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Abstract 

A data structure and a visibility preprocessing tech­
nique are introduced to assist in the manipulation 
and to accelerate the rendering of the primitives gen­
erated by a volumetric surface reconstruction algo­
rithm such as the Marching Cubes Algorithm . A 
view oriented traversal algorithm of the data struc­
ture is described . The traversal scheme allows the 
ordered display of semi-transparent surfaces. The 
rendering time of the isosurfaces is reduced by ap­
proximating the visibility of the intersected volume 
cells from a predefined set of viewpoints. Exper­
iments showed that rendering speedups of 2 to 5 
times are achieved on MRI and CT datasets . 

Keywords: Computer Graphics, Medical Imaging, 
Scientific Visualization, Geometric Modeling, Sur­
face Rendering. 

1 Introduction 

The field of Scientific Visualization is broad and 
encompasses different applications and techniques. 
One of the fast-growing areas in Scientific Visualiza­
tion is Volume Visualization. Volume Visualization 
can be broadly described as the visual interpretation 
of scalar or vector datasets defined on multidimen­
sional grids for the purpose of gaining insight into a 

"This work was supported in part by the National Univer­
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scientific problem. Currently, one major application 
area in this field is medical imaging, where volume 
data is generated from the X-ray Computer Tomog­
raphy (CT) scanners, the Positron Emission Tomog­
raphy (PET) scanners, and the Magnetic Resonance 
Imaging (MRI) devices. 

Computerized methods of visualizing volume data 
can be classified into direct and indirect approaches 
[7). The direct approaches, also known as volume 
rendering, refer to the methods that create images 
from the three-dimensional volume without generat­
ing intermediate geometric representations. These 
are usually done by casting rays from the view point 
onto each pixel and extrapolating the rays into the 
volume space (e.g. [6,9)). On the other hand, the in­
direct approaches construct the required isosurfaces, 
expressed in the form of an intermediate geometric 
representation, and generate images from the result­
ing geometric data. These include contour rendering 
(e.g. [15)) and surface rendering (e.g. [20, 10)) meth-
ods. . 

As discussed in [7), the major characteristics of the 
volume rendering approaches are the high quality 
resulting images and the relatively slower rendering 
time. This is in contrast to the major advantage of 
the surface rendering techniques where once the sur­
faces have been reconstructed , a high performance 
graphics works tat ion can be used to interactively 
control the visualization process. However, surface 
rendering algorithms often generate too many poly­
gons for interactive manipulations. For example, 
typically, the Marching Cubes Algorithm [10) gen-
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erates hundreds of thousands of triangles for isosur­
faces in medical datasets . This paper presents our 
work done in designing and implementing software 
techniques to accelerate the rendering process while 
providing both interactive control and preserving the 
fidelity of surface rendered images for 3D volume 
data. More specifically, we describe: 

1. A comprehensive set of data structures for ef­
ficient storage, traversal, and manipulation of 
isosurface primitives generated by the March­
ing Cubes Algorithm. 

2. A simple but effective scheme for rendering mul­
tiple semi-transparent surfaces. 

3. A visibility preprocessing algorithm that re­
duces the rendering time of opaque surfaces 
with minimum sacrifice in image quality. 

Although the discussions are based on the medical 
volume dataset, the algorithms introduced in this 
paper can be applied to any scalar and rectilinear 
volume datasets in general. 

This paper is organized as follows. The next sec­
tion discusses some of the issues involved in im­
plementing the Marching Cubes Algorithm (MeA) 
[10]. Section 3 introduces a data structure to store 
the primitives generated by the MeA. An efficient 
view oriented traversal of the data structure is then 
described. The traversal scheme enables the ren­
dering of single or multiple semi-transparent iso­
surfaces. Section 4 begins by discussing the pre­
vious approaches in visibility preprocessing and fol­
lows by describing our preprocessing technique. The 
results of applying our preprocessing technique are 
presented at the end of Section 4. 

2 The Marching Cubes Algo­
rithm (MCA) 

One of the most well known surface extraction algo­
rithms is the Marching Cubes Algorithm (MeA). 
This algorithm was independently reported by 
Wyvill, Mcpheeters, and Wyvill in 1986 [20] ; and 
by Lorensen and Cline in 1987 [10] . Please refer to 
[12] for a detailed evaluation of the algorithms. 

The MCA can be considered as a divide-and-conqu er 
approach that operates in two phases. In the first 

phase, a constant surface value (hence the term iso­
surface) is defined by the user and all the cubes 
(or voxels) that are intersected by the surface are 
found . We shall call this set of intersected cubes 
the boundary set. In the second phase, each cube 
in the boundary set is processed to produce a set of 
connected triangles. Triangle vertices are computed 
through linear interpolation along cube edges. 

An edge lookup table is usually used to assist the 
triangulation process [10]. Each boundary cube is 
indexed into the table to obtain (1) the number of 
triangles within the cube and (2) the cube edges in­
volved in each triangle. We have adopted Wyvill 
and Jevans's lookup table generation technique [19], 
where the triangulations are performed in a con­
sistent clockwise manner. This consistent vertex 
orientation is crucial for dealing with backfacing 
polygons, which can usually be omitted when ren­
dering topologic ally closed and opaque isosurfaces. 
However the back faces have to be properly illumi­
nated when (1) a surface is semi-transparent, (2) 
part of the surface has been intentionally removed or 
shifted, or (3) a surface is partially clipped . In such 
cases, we can visually differentiate between back and 
front faces by defining different material properties 
for them. 

3 Data Structures 

Conventionally, marching cubes produces a long list 
of triangles. This chain may be stored as indexed 
polygons . The idea is illustrated in Figure 1. 

Varr is a pool of floating point coordinates of ver­
tices and their normals for interpolative shading pur­
poses. Tarr is a simple chain of triangles produced 
during surface extraction. Each triangle has three 
vertices which are stored as integer offsets into Varr . 

This simple scheme of storing the triangles has its 
advantages. Its simplicity allows rapid traversal of 
the geometric database. This is especially impor­
tant when working with high-end graphics hardware 
architecture with efficient rendering pipelines. The 
storage scheme is also efficient because there is no 
red undancy in the vertices list. 

However, in many cases, this simple structure is in­
adequate. One example is when depth-wise traversal 
of the database is required (e.g . in rendering semi­
transparent surfaces). In such cases, some inten-
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Figure 1: A Simple Vertex Scheme. 

sive preprocessing and sorting must usually be per­
formed. For example , in [13] the A-buffer algorithm 
[4] was adopted to simulate semi-transparency. The 
computationally intensive pixel level clipping and 
depth sorting are the major drawbacks of this ap­
proach. Furthermore, a faithful implementation of 
the subpixel-level sampling required by the A-buffer 
algorithm is difficult to integrate in to an existing 
rendering hardware (e.g. the SGI architecture). 

One approach to avoid depth sorting is to recognize 
that the 3d grid space l presents a natural ordering 
of the triangles and to take advantage of this struc­
tural organization . With the 3d grid space, depth 
ordering can be easily determined from any given 
view point. 

3.1 Extended Data Structure 

Figure 2 depicts a data structure for the storage of 
the geometric database. This structure embeds the 
information about the grid-wise structural organiza­
tion of the volume space . It is essentially a 2-level 
structure where one level stores the spatial distribu­
tion of the boundary cubes set and the other stores 

1 Where the triangles were c rea ted and interpolated from . 
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Figure 2: Extended Data Structure. 
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the geometric description of the isosurface. At the 
higher-level, a cell-based spatial hierarchy represent­
ing the boundary set is constructed over the indexed 
polygon structure described in Figure 1. We retain 
the indexed polygon structure at the lower level to 
maintain the support for fast sequential traversal of 
the full set of geometric primitives. 

The extended data st ructure is constructed during 
the MCA process. The size of the slice array, Sarr, 
is equal to the number of slices of the volume data. 
Each element of Sarr has a pointer to an ID array 
(Rarr) of rows that are intersected by the isosur­
face. Each Rarr element has a row# to identify the 
row number within the slice, as well as an integer to 
store the number of cells in the row that are inter­
sected . Each Rarr element also contains a pointer 
to an ID array (Carr) of cells which the isosurface 
intersects. Each Carr element contains a cell# iden­
t ifier, the number of triangles generated in the cell, 
and an array of triangles, Tarr. The contents of Tarr 
and Varr is the same as in the simple vertex scheme 
where Varr st ill is a common pool of vertices that 
are shared among all the triangles. The arrays in 
the data structure (except Sarr) are dynamically al­
located during run-time, after their sizes have been 
determined. 

4
,,·,' 
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Figure 3: Extended Data Structure to support mul­
tiple isosurfaces. 

The extended data structure supports the storage 
of multiple isosurfaces where each surface is repre­
sented independently at a lower level by an indexed 
polygon structure. A single higher level spatial hi­
erarchy encapsulates and references to all the lower 
level geometric structures that describes each surface 
(see Figure 3). To distinguish the different surfaces 
at the higher level, each surface is assigned an unique 
identifier which is used in each element of Carr to in­
dex into the appropriate surface structure. 

The disadvantage of this structure is that the ad­
dition levels of indirection slows down the traversal 
process. However, from the following explanations, 
it would be clear that the flexibility derived out­
weighs the shortcomings. 

3.2 Depthwise Structure Traversal 

One major advantage of maintaining this more com­
plex data structure lies in its ability to support di­
rectional traversal. When using the simpler scheme 
(Figure 1), the geometric data can only be traversed 
either forward or backward. If the surface extraction 
scanned the volume space from the lowest cell coor­
dinate (0,0,0) to the largest cell coordinate (I, J, [(), 

. ' , 
. . 

then traversing Tarr forward will be equivalent to 
traversing the volume data from the cell coordinate 
(0,0,0) to the cell coordinate (I, J, K). Traversing 
Tarr backward would be equivalent to traversing the 
volume data from (I, J, K) to (0,0,0). Here, the 
traversal is always along the x direction first, fol­
lowed by the y and z directions. 

The extended data structure supports a traversal 
starting from any of the 8 end points of the volume 
data. By choosing a viewpoint nearest/farthest from 
a given viewpoint to begin the traversal, the method 
is equivalent to a front-ta-back/back-ta-front display 
of the geometric primitives contained in each cell. 

Our method of structure traversal is similar to the 
method of volume traverse described in [2]. The 
difference is that we are traversing a geometric 
database as oppose to scanning a volume space. To 
traverse the structure with increasing depth, we first 
determine the volume end point that is nearest to 
the current eye position (for decreasing depth, the 
farthest end point is determined) . This can be easily 
obtained by examining the line of sight vector with 
respect to the center of the volume space. 

More precisely, if point E is the eye point , C is the 
volume center and the line of sight vector V = E -C, 
then with reference to Figure 2, we will traverse the 
extended data structure in the following manner: 

if V.z > 0 then traverse Sarr from Smax to 0, else 
from 0 to Smax 

if V.y > 0 then traverse Rarr from Rmax to 0, else 
from 0 to Rmax 

if V.x > 0 then traverse Carr from Cmax to 0, else 
from 0 to Cmax 

This operation is only required to be performed once 
for each view. Beginning a traversal from the near­
est end point corresponds to a front-ta-back traver­
sal, and traversal from the farthest end point cor­
responds to a back-ta-front traversal. In the case 
when there are two near endpoints at an equal dis­
tance from the view point (e.g. when viewing along 
an orthogonal axis of the volume space), one is cha­
sen arbitrarily. 

A depthwise display of primitives has many advan­
tages. Firstly, a front-ta-back display method will 
definitely result in less pixels and z-buffer updates . 
However, this advantage may not be obvious when 
specialized graphics pipelined architecture is used. 

~
.- .. 
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A front-to-back traversal would certa inly improve 
the rendering time if no speciali zed graphics hard­
ware is used . Secondly, a back-to-front depth-wise 
traversal allows the user to observe the image as it is 
being generated . This enables the user to examine 
structures that are not visible in the final image. A 
third and more important advantage is in the dis­
playing of semi-transparent isosurfaces. 

3.3 Semi-Transparency 

The transparent attribute of surfaces is commonly 
referred to as its alpha component [4] . In general, to 
correctly render non-opaque surfaces, the primitives 
must be presented in a back-to-front order (e.g. the 
SGI architecture [16, pp. 15-17]) . Intensities and al­
pha accumulations are performed through an appro­
priate blending function . With our data structures 
and the depth wise traversal scheme, transparency 
rendering is supported naturally. 

Another simple way of simulating semi-transparency 
of multiple surfaces is to render each surface indi­
vidually onto different im ages and then combine the 
images pixel-by-pixel based on their corresponding 
depth and alpha values (e.g. [14 , 11]) . However this 
would result in incorrect im ages if a line of sight in­
tersects multiple points on the same surface. 

It is important to note that the traversal scheme 
only ensures a back-to-front ordered display of spa­
tial boundary cells . If a cell contains more than 1 
disjoint surface pieces , the order in which these dis­
joint polygons are presented may not necessarily be 
in a back-to-front order. In our implementation , if a 
cube contains more than one disjoint polygons, we 
will simply render them in the order in which they 
are stored. This defect may result in erroneous im­
ages. However , the error is not significant due to 
the small size of the polygons and that the number 
of disjoint polygons within a cube is usually one. 
From our experience, this has not caused any visu­
ally significant erroneous output . 

4 Visibility Preprocessing 

"Brute-force" surface reconstruction a lgori thms 
such as the MCA produces a large number of ge­
ometric primitives. When rendering as opaque sur­
faces, many of these primitives lies within t he outer 
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surfaces and hence will not contribute to the final 
image. From experience, it is found that, on the 
average, only about half of the outer surfaces are 
visible with any given viewing position . Our prepro­
cessing approach eliminates the need to render most 
of these hidden polygons. A simple backface polygon 
culling will not remove the internal front facing poly­
gons that are hidden from the view point. Moreover, 
in cases where the surface topology is intentionally 
made open (e.g. in cutting operations), backface 
polygon culling techniques will result in holes in the 
Images. 

4.1 Background 

The idea of visibility preprocessing to reduce render­
ing time is not new. Recently, Airey et. al [1], and 
Teller and Sequin [17] discussed approaches to build­
ing visibility structures to assist the pruning of the 
non-visible portions of a geometric database to sup­
port an interactive building walk through. Although 
we are also reducing the number of primitives to be 
rendered for any given viewing position, our problem 
is simpler because the degree of freedom associated 
with our viewing position is more restricted. In or­
der to support a realistic interactive building walk 
through, a system must allow the viewing position to 
be translated and rotated freely within the geomet­
ric database. However, in volume visualization, the 
database is typically examined from outside of the 
volume space and thus on ly the rotation of the view­
ing position is of primary importance. Both of the 
above building walk through systems assumed a hu­
man designed structure, where a building is divided 
into floors by ceilings, and there are walls dividing 
7'00111S on each floor, etc . These visibility occluding 
dividers (i.e . the ceilings and walls) are conveniently 
chosen to partition the database into visibly-disjoint 
units . In this way, a large portion of the non-visible 
da tabase could be pruned during run time, and thus 
significantly reduce the rendering time. Our prob­
lem is more difficult because the MCA generated 
pr imitives a re randomly distributed in the volume 
space, as a result there are no natural visibility oc­
cluding dividers in our database . 

l~ o l ey et. a l. [8], and Chen and Williams [5] proposed 
the orthogonal approaches to solving the problem. 
Instead of pruning the databases during run time, 
t hey generated images from a set of pre-defined view­
ing positions in the preprocessing stage. These pre­
generated images are interpolated to approximate 
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the images associated with any other viewing posi­
tion . These approaches can be considered to be simi­
lar to that of the 2D image metamorphosis work (e.g. 
[3]), where the source and the destination images are 
given and the algorithms approximate an in-between 
image. Chen and Williams's [5] work limited the 
movement of the viewing position and concentrated 
on the visual realism (e.g. motion blurring, shadow­
ing, etc.) . 

Foley et. al. [8] implemented the idea to animate 
and simulate interactive volume rendering where 38 
viewing positions were selected at different locations 
on a sphere surrounding the volume space. The po­
sitions were selected by uniformly triangulating the 
surface of the sphere . This was done such that the 
area of each triangle is roughly equal. In their ap­
proach , the preprocessing is very costly because a 
full ray-casting volume rendition must be performed 
for each of the pre-defined viewpoint. The prepro­
cessing stage took several hours on a Cray super­
computer and more than a day on a workstation 
[8] . Besides the large disk space that are required 
to store the pre-generated images, one other ma­
jor shortcoming of their approach is th at it is not 
possible to incrementally improve the quality of an 
interpolated image over time. 

4.2 Basic Idea 

We have combined the above two approaches and 
constructed visibility data structures from a set of 
pre-defined viewing positions. In this way, the num­
ber of primitives to be rendered for any given view­
point is reduced to approximate the actual visible 
set . Our work is very much inspired by Foley et. al. 
[8], where we first determine the visible cells from 
a number of pre-defined viewpoints . Then, given 
any arbitrary viewpoint, the corresponding image 
can be approximated by rendering only the sum (set 
Union) of the surfaces visible from the pre-processed 
viewpoints that bound the given viewpoint . Unlike 
[8], we have selected 26 predefined viewpoints dis­
tributed around the center of the volume on a unit 
sphere. These viewpoints correspond to unit vector 
directing towards the origin from: (1) the 8 corners 
of the volume, (2) the center positions of the 6 fa.ces, 
and (3) the mid-points of the 12 volume edges. 

The visibility of the cells are determined with the 
splatting approach [18] where each cell is classified as 
visible if any of its vertex is visible. The visibility can 

be easily determined for the 26 pre-defined viewing 
positions. This is because when the volume space 
is viewed with a parallel projection, parallel lines of 
the cell vertices that are perpendicular to the image 
plane are formed . Since each line of the cell vertices 
projects onto a single position, a cell-vertex buffer 
can be created to determine the visibility of the cells 
easily. 

4.3 Cell Visibility Preprocessing 

In order to determine which are the visible trian­
gles from a predefined viewpoint, the easiest way is 
to render the entire scene from that viewpoint and 
record the triangles that made a contribution to the 
final image. This would imply that the entire scene 
must be rendered 26 times during the preprocessing 
stage. To reduce the preprocessing time, we have 
implemented a splatting procedure (similar to that 
of [18]) to approximate the visibility : 

void preprocessO 
For each predefined viewpoint 

Clear the cell-vertex buffer 
Traverse data structure from front-to-back 
for each non-empty cell 

Splat cell onto cell-vertex buffer 
If all +ve vertices splat to non-empty 
cell-vertex positions 

Clea.r Bit: NOT visible from viewpoint 
else 

Mark Bit : Cell is visible 

The cell-vertex buffer is similar to a frame buffer 
but instead of a 2D array of pixels, we have a 2D 
boolean array representing the visibility of the cell 
vertices. The buffer is initially cleared . As cells are 
splatted (or projected) onto the buffer in a front-to­
back manner, elements in the buffer are marked to 
indicate that they have been covered by the cells. If 
all of the cell-vertex positions that a cell splats onto 
have been previously marked , then the cell is consid­
ered to be not visible from that particular viewpoint . 
It is important that the cells are splatted in a front­
to-back manner. This is to ensure that the closer 
cells are upd ated on the cell-vertex buffer before the 
fur ther ones. 

The splatti ng of each cell is efficiently achieved 
through bit-operations using the 8-bit cell index pro­
duced (as a by-product) by the MCA. This index is 
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originally used as an offset into the edge look-up ta­
ble during the triangulation process. We have found 
other uses for it here. Thus no overhead is incurred 
during the preprocessing to obtain this index. Re­
call that the 8-bit index is generated in the MCA 
by comparing each cell vertex's density value with 
a user-defined threshold value. A "1" (or +ve) is 
set at the corresponding bit position if the density is 
higher than the threshold, a "0" (or -ve) otherwise. 
When a cell is splatted onto the buffer, we exam­
ine if all of the +ve vertices have been covered. If 
they are, then we consider the cell (or the triangles 
in the cell) to be hidden by other cells nearer to the 
viewpoint. 

To maintain the visibility information of each cell, 
we store a 26-bit code (in a 4 byte integer) in each 
cell (i.e. in each array element of Carr) within the 
data structure. Each bit represents the cell visibility 
in the corresponding predefined viewpoint. We shall 
call this code a vcode (visibility code). The vcode is 
used during rendering to quickly determine the cell's 
visibility from the current viewpoint. 

4.4 Faster Rendering 

When rendering a scene from a given viewpoint, the 
4 bounding predefined viewpoints and their posi­
tions in the vcode are determined. A 26-bit mask 
code (mcode) is formed by setting ones in all the 
4 bit positions and zeros elsewhere. During render­
ing, every cell in the higher level of the extended 
data structure is examined by performing a bitwise 
"AND" operation between the vcode and the mcode 
to determine the cell's visibility. A cell is visible if 
the result of the "AND" operation is non-zero. Intu­
itively this would mean that the cell is visible from 
one or more of the bounding viewpoints . If a cell is 
determined to be visible, all the primitives contained 
within the cell are rendered in the order which they 
are stored. 

4.5 Results 

We tested our algorithm on an MIU dataset with 
109 slices and on a CT dataset with 113 slices. The 
dimensions of the slices of both datasets are 128 by 
128. The rendering resu lt.s before and after display 
preprocessing are tabulated in Table 1. Timings in­
dicated are in real-time (seconds) and are bench-
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marked on a SGI Indigo Elan with 32 MBytes of 
main memory. 

Unlike [8] where preprocessing takes up more than a 
day on a workstation (38 views of 500x500 images), 
our preprocessing requires only 1 to 2 seconds per 
viewpoint, a total of less than a minute for typical 
isosurfaces, and is independent of the image size. 

Obviously, the actual achievable speedup depends 
on the surface complexity. In some cases, a speed up 
of almost 6 times were observed. This is commonly 
the case in the high-resolution MRI images when a 
threshold value of the extracted surfaces corresponds 
to many structures within the volume. For example 
the threshold value for skin also corresponds to many 
other internal tissues. 

As illustrated in Table 1, for the MRI skin surface, 
on the average, only 12% of the cells are visible 
from each of the predefined view point. We use a 
semi-transparent view of the skin surface to explain 
the situation: The correct semi-transparent view 
in Plate A shows many internal structures having 
the same surface density as the skin surface. Al­
though constructed in the surface extraction stage 
these surfaces are never visible in an opaque view 
(Plate B). By omitting these surfaces and the back­
facing surfaces, only 17% of the cells' primitives are 
rendered (Plate e). This results in an average ren­
dering speedup of 5.7 times. On eT datasets, we 
have experience an average speedups of 2-4 times 
(Plate D). 

We note that the rendering speed up is slightly less 
than the reduction of cells rendered. For example, 
for the MRI skin surface, there is an average of 7.4 
times reduction in the cells rendered whereas the 
rendering speedup factor is 5.7 times. This is due to 
the overheads involved in (1) run-time visibility de­
termination of cells, and (2) the additional indirec­
tions in structure traversal (the full rendering tra­
verses only the lower level indexed polygon struc­
ture). 

We caution that this technique is only relevant in 
the displaying of opaque surfaces. When displaying 
semi-transparent surfaces, almost all triangles make 
contributions to the final image. Hence visibility de­
termination would be incorrect and irrelevant. We 
have intentionally rendered such incorrect images to 
illustrate the bulk of polygons that would not have 
been rendered during display (Plate e and D). No­
tice that the "far" side of the surface and the internal 
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Volume Data CT (128xI28x113) MRI (128xI28xl09) 11 

Bone Skin Skin Brain 11 

Threshold Value 0.58 0.19 0.14 0.31 
Surface Extraction Time (Secs) 66.32 68.01 95.85 62 .70 
Number of Triangles 211,114 234,490 434,724 202,802 
Number of Intersected Cells 104,273 116,168 207 ,993 97,737 
A vg. Visible Cells 25.35% 32 .97% 13.49% 20.29% 
Min. Visible Cells 30% 37% 12% 33% 
Max. Visible Cells 50% 64% 23% 39% 
Pre-Processing Time (Secs) 28.39 33.04 67.31 27.12 
Full Rendering Time (Secs) 9.42 10.2 19.53 9.19 
New Rendering Time (Secs) 3.77 5.1 3.41 3.31 
Speedup 2.5 1.98 5.7 2.7 

Table 1: Performance and Analysis of Visibility Preprocessing 

structures were not rendered . 

It is very important to note that in some cases, 
the visible primitives from the four nearest precom­
puted viewpoints may not include all visible primi­
tives from the current viewpoint. For example, when 
visualizing the ear canal, some triangles in the canal 
would only be visible from a specific viewpoint and 
not from the four nearest precomputed viewpoints. 

5 Conclusion 

We have introduced (1) a data structure to orga­
nize the geometric results of an isosurface extraction 
from volume data, (2) a simple and effective depth­
wise traversal scheme of the data structure, (3) a 
scheme to render multiple semi-transparent isosur­
faces, and (4) a visibility preprocessing approach to 
accelerate the rendering of opaque and topologically 
closed isosurfaces. We have experienced speedups of 
2 to 5 times for high resolution medical datasets . 

Although our work is based on the MCA, the visibil­
ity preprocessing idea is applicable in general to any 
polygonizer. The limitations of the visibility prepro­
cessing approach are that it does not support semi­
transparent surfaces, and more importantly, the ap­
proach does not guarantee that all visible triangles 
will be displayed . During interactive manipulation, 
the visibility preprocessing approach supports the 
rapid displaying of a good app1'Oximatioll. After the 
desired viewpoint and orientation are determined, a 

full scale detailed rendering should be carried out. 
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Visibility preprocessing: (A) MRI semi-transparent skin surface, rendered with full set of primitives; (B) To 
illustrate the internal structures extracted in MeA that are not normally visible in an opaque closed surface. 

Incorrect semi-transparent surfaces to illustrate the bulk of primitives that are not rendered after visibility 
preprocessing. (e) MRI skin surface, compare this with Plate A which shows the correct semi-transparent 
view; (D) eT skin surface, compare with Plate A which shows the correct semi-transparent view. 
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