection, constructive so lid geometry, shadow 
volumes, continuous-space visible surface 
determination, etc. On the other ha nd , 
enumeration is used directly for polygonalization of 
a curved surface and scan-conversion of polygon s. 
It is also used to compute intersections with an 
implicit form , as is done when a parametric 
representation of a line/ray/edge is substituted 
into an implicit equation of a hypersurface . Various 
va lues of the parameter are "enumerated" ei th er 
analytically if the degree is I or 2, or numeri ca ll y, 
otherwise. So while computing intersec tions is an 
intrinsic property of implici ts, a parametri c can 
quite effectively be paired with an implicit to 
perform such operations . Intersections betwee n 
two implicits can be comp uted sy mbolically by 
using Resultants or Grobner Bases , but no such 
com parable algorithms are known for two 
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parametrics, although there do exist tracing 
algorithms for this case. (Here we are considering 
recursive subdivision schemes which rely on 
testing for intersection of bounding volumes, 
including intervals , to be using implicits , since 
plane equations are used. ) 

Historically , the distinction between implicits 
and parametrics has been focused on sets defined 
by a single Cl function. However, given the 
importance of piecewise representations, it is 
natural to extend the notion to representations 
using many such functions . This is already common 
practice in the case of B-splines, which are 
considered parametrics even though they are only 
piecewise-polynomial. We can also consider 
boundary representations of linear polytopes as 
being a parametric form. This is easy to see by first 
noting that when one restricts the degree of 8-
splines to be I, the result is a boundary 
representation (although typically with limitations 
on the topology of the pieces, say to being 4-sided). 
It is also common to parameterize polygons in b
rep form by specifying texture coordinates at the 
vertices. In keeping with this view, we can then 
interpret Partitioning Trees as an implicit 
representation , since it is composed of a set of 
linear polynomials (hyperplanes). Therefore, the 
topic of this paper, constructing Partitioning Trees 
from Bezier curves, can be interpreted as a type of 
implicitization of parametric curves, in particular, a 
linear , multi-resolution implicitization. However, 
before describing this construction, we first need 
an understanding of what kinds of trees are 
desirable. 

Good P a rtitionin g Tr ees 

Unlike topological representations, any given set 
may be represented by an arbitrary number of 
different Partitioning Trees. This is analogous to the 
fact th at for any computable function, there is a 
countably infinite number of syntactically 
different programs that compute that function. 
Indeed, a Partitioning Tree may be interpreted as a 
computation graph that specifies a particular 
search of space. Analogous to the property that 
not all programs/algorithms are equally efficient, 
not all searchesltrees are equally effective. Thus 
the question arises as to what constitutes goodness 
for Partitioning Trees (computing or even defining 
the optimal is very problematic). In [Naylor 93], 
the notion was introduced of identifying good trees 
with those that represent the set as a sequence of 
approximations, or actually a tree of 
approximations , and which consequently provide a 
multi-resolution representation. Various 
approximations of the set can be created by 
pruning the tree at various depths. This is 
analogous to the pruning of decision trees used in 
machine learning . 
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By way of an introduction to this notion of 
goodness, we show in Figure I two quite different 
ways to represent a convex polygon , only the 
second of which employs the sequence of 
approximations idea. The tree on the top subdivides 
space using lines radiating from the polygonal 
center, splitting the number of faces in half at each 
step of the recursive subdivision. The hyperplanes 
containing the polygonal edges are chosen only 
when the number of faces equals one, and so are 
last along any path. If the number of polygonal 
edges is n, then the tree is of size O(n) and of depth 
O(log n) . In contrast, the lower tree uses the idea 
of a sequence of approximations. The first three 
partitioning hyperplanes form a first 
approximation to the exterior while the next three 
form a first approximation to the interior. This 
divides the set of edges into three sets. For each of 
these, we choose the hyperplane of the middle face 
by which to partition, and by doing so refine our 
representation of the exterior. Two additional 
hyperplanes refine the interior and divide the 
remaining set of edges into two nearly equal sized 
sets. This process proceeds recursively until all 
edges are in partitioning hyperplanes . Now this 
tree is also of size O(n) and depth O(log n) , and 
thus the worst case for point classification is the 
same for both trees. Yet they appear to be quite 
different. 

Illustration of bad vs. good trees 
Figure 1 

This apparent qualitative difference can be 
made quantitative by, for example, considering the 
expected case for point classification. With the first 
tree, all cells are at depth log n, so the expected 
case is the same as the worst case regardless of the 
sample space from which a point is chosen. 
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However, with the second tree, the top three out
cells would typically constitute most of the sample 
space, and so a point would often be classified as 
OUT by, on average, two point-hyperplane tests . 
Thus the expected case would converge to 0(1) as 
the ratio of polygon-area/sample-area approaches 
O. For line classification, the two trees differ not 
only in the expected case but also in the worst case: 
O(n) vs. O(Iog n) (in the bad tree, a query line will 
intersect all n radiating lines, but with the good 
tree, the process becomes a search for the two 
intersection points between the line and the 
polygon, each of which takes log n). For merging 
two trees (e.g. set operations) the difference is 
o (n 2) vs. O(n log n) . This reduces to O(log n) 
when the objects are only contacting each other, 
rather than overlapping, as is the typically the 
case for collision detection. 

The subject of good trees is explored in greater 
depth in [Naylor 93], and the main algorithmic 
result there is a method for constructing good 
trees from a boundary representation using 
expected case models to drive a relatively time 
consuming search over the space of possible trees. 
What we will describe in the rest of this paper is a 
schema in which good trees are created directly 
from the Bezier form without any expensive 
searching . This represents a substantial 
improvement in the time required to produce 
good , i.e . multi-resolution, trees . To accomplish this , 
we will exploit the well known fact that the control 
polygon of Bezier curves provides an 
approximation of the curve segment and that 
recursive subdivision of the control polygon 
produces a tree of control polygons that converges 
to the curve. 

2 D IB e z i e r Cu r v e - > JP' a rt i t io n in g ']['r e e 

We begin with the simplest component of our 
schema, which is to take a 20 parametric curve 
defined by a set of Bezier control points and 
produce a Partitioning Tree that will be, in our 
extended sense, an implicit form of the curve. To 
obtain an implicit representation, we must use the 
curve to induce a classification on space. Usually 
this means creating a membership function that 
assigns in or out to every point, which in the case 
of trees, means classifying the cells of the 
partitioning into in-cells and out-cells . However, 
this will not suffice for representing non-linear 
sets by linear sets, since the later can only 
approximate the former. Instead of using the usual 
2-valued logic , we use a 3-valued logic in which 
the third value will be on. This will be used to 
denote a region of space in which the boundary of 
the set is known to lie, but in which we do not yet 
know exactly where it lies, at least in terms of the 
tree representation . An on-region can be 
interpreted as a region of uncertainty with regard 
to the classification of points into in and out. In 
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contrast, in-cells and out-cells are regions of 
certainty. However , this uncertainty can be 
reduced to an arbitrarily small amount through 
recursive subdivision of the Bezier curve. Note 
that the on value, while it indicates the presence of 
the (d-I)-dimensional boundary, will be used as a 
classification of a d-dimensional region, i.e. the 
same dimension as the in and out regions , and so 
all three types are treated uniformly . 

For our Bezier curve to tree conversion, there 
is no restriction on the parametric degree, i.e. on 
the number of control points . But we do require for 
the construction given below that the curve 
segment be convex . A sufficient though not 
necessary condition for convexity is for the control 
polygon to be convex, a consequence of the 
variation diminishing property of Bezier curves. If 
this is not the case, and the curve/control-polygon 
does not self-intersect, we can subdivide the curve 
into convex pieces by splitting the curve at every 
inflection point (0 curvature). The parametric 
values of the inflection points can be found 
numerically with recursive subdivision: simply 
perform midpoint subdivision until all sub-curve 
control polygons are convex. Inflection points occur 
between two consecutive control polygons that do 
not "agree in sign ", i.e . that do not when taken 
together form a convex polygon. We can then 
perform a single subdivision for each inflection 
point, taken in increasing parametric order , to 
obtain a collection of convex curve segments. 

In Figure 2, we show on the top a quadratic 
Bezier . curve specified by 3 control points, along 
with a single midpoint subdivision step . In the 
remainder of Figure 2, we show the beginnings of 
the corresponding Partitioning Tree . The initial tree 
is a bounding triangle which completely contains 
the curve segment and whose vertices are the 
control points. We assign to the outside of the 
bounding triangle the classification of out, and 
within the triangle we assign the classification of 
on. 

P1 

PO P2 

on 0 u t 

Quadratic Bezier with initial tree 
Figure 2 
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Any on-region containIng a Bezier control 
polygon can be refined by a single application of 
the midpoint subdivision algorithm to the control 
points. This produces the parametric midpoint of 
the curve, the tangent line through this point, 
and the two sets of control points for each half of 
the curve . Since the curve segment is convex, it 
lies completely to one side of the tangent line. We 
can add a node to the tree, as shown in Figure 3, 
with the tangent line as the partitioning 
hyperplane so that only one child region contains 
the curve , and this region will be designated by 
convention as an out-cell. Now for each half of the 
split curve , the two tangent lines at its endpoints 
are already partitioning hyperplanes of the tree. 
We can complete a bounding triangle for the 
segment by simple adding to the tree the line 
connecting the two endpoints. Doing this for both 
c urve-halves also creates a fourth triangular 
region that lies completely to one side of the 
original curve segment, and we choose to designate 
it as an in-cell. We have thus refined our 
knowledge about the location of the boundary and 
have created two independent curve segments 
lying in on-regions. We can recursively apply this 
process of subdividing the curve and adding tree 
nodes indefinitely. The lower illustration in Figure 
3 shows one additional level in the process. (For a 
somewhat similar approach, see [Gunther and 
Dominguez 93).) 

Tree representation of 
Figure 

/ 
~ut 
o~ 

on in 

midpoint 
3 

subdivision 

The tree produced by thi s process , which we 
refer to as a segmen t-tre e, is a multi-resolution, 
piecewise-linear, implicit representation of the 
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Bezier curve segment. And when we interpret the 
tree as a computation graph , the tree is in some 
se nse a "remembering" of the recursive 
subdivision. We can also define an infinite tree that 
converges to the curve and which can be 
truncated at any level of the tree. For any given 
truncation, an absolute measure of the error of the 
representation introduced by truncation is the 
sum of the areas of all on-regions , which in the 
limit is O. We call this metric a covering metric since 
we are measuring the size of a collection of disjoint 
open sets that cover a lower dimensional set. This 
metric is much simpler to compute than the 
Hausdorff metric and more accurate than max
distance metric . It is also similar to the definition of 
the Hausdorff-Besicovitch dimension used to define 
the fractal dimension of a setl . 

For higher degree curves, we have two choices 
for constructing a tree, which in the quadratic case 
are identical. Either we can "remember" every step 
in the subdivision process by adding a degree 
dependent number of tree nodes , or we can imitate 
the quadratic case by adding only three nodes per 
subdivision, a possibility afforded by the fact that 
our construction depends only upon convexity. We 
have chosen the later, since it produces smaller 
trees, and makes the tree construction process 
independent of the degree of the curve . This 
independence will prove useful later when we 
discuss the construction of generalized cylinders . 
Figure 4 illustrates the cubic case. 

PO 

P1 

P3 

Cubic Bezier subdivision with tree 
Figure 4 

lPiecewise-lBezier - > lPar tit ion in g 1l'r ee 

In Figure 5 , we illustrate a piecewise Bezier 

quadratic curve that is Cl. The set of control points 
are of two types: those located at the segment 
endpoints, indicated by solid circles, and those that 
may be considered as "internal", indicated by 
hollow circles . The internal control points are in fact 
the same points as the set of B-s pline control points 
needed to define the same curve, and are labeled 

with Bn. In the Bezier form, Cl can be maintained 
by constraining the segment end points to lie on the 

I The frac tal dimension is the expo nenti al rate at whi ch the 
number of e lements in a covering varies wilh the radius o f the 
ope n sets used in the cove ring . 
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line determined by the two intervening internal 
control points. Movement of these control points 
has the effect on the corresponding B-spline 
definition of changing the knot spacing (the "non
uniform" aspect of NURB's) . A somewhat analogous 
correspondence between a B-spline defini tion and 
a piecewise Bezier definition exists for all degrees 
and may be obtained through the use of the 
Blossoming algorithm . Thus, the original curve 
definition may be a NURB, even though our 
method of constructing segment-trees requires 
the Bezier form. However, for low degree curves, 
we have actually found that the Bezier form to be 
more intuitive as a user interface, since it replaces 
adjusting knot spacing with manipulating control 
points. It is also very easy for the user to specify 
segments differing in degree within the same 
curve. 
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T3 

Bezier specification of a region of 2-space 
Figure 5 

Given a piecewise Bezier definition of a curve 
that is closed and does not self intersect, we will 
now address building a single tree representing a 
region of 2-space whose boundary is such a curve. 
The idea is to build individual segment-trees for 
each convex Bezier curve segment (see Figure 5 
lower half), and then merge these trees together 
to form a single tree. There are three parts to this. 
The first is to apply the methods above to produce 
a collection of segment-trees . The second is to 
determine for each segment whether it is a 

"convex" segment or "concave" segment; i.e . 
whether the internal control points lie in the 
exterior of the set or in the interior. The later case, 
which occurs in Figure 5 for T2, will require the 
segment tree to be complemented (actually, just 
the subtree inside the outer most bounding 
triangle). The third part is to "fill in" the interior of 
the region that lies inside the B-spline control 
polygon, but does not lie within any segment tree 
(indicated in Figure 5 by the lightly shaded 
region) . The vertices of this polygonal region are a 
subset of the Bezier control points . They are either 
the curve segment endpoints , if the segment-tree 
is uncomplemented, or the internal control points 
of complemented segment-trees. We construct a 
tree for this region using the standard b-rep -> 
tree conversion routine, and then union the result 
with the collection of segment-trees. This yields the 
desired single tree representing the region of 2-
space bounded by the curve. 

Tr ee lRepresen t a tion 

ey lin d er s 

o f Gelll e r a liz e d 

We will now address applying the foregoing 2-
space curve representation schema to the problem 
of creating 3-space objects . In particular, we will 
describe how to construct a good tree for the class 
of objects called generali ze d cy linders (for a recent 
paper on these, see [Snyder and Kajiya 92)). Thi s 
class is obtained by extending the ideas embodied 
in swept objects . They constitute a rich class of 
objects, which include rotational and translation a l 
sweeps , and they are very easy to design since 
they are specified using a few 2-space curves 
"drawn " on a flat surface. When combined with set 
operations, many com merc i ally man u factu red 
objects can be designed using generalized cylinders 
as the primary "free form" modeling primitive. 

The simplest member of the class of generalized 
cylinders is the translational swept object. This is 
the set defined by "sweeping" a 2-s pace curve 
along some fixed direction in 3-space. Such an 
object can be defined by "placing" the curve in the 
xy-plane and letting the sweeping occur along the 
z-axis. All other translational sweeps can be 
obtained by affinely transforming this form . To 
generate a Partitioning Tree of such an object , all 
that is needed is to take the 2-space tree crea ted 
from a curve, treat it as an infinite cylinder, and 
intersect it with two halfspaces orthogonal to the z
axis corresponding to the limits of the sweep. Thi s 
can be accomplished simply by making the two 
bounding halfplanes the first two nodes of the tree 
and then placing the curve tree "in-between" these 
by attaching it as the "in-child" of the second plane. 

It is customary to employ three c urves to 
define generalized cylinders. The first correspond s 
to the curve used to define trans lation a l sweeps, 
and is often called the c ross-sec tioll- c urv e. The 
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second replaces the axis of translational sweeps 
with a curve, called the path-curve , which is 
usually constrained so that the object does not 
self-intersect. The third provides scaling of the 
cross-section curve as it is swept along the path, 
and is often referred to as the profile-curve . As an 
example of this, rotational swept objects (surfaces 
of revolution) are specified by a circle for the 
cross-section , a straight line for the path (axis of 
revolution) , while the profile plays the traditional 
role of the user specified curve to be revolved. 

To build trees of generalized cylinders, we will 
begin by describing the construction of a subclass 
in which we restrict the path-curve to be a 
straight line, as with surfaces of revolution. Thus, 
we are only concerned with the cross-section and 
profile curves . The approach we take is to, in effect, 
simulate the sweeping of the cross-section curve 
along the z-axis, which can also be thought of as 
the time axis of the sweeping process. Since we are 
constructing a piecewise linear approximation, we 
will sample time (z) at a finite number of points and 
interpolate between these . The value of the swept 
cross-section curve at each sampled point is 
obtained by translating the curve to the plane 
orthogonal to the z-axis containing the sample, and 
then scaling the curve symmetrically in xy by an 
amount equal to the distance of the profile curve 
from the z-axis. To create the swept surface, we 
then need to interpolate linearly between these 
transformed cross-section curves. 

Now to bui Id a tree representing this object, we 
simply emulate what we have just outlined using 
an approach first described in [Ihm and Naylor 91] 
(however , in that work the cross-section curve 
was derived from a digitized representation of the 
curve , rather than a Bezier definition) . We first 
generate a linear approximation of the profile
curve using the usual Bezier subdivision. The z
values of the resulting vertices will serve as our 
sample points. We then build a good tree 
representing this subdivision of the z-axis into 
interva ls , creating a collection of horizontal planes 
subdividing 3-space . This tree will be the "top" part 
of the entire tree (see Figure 6) . Within each 
interval , we will place a 3-space cross-section 
subtree that interpolates between the two 
transformed cross-sections lying in the z-planes 
which bound the interval. This subtree can be 
generated by applying an inverse perspective 
transform to the original untransformed cross
section tree lying in the xy-plane . This transform 
will map the planes of this tree, which are all 
orthogonal to the xy-plane, to a set of planes each 
of which contains a specified center of projection. 
This center of projection lies on the z-axis , and is 
found by intersecting with the z-axis the line 
containing the profile-curve line segment 
corresponding to the target interval. The 
projection plane is the xy-plane . The result can 
then be tran s lated and scaled so that the cross-

51 

section curve lying in the xy-plane is mapped to 
the lower of the two swept versions of the curve. 

h1 

h2 

h3 

h4 

h5 

c1 
~ 
~ out 

O"j(~ 
c1 c2 c3 c4 

c2 

c3 

c4 

Tree representation of a 
cylinder (undeformed 

Figure 6 

generalized 
case) 

However, this method does not allow for 
independent adaptive subdivision of the two cross
sections required to reflect their differing sizes. If 
this is desired, then we must approach the problem 
differently while not allowing the introduction of 
"cracks" . To do this, we must repeat the cross
section tree generation algorithm for each 3-space 
cross-section independently. We will now need to 
generate segment-trees that interpolate between 
two transformed convex Bezier segments . 
Therefore, we transform two copies of the Bezier 
control points as determined by the target profile 
segment and simultaneously subdivide both 
curves adapti vely . The partitioning hyperplanes, 
which in the 2-space case where determined by 
two control points, must now contain four control 
points, two from each curve. However, all four 
points are coplanar (otherwise the first method 
using the perspective transformation would not 
work) and so a single partitioning plane is produced 
(from any three of these points), analogous to the 
2-space case. Now since adaptive subdivision 
permits the two curves to terminate subdivision at 
differing levels, we must deal with cracks. This can 
be achieved by only a slight modification to what 
we have described . We will continue to, in effect, 
subdivide the terminated curve, but using only 
the linear form, i.e . two control points. We will also 
"bias" the choice of which three control points to 
use to produce the partitioning hyperplane. These 
wi 11 be the two con trol poi nts from the 
unterminated curve plus the control point from 
the other "linear curve" generated by midpoint 
subdivision . This will produce a triangular face of 
the object instead of a quadrilateral one produced 
when both curves are being subdivided . 

We are now prepared to augment this tree 
construction method in order to permit more 
general path-curves, and so obtain the class of 
generalized cylinders. We will interpret the effect of 
the path curve as specifying a "spinal deformation" 
of an object whose path curve (spine) is a straight 
line, i.e. as deforming the type of object whose 
construction we have just described. The path-
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curve will be interpreted as defining a special kind 
of deformation of space. In particular, we will define 
it in terms of a mapping of horizontal planes to a set 
of planes whose normals are tangent to the path
curve (see Figure 7 for a hand-drawn illustration) . 
More precisely, we treat the undeformed spine as 
having a uniform parameterization, say pet). For 
each value of t, we can compute a corresponding 
point on the path-curve, Q(t), and the tangent 
vector Q'(t) . We then define the mapping to be the 
3-space translation and rotation which maps pet) 
to Q(t) and PI(t) to Q'(t) (of course PI(t) is always 
the z-direction). 

Spinal deformation of generalized cylinder 
Figure 7 

The spinal deformation can be easily applied 
during the segment-tree generation process. Since 
our control points have been constrained to lie in 
horizontal planes , we can apply the above 
transformation directly to these and proceed as 
before, with one exception. Whereas previously, we 
could generate a single partitioning hyperplane 
that would contain four control points , forming a 
quadrilateral, the deformation obviates this 
property, and so in general we must generate two 
partitioning hyperplanes, each containing three of 
the control points forming two triangles . An 
additional issue arises whenever the spinal 
deformation results in parts of the object lying on 
both sides of what was in the undeformed case a 
horizontal plane . This case can be handled using 
tree partitioning and merging algorithms [Naylor, 
Anamatides and Thibault 90] . For any formerly 
"horizontal " tree node T , its two deformed subtrees 
T- and T+ , can be partitioned by T.hp , producing 
four trees, T--, T+-, T-+ and T++. The new T- is 
created by merging T-- and T+-, and similarly for 
the new T+ (see Figure 8). 

: - , . . \: 
. . 

T --

T++ 

T +-

T.hp 

Treatment of "extreme" deformation 
Figure 8 

Exa m p le s 

We now show a few examples of our work. In 
Picture I, we illustrate the design of a mushroom . 
Shown are the three curves, in this case all 
rational quartic curves , defining the generalized 
cylinder as well as the resulting object. The lines on 
the object show the edges of the polyhedral faces , 
which also constitute all of the intersections 
between the tree and the boundary of the object. 
Notice the absense of split faces. Picture 2 shows 
another object defined using rational cubic curves , 
two of which contain inflection points, and where 
only CO is maintained. If one looks closely, it is 
possible to discern where cracks are avoided by 
using triangular rather than quadrilateral faces. 
Pictures 3 and 4 give other examples. In Picture 4, 
the radish body and stem are two separate objects 
unioned together. 

Futur e Work 

The work presented here is based on curves . 
Individual surface patches a re not explicitly 
created and manipulated but rather are defined as 
the cross-product of two curves . The obvious next 
extension to this work is to apply the ideas 
presented here to arbitrary surface patches. We 
have considered this issue at sufficient length to 
know that solutions exist, but we have yet to begin 
implementations . A second and very important 
avenue for improving this work it to provide the 
ability to continue Bezier subdivision at a leaf node 
on demand. With such a capability, the tree 
merging algorithm could refine the approximations 
of two surfaces in the neighborhood of their 
intersection curve to whatever extent was needed 
to meet the desired error tolerance . 

4
· .. ···' 

:;-. Graphics Interface '95 



IR e f e rences 

[Carlson 82] 
Wyane E. Carlson, "A n Algorithm and Data 
Str ucture for 3D Object Synthesis Using 
Surface Patch Intersections" , Computer 
Graphics Vo l. 16(3), pp. 255-263, (July 
1982 ) . 

[Catmul 74] 
Edwin Catmul, "A Subdivision Algorithm for 
Computer Di sp lay of Curved Surfaces", Ph. D. 
Thesis in Computer Science, University of 
Utah (July 1974). 

[Crocker and Reinke 87] 
Gary A. Croker and William F, Reinke, 
"Bound ary Evaluation of Non-Convex 
Primiti ves to Produce Parametri c Trimmed 
Surfaces", Computer Graphics Vol. 21 (4), 
pp. 129-136, (July 1987). 

[Duff 92] 
Tom Duff, "Interva l Arithmetic and Recursive 
Subdivision for Implicit Functions and 
Const ru ctive Solid Geometry". Computer 
Graphics Vol. 26(2) , pp . 131-138, (July 
1992) . 

[Farin 88] 
Gerald Farin , Curves and Surfaces for 
Computer -Aided Geometric Design , 
Academic Press (1988). 

[Fuchs, Kedem, and Naylor 80] 
H. Fuchs, Z. Kedem, and B. Naylor, "On Visible 
Surface Generation by a Pri ori Tree 
Structures, " Computer Graphics Vol. 14(3) , 
pp . 124- 133, (June 1980) . 

[Gunther and Dominguez 93] 
Oliver Gunther and Salvador Dom inguez, 
" Hierarchical Schemes for Curve 
Representation" , IEEE Computer Graphics 
and Applications Vol. 13(3), pp. 55-63, 
(May 1993) . 

[Herzen, Barr and Zatz 90] 
Brian Von Herzen , Alan H. Barr and Harold R. 
Zatz, "Geometric Collisions for Time 
Dependent Para metric Surfaces", Computer 
Graphics Vol. 24(4) , pp. 39-48 , (J uly 1990) . 

[Ihm and Naylor 91] 
Insung Ihm and Bruce Naylor, "Piecewise 
Linear Approximations of Curves with 
Applications," Proceeding of Computer 
Graph ics Internat ional '9 1, Spri nger- Verlag 
(June 1991 ) . 

[Joy and Bhetanabhotla 86] 
Kenneth I. Joy and Murthy N. Bhetanabhotla , 
"Ray Tracing Parametric Surface Patches 

53 

Utilizing Numerical Techniqu es and Ray 
Coherence", Computer Graphics Vol. 20(4) , 
pp . 279-285 , (Aug ust 1986). 

[Lane et al 80] 
Jeffery Lane , Loren Carpenter , Turner 
Whitted and James Blinn, "Scan Line Methods 
for Di s pl ay in g Para met ri ca ll y Defined 
Surfaces", CACM, Vol. 23(1) , (Jan. 1980). 

[Kajiya 82] 
James T . Kaj iya, "Ray Tracing Parametric 
Patches", Computer Graphics Vol. 16(3) , pp. 
245-254, (July 1982). 

[Naylor, Amanatides and Thibau lt 90] 
Bruce F. Naylor, John Amanatides and William 
C. Thibault, "Merging BSP Trees Yields 
Polyh edr a l Set Operations", Computer 
Graphics Vol. 24(4) , pp . 115-124, (A ugust 
1990 ) . 

[Naylor 93] 
Bru ce F. Naylor, "Const ru cting Good 
Parti tioning Trees" , Graphics Interface '93, 
Toronto CA, pp. 181 - 191 , (May 1993) . 

[Nishita, Sederberg and Kakimoto 90] 
Tomoyuki Nishita, Thomas W. Sederberg and 
Masanori Kakimoto, "Ray Tracing Trimmed 
Ra ti onal Surface Patches ", Co m put er 
Graphics Vol. 24(4), pp. 337-345, (August 
1990). 

[Snyder 92] 
John M. Snyder , "Interval Analysis for 
Computer Graphics ", Computer Graphics 
Vol. 26(2), pp . 121-130, (July 1992) . 

[Snyder and Kajiya 92] 
John M. Snyder and J ames T. Kajiya , 
"Generative Modeling: A Symbolic System fo r 
Geometric Modeling", Computer Graphics 
Vol. 26(2), pp. 369-378, (July 1992). 

[Toth 85 ] 
Danie l Toth , "On Ray Tracing Parametric 
Surfaces", Computer Graphics Vol. 19(3), 
pp. 171-179, (July 1985) . 

Graphics Interface '95 



54 

Figure 2 

Figure 1 

Above: A sample workspace shows an 
object being modeled. Its cross section, side 
view and axis are each being defined using 
quartic Bezier curves. 

Left: Bezier curve segments with inflections 
can appear in the cross section, as shown 
here, or in the side view or axis. 
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Figure 3 

Pumpkin and Radishes 
The radish tops were created separately from the bottoms and later joined to 
make the radish object. 

Figure 4 

Two Mushrooms 
The illustration of the sample workspace shows the mushroom object in the 
process of being created. 
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