
65

Interactive Surface Rendering for Medical
Visualization*

Anthony Fang l Kelvin Sung2 Heng Pheng-Ann l

1 Institute of Systems Science
National University of Singapore

e-mail: {chJanglpheng} @iss.nus .sg

2Department of Information Systems and Computer Science
National University of Singapore

e-mail: ksung@iscs.nus.sg

Abstract

A data structure and a visibility preprocessing tech­
nique are introduced to assist in the manipulation
and to accelerate the rendering of the primitives gen­
erated by a volumetric surface reconstruction algo­
rithm such as the Marching Cubes Algorithm . A
view oriented traversal algorithm of the data struc­
ture is described . The traversal scheme allows the
ordered display of semi-transparent surfaces. The
rendering time of the isosurfaces is reduced by ap­
proximating the visibility of the intersected volume
cells from a predefined set of viewpoints. Exper­
iments showed that rendering speedups of 2 to 5
times are achieved on MRI and CT datasets .

Keywords: Computer Graphics, Medical Imaging,
Scientific Visualization, Geometric Modeling, Sur­
face Rendering.

1 Introduction

The field of Scientific Visualization is broad and
encompasses different applications and techniques.
One of the fast-growing areas in Scientific Visualiza­
tion is Volume Visualization. Volume Visualization
can be broadly described as the visual interpretation
of scalar or vector datasets defined on multidimen­
sional grids for the purpose of gaining insight into a

"This work was supported in part by the National Univer­
sity of Singapore unde r grant RP9306 16.

scientific problem. Currently, one major application
area in this field is medical imaging, where volume
data is generated from the X-ray Computer Tomog­
raphy (CT) scanners, the Positron Emission Tomog­
raphy (PET) scanners, and the Magnetic Resonance
Imaging (MRI) devices.

Computerized methods of visualizing volume data
can be classified into direct and indirect approaches
[7). The direct approaches, also known as volume
rendering, refer to the methods that create images
from the three-dimensional volume without generat­
ing intermediate geometric representations. These
are usually done by casting rays from the view point
onto each pixel and extrapolating the rays into the
volume space (e.g. [6,9)). On the other hand, the in­
direct approaches construct the required isosurfaces,
expressed in the form of an intermediate geometric
representation, and generate images from the result­
ing geometric data. These include contour rendering
(e.g. [15)) and surface rendering (e.g. [20, 10)) meth-
ods. .

As discussed in [7), the major characteristics of the
volume rendering approaches are the high quality
resulting images and the relatively slower rendering
time. This is in contrast to the major advantage of
the surface rendering techniques where once the sur­
faces have been reconstructed , a high performance
graphics works tat ion can be used to interactively
control the visualization process. However, surface
rendering algorithms often generate too many poly­
gons for interactive manipulations. For example,
typically, the Marching Cubes Algorithm [10) gen-

Graphics Interface '95

66

erates hundreds of thousands of triangles for isosur­
faces in medical datasets . This paper presents our
work done in designing and implementing software
techniques to accelerate the rendering process while
providing both interactive control and preserving the
fidelity of surface rendered images for 3D volume
data. More specifically, we describe:

1. A comprehensive set of data structures for ef­
ficient storage, traversal, and manipulation of
isosurface primitives generated by the March­
ing Cubes Algorithm.

2. A simple but effective scheme for rendering mul­
tiple semi-transparent surfaces.

3. A visibility preprocessing algorithm that re­
duces the rendering time of opaque surfaces
with minimum sacrifice in image quality.

Although the discussions are based on the medical
volume dataset, the algorithms introduced in this
paper can be applied to any scalar and rectilinear
volume datasets in general.

This paper is organized as follows. The next sec­
tion discusses some of the issues involved in im­
plementing the Marching Cubes Algorithm (MeA)
[10]. Section 3 introduces a data structure to store
the primitives generated by the MeA. An efficient
view oriented traversal of the data structure is then
described. The traversal scheme enables the ren­
dering of single or multiple semi-transparent iso­
surfaces. Section 4 begins by discussing the pre­
vious approaches in visibility preprocessing and fol­
lows by describing our preprocessing technique. The
results of applying our preprocessing technique are
presented at the end of Section 4.

2 The Marching Cubes Algo­
rithm (MCA)

One of the most well known surface extraction algo­
rithms is the Marching Cubes Algorithm (MeA).
This algorithm was independently reported by
Wyvill, Mcpheeters, and Wyvill in 1986 [20] ; and
by Lorensen and Cline in 1987 [10] . Please refer to
[12] for a detailed evaluation of the algorithms.

The MCA can be considered as a divide-and-conqu er
approach that operates in two phases. In the first

phase, a constant surface value (hence the term iso­
surface) is defined by the user and all the cubes
(or voxels) that are intersected by the surface are
found . We shall call this set of intersected cubes
the boundary set. In the second phase, each cube
in the boundary set is processed to produce a set of
connected triangles. Triangle vertices are computed
through linear interpolation along cube edges.

An edge lookup table is usually used to assist the
triangulation process [10]. Each boundary cube is
indexed into the table to obtain (1) the number of
triangles within the cube and (2) the cube edges in­
volved in each triangle. We have adopted Wyvill
and Jevans's lookup table generation technique [19],
where the triangulations are performed in a con­
sistent clockwise manner. This consistent vertex
orientation is crucial for dealing with backfacing
polygons, which can usually be omitted when ren­
dering topologic ally closed and opaque isosurfaces.
However the back faces have to be properly illumi­
nated when (1) a surface is semi-transparent, (2)
part of the surface has been intentionally removed or
shifted, or (3) a surface is partially clipped . In such
cases, we can visually differentiate between back and
front faces by defining different material properties
for them.

3 Data Structures

Conventionally, marching cubes produces a long list
of triangles. This chain may be stored as indexed
polygons . The idea is illustrated in Figure 1.

Varr is a pool of floating point coordinates of ver­
tices and their normals for interpolative shading pur­
poses. Tarr is a simple chain of triangles produced
during surface extraction. Each triangle has three
vertices which are stored as integer offsets into Varr .

This simple scheme of storing the triangles has its
advantages. Its simplicity allows rapid traversal of
the geometric database. This is especially impor­
tant when working with high-end graphics hardware
architecture with efficient rendering pipelines. The
storage scheme is also efficient because there is no
red undancy in the vertices list.

However, in many cases, this simple structure is in­
adequate. One example is when depth-wise traversal
of the database is required (e.g . in rendering semi­
transparent surfaces). In such cases, some inten-

Graphics Interface '95

Tarr, Triangles Array

o iN vl ,v2,v3

1 iN vl,v2,v3

2 iN vl,v2,v3

3 iN vl,v2,v3

i

I
iN vl ,v2 ,v3

({vl ,v2,v3) are iNeger
offsets to tM Varr array.)

Va", Vertices Array

o double x,y,:,
Nx,Ny,Nr

double x,y,z,
Nx,Ny,Nz

double x,y,z,
Nx,Ny,Nz

2

double x,y,:,
Nx,Ny,N:

3

I

!
V double x,y,:,

Nx,Ny,Nz

({x,y,:) is tM vertex position
in world coordifllJtes; {Nx,Ny,Nz} is
the vertex gradieN norfl1il/.J

Figure 1: A Simple Vertex Scheme.

sive preprocessing and sorting must usually be per­
formed. For example , in [13] the A-buffer algorithm
[4] was adopted to simulate semi-transparency. The
computationally intensive pixel level clipping and
depth sorting are the major drawbacks of this ap­
proach. Furthermore, a faithful implementation of
the subpixel-level sampling required by the A-buffer
algorithm is difficult to integrate in to an existing
rendering hardware (e.g. the SGI architecture).

One approach to avoid depth sorting is to recognize
that the 3d grid space l presents a natural ordering
of the triangles and to take advantage of this struc­
tural organization . With the 3d grid space, depth
ordering can be easily determined from any given
view point.

3.1 Extended Data Structure

Figure 2 depicts a data structure for the storage of
the geometric database. This structure embeds the
information about the grid-wise structural organiza­
tion of the volume space . It is essentially a 2-level
structure where one level stores the spatial distribu­
tion of the boundary cubes set and the other stores

1 Where the triangles were c rea ted and interpolated from .

.' , . ' . ~

, '

o

J

StIlT, SlicfI Ami'

iN '0'MI6
-Ra"

R",,-, Row ArN,
o I

iN coli' o illl,.1UftUi
*TarT

iltlcall'
ill'It",","
-TafT

ill/cflllII
CIPttU i1l"u.,,,,,.;

·Ton-

s;",p. V."u Se,,"­

(A' illrulTtJI.d u.
Fi, I)

(uU' il Ut. cell x-coordiltal ••
1Il1ntlri is iJt. NWfIhcr of
lriallg/cs, ·/7; is a dn7 of
i/u.,., 0/1." ID T4IT.

Figure 2: Extended Data Structure.

67

the geometric description of the isosurface. At the
higher-level, a cell-based spatial hierarchy represent­
ing the boundary set is constructed over the indexed
polygon structure described in Figure 1. We retain
the indexed polygon structure at the lower level to
maintain the support for fast sequential traversal of
the full set of geometric primitives.

The extended data st ructure is constructed during
the MCA process. The size of the slice array, Sarr,
is equal to the number of slices of the volume data.
Each element of Sarr has a pointer to an ID array
(Rarr) of rows that are intersected by the isosur­
face. Each Rarr element has a row# to identify the
row number within the slice, as well as an integer to
store the number of cells in the row that are inter­
sected . Each Rarr element also contains a pointer
to an ID array (Carr) of cells which the isosurface
intersects. Each Carr element contains a cell# iden­
t ifier, the number of triangles generated in the cell,
and an array of triangles, Tarr. The contents of Tarr
and Varr is the same as in the simple vertex scheme
where Varr st ill is a common pool of vertices that
are shared among all the triangles. The arrays in
the data structure (except Sarr) are dynamically al­
located during run-time, after their sizes have been
determined.

4
,,·,'

:; .. Graphics Interface '95

68

SlUT, Slice ArMY

CIVr, C"lu ATT4I)I

iIIIeellll ° illt _ri/O .. S-I)
·TIUT/O . .s-I)

1

2

J

iII/eellll
ill/IIW1Vri/O .. S-I)
·TIUT/O . .s -I)

ill/eellll
ill/IIW1Vri/O .. S-I)
·TIUT/O . .s-I)

iII/eellll
ill/_ri/O .. S-I)
·TIUT/O . .s-I)

illteellll
illt IIWmJri/O .. S-I)
-TIUT/O . .s-I)

Simple V"nu Se/te"",

(As iIIws/raJed ill
Figwre I)

Simple Ver~" Scheme

(As iIIWSlTaJed ill
Figwn I)

Figure 3: Extended Data Structure to support mul­
tiple isosurfaces.

The extended data structure supports the storage
of multiple isosurfaces where each surface is repre­
sented independently at a lower level by an indexed
polygon structure. A single higher level spatial hi­
erarchy encapsulates and references to all the lower
level geometric structures that describes each surface
(see Figure 3). To distinguish the different surfaces
at the higher level, each surface is assigned an unique
identifier which is used in each element of Carr to in­
dex into the appropriate surface structure.

The disadvantage of this structure is that the ad­
dition levels of indirection slows down the traversal
process. However, from the following explanations,
it would be clear that the flexibility derived out­
weighs the shortcomings.

3.2 Depthwise Structure Traversal

One major advantage of maintaining this more com­
plex data structure lies in its ability to support di­
rectional traversal. When using the simpler scheme
(Figure 1), the geometric data can only be traversed
either forward or backward. If the surface extraction
scanned the volume space from the lowest cell coor­
dinate (0,0,0) to the largest cell coordinate (I, J, [(),

. ' ,
. .

then traversing Tarr forward will be equivalent to
traversing the volume data from the cell coordinate
(0,0,0) to the cell coordinate (I, J, K). Traversing
Tarr backward would be equivalent to traversing the
volume data from (I, J, K) to (0,0,0). Here, the
traversal is always along the x direction first, fol­
lowed by the y and z directions.

The extended data structure supports a traversal
starting from any of the 8 end points of the volume
data. By choosing a viewpoint nearest/farthest from
a given viewpoint to begin the traversal, the method
is equivalent to a front-ta-back/back-ta-front display
of the geometric primitives contained in each cell.

Our method of structure traversal is similar to the
method of volume traverse described in [2]. The
difference is that we are traversing a geometric
database as oppose to scanning a volume space. To
traverse the structure with increasing depth, we first
determine the volume end point that is nearest to
the current eye position (for decreasing depth, the
farthest end point is determined) . This can be easily
obtained by examining the line of sight vector with
respect to the center of the volume space.

More precisely, if point E is the eye point , C is the
volume center and the line of sight vector V = E -C,
then with reference to Figure 2, we will traverse the
extended data structure in the following manner:

if V.z > 0 then traverse Sarr from Smax to 0, else
from 0 to Smax

if V.y > 0 then traverse Rarr from Rmax to 0, else
from 0 to Rmax

if V.x > 0 then traverse Carr from Cmax to 0, else
from 0 to Cmax

This operation is only required to be performed once
for each view. Beginning a traversal from the near­
est end point corresponds to a front-ta-back traver­
sal, and traversal from the farthest end point cor­
responds to a back-ta-front traversal. In the case
when there are two near endpoints at an equal dis­
tance from the view point (e.g. when viewing along
an orthogonal axis of the volume space), one is cha­
sen arbitrarily.

A depthwise display of primitives has many advan­
tages. Firstly, a front-ta-back display method will
definitely result in less pixels and z-buffer updates .
However, this advantage may not be obvious when
specialized graphics pipelined architecture is used.

~
.- ..

. ';'. Graphics Interface '95

A front-to-back traversal would certa inly improve
the rendering time if no speciali zed graphics hard­
ware is used . Secondly, a back-to-front depth-wise
traversal allows the user to observe the image as it is
being generated . This enables the user to examine
structures that are not visible in the final image. A
third and more important advantage is in the dis­
playing of semi-transparent isosurfaces.

3.3 Semi-Transparency

The transparent attribute of surfaces is commonly
referred to as its alpha component [4] . In general, to
correctly render non-opaque surfaces, the primitives
must be presented in a back-to-front order (e.g. the
SGI architecture [16, pp. 15-17]) . Intensities and al­
pha accumulations are performed through an appro­
priate blending function . With our data structures
and the depth wise traversal scheme, transparency
rendering is supported naturally.

Another simple way of simulating semi-transparency
of multiple surfaces is to render each surface indi­
vidually onto different im ages and then combine the
images pixel-by-pixel based on their corresponding
depth and alpha values (e.g. [14 , 11]) . However this
would result in incorrect im ages if a line of sight in­
tersects multiple points on the same surface.

It is important to note that the traversal scheme
only ensures a back-to-front ordered display of spa­
tial boundary cells . If a cell contains more than 1
disjoint surface pieces , the order in which these dis­
joint polygons are presented may not necessarily be
in a back-to-front order. In our implementation , if a
cube contains more than one disjoint polygons, we
will simply render them in the order in which they
are stored. This defect may result in erroneous im­
ages. However , the error is not significant due to
the small size of the polygons and that the number
of disjoint polygons within a cube is usually one.
From our experience, this has not caused any visu­
ally significant erroneous output .

4 Visibility Preprocessing

"Brute-force" surface reconstruction a lgori thms
such as the MCA produces a large number of ge­
ometric primitives. When rendering as opaque sur­
faces, many of these primitives lies within t he outer

69

surfaces and hence will not contribute to the final
image. From experience, it is found that, on the
average, only about half of the outer surfaces are
visible with any given viewing position . Our prepro­
cessing approach eliminates the need to render most
of these hidden polygons. A simple backface polygon
culling will not remove the internal front facing poly­
gons that are hidden from the view point. Moreover,
in cases where the surface topology is intentionally
made open (e.g. in cutting operations), backface
polygon culling techniques will result in holes in the
Images.

4.1 Background

The idea of visibility preprocessing to reduce render­
ing time is not new. Recently, Airey et. al [1], and
Teller and Sequin [17] discussed approaches to build­
ing visibility structures to assist the pruning of the
non-visible portions of a geometric database to sup­
port an interactive building walk through. Although
we are also reducing the number of primitives to be
rendered for any given viewing position, our problem
is simpler because the degree of freedom associated
with our viewing position is more restricted. In or­
der to support a realistic interactive building walk
through, a system must allow the viewing position to
be translated and rotated freely within the geomet­
ric database. However, in volume visualization, the
database is typically examined from outside of the
volume space and thus on ly the rotation of the view­
ing position is of primary importance. Both of the
above building walk through systems assumed a hu­
man designed structure, where a building is divided
into floors by ceilings, and there are walls dividing
7'00111S on each floor, etc . These visibility occluding
dividers (i.e . the ceilings and walls) are conveniently
chosen to partition the database into visibly-disjoint
units . In this way, a large portion of the non-visible
da tabase could be pruned during run time, and thus
significantly reduce the rendering time. Our prob­
lem is more difficult because the MCA generated
pr imitives a re randomly distributed in the volume
space, as a result there are no natural visibility oc­
cluding dividers in our database .

l~ o l ey et. a l. [8], and Chen and Williams [5] proposed
the orthogonal approaches to solving the problem.
Instead of pruning the databases during run time,
t hey generated images from a set of pre-defined view­
ing positions in the preprocessing stage. These pre­
generated images are interpolated to approximate

Graphics Interface '95

70

the images associated with any other viewing posi­
tion . These approaches can be considered to be simi­
lar to that of the 2D image metamorphosis work (e.g.
[3]), where the source and the destination images are
given and the algorithms approximate an in-between
image. Chen and Williams's [5] work limited the
movement of the viewing position and concentrated
on the visual realism (e.g. motion blurring, shadow­
ing, etc.) .

Foley et. al. [8] implemented the idea to animate
and simulate interactive volume rendering where 38
viewing positions were selected at different locations
on a sphere surrounding the volume space. The po­
sitions were selected by uniformly triangulating the
surface of the sphere . This was done such that the
area of each triangle is roughly equal. In their ap­
proach , the preprocessing is very costly because a
full ray-casting volume rendition must be performed
for each of the pre-defined viewpoint. The prepro­
cessing stage took several hours on a Cray super­
computer and more than a day on a workstation
[8] . Besides the large disk space that are required
to store the pre-generated images, one other ma­
jor shortcoming of their approach is th at it is not
possible to incrementally improve the quality of an
interpolated image over time.

4.2 Basic Idea

We have combined the above two approaches and
constructed visibility data structures from a set of
pre-defined viewing positions. In this way, the num­
ber of primitives to be rendered for any given view­
point is reduced to approximate the actual visible
set . Our work is very much inspired by Foley et. al.
[8], where we first determine the visible cells from
a number of pre-defined viewpoints . Then, given
any arbitrary viewpoint, the corresponding image
can be approximated by rendering only the sum (set
Union) of the surfaces visible from the pre-processed
viewpoints that bound the given viewpoint . Unlike
[8], we have selected 26 predefined viewpoints dis­
tributed around the center of the volume on a unit
sphere. These viewpoints correspond to unit vector
directing towards the origin from: (1) the 8 corners
of the volume, (2) the center positions of the 6 fa.ces,
and (3) the mid-points of the 12 volume edges.

The visibility of the cells are determined with the
splatting approach [18] where each cell is classified as
visible if any of its vertex is visible. The visibility can

be easily determined for the 26 pre-defined viewing
positions. This is because when the volume space
is viewed with a parallel projection, parallel lines of
the cell vertices that are perpendicular to the image
plane are formed . Since each line of the cell vertices
projects onto a single position, a cell-vertex buffer
can be created to determine the visibility of the cells
easily.

4.3 Cell Visibility Preprocessing

In order to determine which are the visible trian­
gles from a predefined viewpoint, the easiest way is
to render the entire scene from that viewpoint and
record the triangles that made a contribution to the
final image. This would imply that the entire scene
must be rendered 26 times during the preprocessing
stage. To reduce the preprocessing time, we have
implemented a splatting procedure (similar to that
of [18]) to approximate the visibility :

void preprocessO
For each predefined viewpoint

Clear the cell-vertex buffer
Traverse data structure from front-to-back
for each non-empty cell

Splat cell onto cell-vertex buffer
If all +ve vertices splat to non-empty
cell-vertex positions

Clea.r Bit: NOT visible from viewpoint
else

Mark Bit : Cell is visible

The cell-vertex buffer is similar to a frame buffer
but instead of a 2D array of pixels, we have a 2D
boolean array representing the visibility of the cell
vertices. The buffer is initially cleared . As cells are
splatted (or projected) onto the buffer in a front-to­
back manner, elements in the buffer are marked to
indicate that they have been covered by the cells. If
all of the cell-vertex positions that a cell splats onto
have been previously marked , then the cell is consid­
ered to be not visible from that particular viewpoint .
It is important that the cells are splatted in a front­
to-back manner. This is to ensure that the closer
cells are upd ated on the cell-vertex buffer before the
fur ther ones.

The splatti ng of each cell is efficiently achieved
through bit-operations using the 8-bit cell index pro­
duced (as a by-product) by the MCA. This index is

Graphics Interface '95

originally used as an offset into the edge look-up ta­
ble during the triangulation process. We have found
other uses for it here. Thus no overhead is incurred
during the preprocessing to obtain this index. Re­
call that the 8-bit index is generated in the MCA
by comparing each cell vertex's density value with
a user-defined threshold value. A "1" (or +ve) is
set at the corresponding bit position if the density is
higher than the threshold, a "0" (or -ve) otherwise.
When a cell is splatted onto the buffer, we exam­
ine if all of the +ve vertices have been covered. If
they are, then we consider the cell (or the triangles
in the cell) to be hidden by other cells nearer to the
viewpoint.

To maintain the visibility information of each cell,
we store a 26-bit code (in a 4 byte integer) in each
cell (i.e. in each array element of Carr) within the
data structure. Each bit represents the cell visibility
in the corresponding predefined viewpoint. We shall
call this code a vcode (visibility code). The vcode is
used during rendering to quickly determine the cell's
visibility from the current viewpoint.

4.4 Faster Rendering

When rendering a scene from a given viewpoint, the
4 bounding predefined viewpoints and their posi­
tions in the vcode are determined. A 26-bit mask
code (mcode) is formed by setting ones in all the
4 bit positions and zeros elsewhere. During render­
ing, every cell in the higher level of the extended
data structure is examined by performing a bitwise
"AND" operation between the vcode and the mcode
to determine the cell's visibility. A cell is visible if
the result of the "AND" operation is non-zero. Intu­
itively this would mean that the cell is visible from
one or more of the bounding viewpoints . If a cell is
determined to be visible, all the primitives contained
within the cell are rendered in the order which they
are stored.

4.5 Results

We tested our algorithm on an MIU dataset with
109 slices and on a CT dataset with 113 slices. The
dimensions of the slices of both datasets are 128 by
128. The rendering resu lt.s before and after display
preprocessing are tabulated in Table 1. Timings in­
dicated are in real-time (seconds) and are bench-

71

marked on a SGI Indigo Elan with 32 MBytes of
main memory.

Unlike [8] where preprocessing takes up more than a
day on a workstation (38 views of 500x500 images),
our preprocessing requires only 1 to 2 seconds per
viewpoint, a total of less than a minute for typical
isosurfaces, and is independent of the image size.

Obviously, the actual achievable speedup depends
on the surface complexity. In some cases, a speed up
of almost 6 times were observed. This is commonly
the case in the high-resolution MRI images when a
threshold value of the extracted surfaces corresponds
to many structures within the volume. For example
the threshold value for skin also corresponds to many
other internal tissues.

As illustrated in Table 1, for the MRI skin surface,
on the average, only 12% of the cells are visible
from each of the predefined view point. We use a
semi-transparent view of the skin surface to explain
the situation: The correct semi-transparent view
in Plate A shows many internal structures having
the same surface density as the skin surface. Al­
though constructed in the surface extraction stage
these surfaces are never visible in an opaque view
(Plate B). By omitting these surfaces and the back­
facing surfaces, only 17% of the cells' primitives are
rendered (Plate e). This results in an average ren­
dering speedup of 5.7 times. On eT datasets, we
have experience an average speedups of 2-4 times
(Plate D).

We note that the rendering speed up is slightly less
than the reduction of cells rendered. For example,
for the MRI skin surface, there is an average of 7.4
times reduction in the cells rendered whereas the
rendering speedup factor is 5.7 times. This is due to
the overheads involved in (1) run-time visibility de­
termination of cells, and (2) the additional indirec­
tions in structure traversal (the full rendering tra­
verses only the lower level indexed polygon struc­
ture).

We caution that this technique is only relevant in
the displaying of opaque surfaces. When displaying
semi-transparent surfaces, almost all triangles make
contributions to the final image. Hence visibility de­
termination would be incorrect and irrelevant. We
have intentionally rendered such incorrect images to
illustrate the bulk of polygons that would not have
been rendered during display (Plate e and D). No­
tice that the "far" side of the surface and the internal

Graphics Interface '95

72

Volume Data CT (128xI28x113) MRI (128xI28xl09) 11

Bone Skin Skin Brain 11

Threshold Value 0.58 0.19 0.14 0.31
Surface Extraction Time (Secs) 66.32 68.01 95.85 62 .70
Number of Triangles 211,114 234,490 434,724 202,802
Number of Intersected Cells 104,273 116,168 207 ,993 97,737
A vg. Visible Cells 25.35% 32 .97% 13.49% 20.29%
Min. Visible Cells 30% 37% 12% 33%
Max. Visible Cells 50% 64% 23% 39%
Pre-Processing Time (Secs) 28.39 33.04 67.31 27.12
Full Rendering Time (Secs) 9.42 10.2 19.53 9.19
New Rendering Time (Secs) 3.77 5.1 3.41 3.31
Speedup 2.5 1.98 5.7 2.7

Table 1: Performance and Analysis of Visibility Preprocessing

structures were not rendered .

It is very important to note that in some cases,
the visible primitives from the four nearest precom­
puted viewpoints may not include all visible primi­
tives from the current viewpoint. For example, when
visualizing the ear canal, some triangles in the canal
would only be visible from a specific viewpoint and
not from the four nearest precomputed viewpoints.

5 Conclusion

We have introduced (1) a data structure to orga­
nize the geometric results of an isosurface extraction
from volume data, (2) a simple and effective depth­
wise traversal scheme of the data structure, (3) a
scheme to render multiple semi-transparent isosur­
faces, and (4) a visibility preprocessing approach to
accelerate the rendering of opaque and topologically
closed isosurfaces. We have experienced speedups of
2 to 5 times for high resolution medical datasets .

Although our work is based on the MCA, the visibil­
ity preprocessing idea is applicable in general to any
polygonizer. The limitations of the visibility prepro­
cessing approach are that it does not support semi­
transparent surfaces, and more importantly, the ap­
proach does not guarantee that all visible triangles
will be displayed . During interactive manipulation,
the visibility preprocessing approach supports the
rapid displaying of a good app1'Oximatioll. After the
desired viewpoint and orientation are determined, a

full scale detailed rendering should be carried out.

Acknowledgments

With thanks to the reviewers for their detailed and
helpful comments; And to the University of North
Carolina at Chapel Hill for making the MRI and CT
datasets available through public domain.

References

[1) John M. Airey, John H. Rohlf, and Frederick
P. Brooks Jr. Towards image realism with in­
teractive update rates in complex virtual build­
ing environment. Computer Graphics, 24(2):41-
50, March 1990. ACM Workshop on Interactive
Graphics Proceedings.

[2) Doi Akio and Kiode Akio. A cell-traverse dis­
play algorithm for regular and rectilinear 3d
grid data. The journal of Visualization and
Computer Animation, 3:129-145, 1992.

[3) Thaddeus Beier and Shawn Neely. Feature
based image metamorphosis . Computer Graph­
ics, 26(2):35-42, 1992.

[4) Loren Carpenter. The a-buffer, an antialiased
hidden surface method. Computer Graphics,
18(3): 103- 108, July 1984. ACM Siggraph '84
Conference Proceedings.

Graphics Interface '95

[5] ShenChang Eric Chen and Lance Williams.
View interpolation for image synthesis . Com­
puter Graphics Proceedings, pages 279- 288,
1993. SIGGRAPH'93 Annual Conference Se­
ries .

[6] R.A . Drebin, L. Carpenter, and P. Hanra­
han. Volume rendering. Computer Graphics,
22(4) :65- 74,1988.

[7] T . Todd Elvins. A survey of algorithms
for volume visualization. Computer Graphics,
26(3) :194- 201, August 1992.

[8] Thomas A. Foley, David A. Lane, and Gre­
gory M. Nielson . Towards animating ray-traced
volume visualization . The Journal of Visualiza­
tion and Computer Animation, 1:2- 8, 1990.

[9] M. Levoy. Display of surfaces from volume
data. IEEE Computer Graphics and Applica­
tions , 8(3) :29-37, 1988.

[10] W.E. Lorensen and H.E. Cline. Marching cubes:
A high-resolution 3d surface construction algo­
rithm. Computer Graphics, 21(4), July 1987.

[11] Will aim E. Lorensen and Harvey E. Cline. Vol­
ume modeling. In Marc Levoy, editor , Tuto­
rial on Volume Visualization Algorithms. Visu­
alization '90, San Francisco, California, Octo­
ber 1990.

[12] Paul Ning and Jules Bloomenthal. An evalua­
tion of implicit surface tilers . IEEE Computer
Graphics and Applications, 13(6) :33-41 , 1993.

[13] Bradley A. Payne and Arthur W. Toga. Surface
mapping brain function on 3d models. IEEE
Computer Graphics and Applications, pages 33-
41, September 1990.

[14] Thomas Porter and Tom Duff. Compositing
digital images. Computer Graphics, 18(3) :253-
259, July 1984. ACM Siggraph '84 Conference
Proceedings.

[15] M.L. Rhodes and Yu-Ming I(uo. Simple three­
dimensional image synthesis techniques for se­
rial planes. SPIE Medica l Imaging Il,914: 1286-
1289, 1988.

[16] Silicon Graphics Computer Systems. Gmphics
Library Programming Guide. Silicon Graphics,
1991.

73

[17] Seth J. Teller and Carlo H. Sequin . Visibil­
ity preprocessing for interactive walkthroughs.
Computer Graphics, 25(4) :61- 69, July 1991.
ACM Siggraph '91 Conference Proceedings.

[18] Lee Westover. Footprint evaluation for volume
rendering . Computer Graphics, 24(4):367-376 ,
August 1990.

[19] B. Wyvill and D. Jevans. Table driven polygo­
nization. Modeling and Animating with implicit
Surfaces, August 1990. SIGGRAPH '90 Course
Notes 23 .

[20] G. Wyvill , C. McPheeters, and B. Wyvill . Data
structure for soft objects. The Visual Com­
puter, 2(4) :227-234, August 1986.

Graphics Interface '95

74

Visibility preprocessing: (A) MRI semi-transparent skin surface, rendered with full set of primitives; (B) To
illustrate the internal structures extracted in MeA that are not normally visible in an opaque closed surface.

Incorrect semi-transparent surfaces to illustrate the bulk of primitives that are not rendered after visibility
preprocessing. (e) MRI skin surface, compare this with Plate A which shows the correct semi-transparent
view; (D) eT skin surface, compare with Plate A which shows the correct semi-transparent view.

~
.. ,~., . ,

. ' . ~
. .

... : .. Graphics Interface '95

