Database Management for

Interactive Display of Large Architectural Models

Thomas A. Funkhouser
AT&T Bell Laboratories
Murray Hill, NJ

Abstract

This paper describes algorithms for predictive
database management used in The UC Berkeley
Building Walkthrough System. The algorithms fore-
cast a range of possible observer viewpoints during
upcoming frames and use precomputed cell visibil-
ity information to determine a set of objects likely
to be visible to the observer in the near future. For
each of these objects, detail elision techniques de-
termine which levels of detail must be stored in a
memory resident cache. Cache management algo-
rithms determine which objects to load into mem-
ory from disk, and which to replace when the cache
is full. Using these algorithms, the system is able
to maintain real-time frame rates during interactive
visualization of large building models with furniture
and radiosity illumination.

Key Words: Interactive Visualization, Database
Systems, Computer-Aided Architectural Design.

1 Introduction

Today, graphics workstations offer a great potential
for real-time display of complex 3D environments.
An interactive visualization system can simulate the
experience of moving through a three dimensional
model by rendering images of the model as seen
from a hypothetical observer viewpoint under inter-
active control by the user. If images are rendered
smoothly and quickly enough, the visual illusion of
real-time exploration of a virtual environment can
be achieved.

Interactive visualization is particularly valuable
in computer-aided architectural design. A building
walkthrough system, which uses three dimensional
computer graphics to simulate “walking” through
a building, can be used by architects and interior

designers to visualize and evaluate architectural de-
signs before a building has been constructed. As a
result, visual simulation and verification of an archi-
tectural design may be performed early in the design
cycle, thereby saving time and money.

Radiosity methods [11] are often used to perform
lighting simulations of building interiors. The ad-
vantage of radiosity methods for interactive visu-
alization 1s that they are able to model physically
realistic indirect diffuse illumination and shadows,
and therefore generate fairly realistic-looking im-
ages. Also, the radiosity solution does not depend
on a particular observer viewpoint. Therefore, a ra-
diosity computation can be performed for an entire
building model during a precomputation phase in
which results are stored in a database for use later
during interactive visualization. This approach off-
loads the expensive illumination computations re-
quired to capture realistic lighting effects, such as
shadows, so that rendering during interactive visu-
alization can produce high-quality images quickly.

Figure 1: Radiosity mesh for furnished office.

One challenge of using radiosity methods for in-
teractive visualization is management of the large
amount of data required to describe a radiosity so-

lution. A separate color is stored for each vertex
of every polygon in the model, and large polygons
are split into many mesh elements in order to cap-
ture complex illumination effects along the bound-
aries of shadows and highlights. Furthermore, al-
though many of the polygons in the original model
can be shared via hierarchical instancing, each poly-
gon is illuminated and meshed independently during
the radiosity computation, and must be stored sep-
arately in the resulting model (see Figure 1). As a
result, a model that originally contains millions of
possibly shared polygons may contain tens of mil-
lions of separate polygons, and may require giga-
bytes of data after a radiosity computation. This
is too much data to store all at once in memory on
most graphics workstations.

In order to support a real-time walkthrough of a
large building model with radiosity illumination, a
visualization system must store only a subset of the
model in memory (i.e., the working set) and swap
different parts in and out of memory in real-time
as the observer navigates through the model inter-
actively. Unfortunately, standard virtual memory
systems are not suitable for real-time interactive vi-
sualization because: 1) they do not pre-fetch data,
and 2) they do not load data asynchronously. In
standard virtual memory operation, a page fault oc-
curs when disk-resident data is accessed. At that
time, the system executes a synchronous read for
the page containing the data, and continues exe-
cution only after the page has been loaded. This
sequence of operations causes unacceptable delays
for real-time immersive walkthrough applications. If
many data accesses fault in the same frame (e.g.,
when the user navigates around a corner into a new
corridor), pauses up to several seconds in length may
be observed as the virtual memory system loads all
the pages into memory.

In order to avoid delays to the perceptible frame
rate due to page faults, an interactive walkthrough
system must pre-fetch data asynchronously so that
the data is resident in memory before it is displayed.
Since loading data from secondary storage into mem-
ory can take a relatively large amount of time, the
system must predict data access patterns several
frames in advance. The challenges are to develop
an algorithm to compute a small subset of the data
that is most likely to be accessed in the near future,
and to use this algorithm to manage a cache of resi-
dent data in real-time as the user navigates through
the environment interactively.

This paper describes the predictive database man-

agement algorithms developed for The UC Berkeley
Building Walkthrough System. The algorithms fore-
cast a range of possible observer viewpoints during
future frames and then use visibility determination
and detail elision techniques derived from the display
algorithms of the system to predict which polygons
can be rendered in upcoming frames. Cache man-
agement algorithms determine which objects to load
into memory from disk, and which to replace when
the cache is full, as the observer moves through the
model interactively.

The paper is organized as follows. The next sec-
tion contains a summary of related work. Section 3
provides an overview of The UC Berkeley Building
Walkthrough System. This overview is important
in order to understand the data access patterns re-
quired for display by the system. The predictive
database management algorithms are described in
Section 4. Results of experiments with these algo-
rithms using a radiosity model of two floors of Soda
Hall are presented in Section 5. The results are fol-
lowed by a brief discussion and conclusion.

2 Related Work

There has been a considerable amount of work in
interactive visualization of 3D models for computer-
aided design and vehicle simulation systems [5, 7].
Although some systems support real-time database
management, little has been published on this topic
since most systems are proprietary. Vehicle simula-
tion systems often use quadtrees to represent terrain
models and load patches of terrain within the viewer
frustum at appropriate resolutions based on viewing
distance [12, 16].

Although there are many similarities between ve-
hicle simulators and building walkthrough systems,
there are several important differences. First, build-
ing models tend to be more “densely occluded” than
terrain environments. This property allows a build-
ing walkthrough system to take advantage of visi-
bility determination algorithms that cull not only
polygons outside the observer’s view, but also ones
occluded by other polygons (e.g., walls). Second, the
types of navigation supported by vehicle simulators
are very different than those in building walkthrough
systems. In a vehicle simulator, the observer view-
point corresponds with the view from the driver’s
seat of the vehicle, and observer viewpoint naviga-
tion is limited to movements possible by the vehi-
cle. In a building walkthrough system, the observer
viewpoint corresponds to the view from the eyes of

a human being walking through the building. The
observer may step in any direction, or spin around
quickly. Therefore, many of the optimizations used
by vehicle simulators based on assumptions of ob-
server navigation are not possible in a building walk-
through system.

Commercial products for visualization of archi-
tectural models are now readily available [2, 15].
However, to the author’s knowledge, none of them
employs sophisticated memory management algo-
rithms, and none supports models larger than fit in
memory. The UNC Building Walkthrough System
[3] provided much inspiration for this work, includ-
ing ideas on spatial subdivisions and cell-to-cell vis-
ibility precomputation [1]. However, it too supports
only memory resident models.

3 System Overview

The UC Berkeley Building Walkthrough System
simulates an observer moving through a 3D build-
ing model under interactive user control [10]. The
goal is to render the model as seen from the observer
viewpoint in a window on the workstation display
at interactive frame rates as the user moves the ob-
server viewpoint through the model.

Prior to execution, an efficient display database is
constructed for the architectural model [9]. The dis-
play database describes the model as a set of objects,
each of which can be represented at multiple levels of
detail (LODs) [4]. Tt also contains a spatial subdivi-
sion constructed by partitioning space into cells split
by the major, axis-aligned polygons of the building
model (e.g., walls, ceilings, and floors). For each cell,
C, a visibility precomputation is performed that de-
termines which cells (cell-to-cell visibility) and which
objects (cell-to-object visibility) are potentially vis-
ible to any observer in C' [13, 14].

Execution during an interactive walkthrough pro-
ceeds as diagrammed in Figure 2. In every frame, the
system performs seven operations, each of which can
run asynchronously in a separate concurrent process
in a two-forked pipeline.

The operations in the upper fork of the pipeline
generate images for the user, and thus are very sen-
sitive to throughput and latency. For each observer
viewpoint generated by the user interface, the sys-
tem first executes a visibility determination algo-
rithm to compute a set of potentially visible objects
to render (a z-buffer is used later during rendering
to resolve visibility priority among potentially visible
objects). The set of objects determined to be visible

User
Interface

1
1
Mouse | Display
rLeoka_heag | Cache | o l:PWO.f“P“‘] lDa(abase g

Visibility Detail Rendering
Determination Elision Operations

Database Management

Figure 2: Interactive walkthrough pipeline.

from the observer viewpoint is always a proper sub-
set of the cell-to-object visibility set of the observer’s
cell (see Figure 3). Next, a detail elision algorithm
is used to choose an appropriate level of detail with
which to render each potentially visible object. A
static screen area threshold (pixels/polygon) is used
to bound LODs, and then an optimization algorithm
is used to possibly further reduce LODs used for
some objects 1n order to maintain a bounded frame
rate [8]. Finally, rendering commands are sent to
the graphics workstation to display the potentially
visible objects with the chosen levels of detail.

ioojo o

ea Cell | | | I
=\ Visibility - H
Of===*heeeennssl } GREECELEELEEY

Figure 3: The observer’s visibility (hatch) is a proper
subset of its cell’s visibility (stipple).

The operations in the lower fork of the walk-
through pipeline perform database management.
The system uses predictive visibility and detail eli-
sion algorithms to determine the set of objects, and a
level of detail for each one, to store in a memory resi-
dent cache. Then, cache management techniques are
used to determine the sets of objects to load from the
display database and release from memory during
each frame. Finally, database input/output opera-
tions (e.g., read, write and release) are used to trans-
fer data between the memory resident cache and dis-
play database. These operations are described in
detail in the following sections.

4 Database Management

The goal of the database management process of the
walkthrough system is to maintain a cache of data
in memory so that the display process never faults
by trying to access data only available in secondary
storage. An ideal memory management algorithm
predicts the observer viewpoint in each future frame
perfectly. Then it can use the visibility determina-
tion and detail elision algorithms described in Sec-
tion 3 to determine exactly which objects and LODs
will be rendered during future frames and pre-fetch
them into memory, replacing objects that will not be
rendered for the longest time in the future. Unfortu-
nately, since the observer viewpoint is under inter-
active control by the user and cannot be predicted
perfectly, we must consider a range of possible future
observer viewpoints in our memory management al-
gorithm.

Observer Lookahead

In order to pre-fetch objects into memory before
they are rendered, we must continually predict which
objects are likely to become visible to the observer
in the upcoming future. Given a particular observer
viewpoint in the current frame and constraints on
observer movement and rotation enforced by the
user interface, we can determine an observer range
that contains a superset of all observer viewpoints
possible during the next N future frames. For ex-
ample, if the observer is allowed to move and turn
in any direction, but is constrained by maximum
positional and rotational velocities, v, and v,, the
upper bound on the observer range during the next
N frames is a sphere centered at the observer eye po-
sition with radius Nv,. All possible observer view
directions are enclosed in a range frustum whose eye
position is directly behind the observer, and whose
view angle is widened by Nw,, and which contains
the range sphere. Since there is usually coherence
in observer motion from frame to frame, the current
direction of observer movement can be used to help
predict future observer eye positions by weighting
the observer range in the direction of travel. More-
over, if the observer is prevented from moving di-
rectly through solid walls (a parameter in our user
interface), the observer range is further constrained.

Since real-time visibility determination for a finite,
non-zero volume of space (the observer range) seems
to be too compute intensive for real-time execution,
we use precomputed cell-to-cell and cell-to-object
visibility information to conservatively predict a su-

perset of the objects potentially visible from the ob-
server range. During each frame, we compute a set
of range cells, R, that cumulatively contain the ob-
server range by performing a shortest path search of
the cell adjacency graph. The search, implemented
using Dijkstra’s method [6], adds cells to the range
set in order of minimum number of frames before the
observer can enter the cell. When a new range cell is
discovered during the shortest path search, we add
each object in its cell-to-object visibility to a looka-
head set of objects that may potentially be visible to
the observer during the next N future frames.
Figure 4 shows an example computation of the
lookahead set of objects, assuming the observer can-
not walk through walls. Each cell is labeled by the
minimum number of frames before objects inside it
can become visible to a cell intersecting the observer
range. For N = 4, cells in the observer range set are
highlighted in cross-hatch, and cells containing ob-
jects in the observer lookahead set are highlighted in

stipple gray.

a

.v
=
o

p
i B
e

<
o

¢
A

%

2

E
&

el
oo
:v: :vg@: :;cxw.aé

;g‘do’d o]

&

Figure 4: Object lookahead set computation.

As each object is added to the lookahead set, we
mark and claim memory for all LODs for the object
that can possibly be rendered during the next N fu-
ture frames. We use a size threshold for static detail
elision, along with precomputed information regard-
ing which objects can be drawn at a given LOD for
an observer inside a particular cell, to choose a max-
imum LOD at which to store each potentially visible
object. The effect is that objects near the observer
range are stored in memory up to higher LODs than
ones further away. Figure 5 shows an example com-
putation of lookahead LODs for objects. Each cell is
labeled and shaded by the maximum level of detail
any object incident upon it is stored in memory —
darker shades of gray represent higher levels of de-
tail.

i
N
e

o

=
-
e

Figure 5: Maximum LODs for lookahead objects.

The shortest path search for range cells and looka-
head objects terminates when either: 1) there are no
cells remaining that can contain the observer dur-
ing the next N frames, or 2) all available memory
has been claimed (as long as all objects visible from
the current observer viewpoint are in the lookahead
set). In either case, if the range cull algorithm and
lookahead cull algorithm are both any direction, the
range set is guaranteed to contain the cells that the
observer can enter soonest (since cells are added to
the range set in order of minimum distance from
the current observer position), and the lookahead
set 1s guaranteed to contain objects represented at
LODs that can potentially be rendered for an ob-
server viewpoint within a range cell within the next
N frames. If the algorithm terminates due to con-
dition (1), the set of lookahead objects is a provable
superset, of the objects that can possibly be rendered
during the next N frames, and fits into available
memory. Otherwise, if the algorithm terminates due
to condition (2), the set of lookahead objects is cer-
tainly a superset of the objects visible from the cur-
rent observer viewpoint, as well as a good estimate
of the objects that are most likely to be rendered in
upcoming frames.

Cache Management

After computing the set of lookahead objects, we
must determine which objects to load into memory
(i.e., the read set) and which to remove from memory
(i.e., the release set) during each frame of an inter-
active walkthrough. Conceptually, memory resident
objects are stored in a fully associative, write-back
cache which is the size of available memory (i.e., the
size of the physical memory of the workstation mi-
nus the amount reserved for the spatial subdivision

and precomputed visibility information).

To determine which objects to load into memory
during each frame, we first check every object in the
lookahead set to determine whether or not it is al-
ready represented at the appropriate LODs in the
memory resident cache. In principle, we should is-
sue read requests for every lookahead object that is
not already in the memory resident cache. However,
since a new lookahead set is constructed during ev-
ery frame, and lookahead sets computed during later
frames have more up-to-date predictive power, it 1s
pointless (and even counterproductive) to start load-
ing all such lookahead objects into memory during
the current frame, since they may take several frame
times to transfer from disk. Instead, during each
frame, we load into memory only as many objects
as can be read from disk in a single frame time. We
construct a read set of objects to load from disk by
adding lookahead objects in order of LOD (i.e., low-
est to highest) and when they can possibly become
visible to a range cell (i.e., the order they are added
to the lookahead set). Construction of the read set
terminates when the cumulative size (in bytes) of
the set exceeds the estimated capacity of disk reads
during a single frame time (mazimum bytes read per
frame), and all objects visible to the observer in
the current frame are in either the memory resident
cache or the read set. Read requests are issued for
each object in the read set from an asynchronous
database input/output process.

As objects from the lookahead set are added to the
memory resident cache, other objects originally in
the cache might need to be removed to free memory
for the new ones. Qur object replacement algorithm
closely resembles a least recently used (LRU) policy.
Objects in the memory resident cache are kept or-
dered by when they can possibly become visible to
a range cell. As objects are added to the lookahead
set, they are marked and moved to the head of the
memory resident cache queue. Objects that are not
in the lookahead set maintain their relative order-
ing in the queue across successive frames. We con-
struct a release set of objects to remove each frame
by choosing objects from the tail of the memory res-
ident cache queue (i.e., the ones that have least re-
cently been a member of the lookahead set) until
enough memory is available for all objects in the
read set. Objects in the release set are removed from
memory before objects in the read set are loaded so
that memory is never overburdened.

Figure 6 shows results of the cache management
algorithm for a particular observer path. Each cell

is labeled by the number of frames since objects inci-
dent upon it were included in the lookahead set. The
shade of each cell indicates whether or not it contains
objects in the memory resident cache (stipple gray),
read set (left-hatch), or release set (right-hatch).

Figure 6: Cells containing resident objects (stipple),
read objects (left-hatch), and released objects (right
hatch).

Fault Tolerance

During each frame of an interactive walkthrough, an
asynchronous database input/output process loads
objects in the read set into memory from disk.
Meanwhile, the walkthrough system renders objects
potentially visible from the current observer view-
point using LODs chosen by the detail elision algo-
rithm. What happens if the database input/output
process is not fast enough to load an object into
memory before it is selected for rendering? This sit-
uation must be considered since there is no bound
on the rate at which new data can become visible to
the observer. For instance, the observer can “run”
through the building, or turn several corners quickly
to view portions of the model not previously visited.
In these cases, the rate at which data becomes vis-
ible to the observer may be faster than the rate at
which data can be loaded from disk.

In our first implementation, the walkthrough sys-
tem stalled when it found that an object to be ren-
dered had not yet been loaded into memory at the
appropriate LOD. It simply waited until the appro-
priate LOD for an object was loaded into memory,
and then it continued rendering. Needless to say,
this behavior was extremely bothersome. At times,
the system would stall for several seconds waiting
for a particular object geometry that was rendered
for only a few frames.

In our current implementation, the system never
waits for an object to be loaded into memory. In-
stead, if a potentially visible object has not been
loaded into memory at the desired LOD, the ren-
dering process simply skips that LOD and renders
the object at the next highest LOD that is resident
in memory. If the object is not resident in memory
at any LOD, the object is skipped completely. Like
detail elision during display, we trade image qual-
ity for interactivity using this approach. When the
asynchronous database input/output process cannot
keep up with the rest of the system, some objects
may be rendered at lower LODs. Or, if the database
input/output process falls behind the rest of the
system by several frames, some potentially visible
objects may not be rendered at all. Fortunately,
since the lookahead algorithm orders objects based
on when they are likely to be visible to the observer,
and the cache manager loads object geometries in
order from lowest LOD to highest LOD, generally
only the higher LODs for newly visible objects are
skipped.

5 Results

In order to evaluate the effectiveness of the algo-
rithms described in this paper, we collected statis-
tics during real-time execution of The UC Berke-
ley Building Walkthrough System both with and
without predictive database management. The test
model was a radiosity solution for the sixth and sev-
enth floors of an academic building. The model com-
prised approximately sixty rooms containing 15,265
polygons which were split into 382,090 mesh ele-
ments by a radiosity computation. Each polygon
was stored 1n the display database with its radiosity
mesh as a separate object with only one LOD. The
model contained 137MB of data.

Using a Silicon Graphics Power Series 320 work-
station with 128MB of memory, two 33MHz R3000
processors, a Reality Engine! graphics processor,
and a local disk, we collected frame time statis-
tics (i.e., elapsed wall-clock time between succes-
sive frames) as the observer navigated along a path
through the sixth and seventh floors of Soda Hall.
The test path was chosen in order to span a large
part of the model and visit the same portion of the
model more than once in order to test both the
lookahead and caching features of the database man-
agement algorithms. The observer velocity was rep-
resentative of a normal walking pace stroll through

the building.

Frame Time (s)

10 T T T T T 10 T T T T T
1 " 1
I =
| [0}
£
0.1 pa .1
o | i
£
g
0.01 [.01
0.001 : : : : : 0.001 : : : : :
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Frames Frames

(A) No database management.

(B) Predictive database management.

Figure 7: Frame times during experiments with and without real-time predictive database management.

During test ‘A’, without database management,
the operating system managed page swapping af-
ter the entire model was read into virtual mem-
ory (and partially swapped back out). During test
‘B’, with database management, the algorithms de-
scribed in this paper were used to pre-fetch objects
asynchronously up to 16 frames in advance. The ap-
plication was configured as a four-process pipeline
with one process used for visibility determination
and detail elision, a second process for rendering, a
third process for lookahead determination and cache
management computations, and a fourth process
for database input/output operations. Logarithmic
scale plots of frame times measured during these two
tests are shown in Figure 7.

For this model, which was just barely bigger than
physical memory (137TMB versus 128MB), the sys-
tem was able to display most frames at about ten
frames per second without database management
(see Plot “‘A”). However, every few seconds, whenever
the observer viewed a new portion of the model, the
system stalled for up to several seconds while while
the virtual memory system serviced page faults syn-
chronously. Such stalls are indicated by spikes in the
frame time Plot ‘A’ in Figure 7 (note the logarith-
mic scale on the vertical axis). Although the mean
frame time was 0.082 seconds, the standard devia-
tion in the frame time was 0.175 seconds, and the
longest frame time was 5.78 seconds. Qualitatively,
the frequent stalls not only destroyed the illusion of
immersive exploration but also caused the user to
have difficulty navigating.

Using the database management algorithms de-

scribed in this paper, the system was able to display
all frames at interactive rates without any stalls (see
plot ‘B’). The mean frame time was 0.063 seconds
with a standard deviation of 0.035 seconds and a
maximum frame time of 0.263 seconds. Since the
system pre-fetched data into memory before it was
displayed and didn’t wait for database 1/O opera-
tions synchronously, the user was able to navigate
into new portions of the model without delay. The
system was able to compute a small subset of looka-
head objects to store in memory during each frame
(22MB on average) and required a small amount of
data to be loaded into memory during each frame
(28.4KB on average). The lookahead determination
and cache management computations took 4ms per
frame on average, while the database input/output
operations took 28ms per frame.

During the test with database management, there
were a few instances in which the system was not
able to successfully load all visible objects into mem-
ory in time to be displayed as the user navigated
quickly around a corner into a new, densely pop-
ulated portion of the model. This situation is en-
countered more frequently as the observer velocity
is increased. In these cases, the system continued
frame generation as those objects were loaded into
memory asynchronously and began rendering them
as they became available. Although the omission
(and subsequent appearance) of some objects in ren-
dered images was disturbing to the user, we feel the
impact on navigation and interaction in the virtual
building model was far less than the delays incurred
using virtual memory.

6 Conclusion

A visualization system must pre-fetch data into
memory asynchronously as a user navigates through
the model in order to avoid delays during interactive
walkthroughs of models larger than memory.

This paper describes the database management
algorithms used in The UC Berkeley Building Walk-
through System. A lookahead algorithm computes
a set of objects that are likely to become visible
to the observer during upcoming frames and deter-
mines a maximum level of detail to store in memory
for each object. An approximate least-recently-used
cache management algorithm is used to determine
which objects to load into memory, and which to
replace, during each frame of an interactive walk-
through. In cases where more data becomes visible
to the observer than can be loaded into memory in
real-time, incomplete images are rendered while data
is being loaded asynchronously in order to maintain
interactivity. Using these algorithms, the system is
able to maintain interactive frame rates during walk-
throughs of radiosity models larger than memory.

References

[1] Airey, John M., John H. Rohlf, and Frederick P.
Brooks, Jr. Towards image realism with inter-
active update rates in complex virtual building
environments. ACM SIGGRAPH Special Issue

on 1990 Symposium on Interactive 3D Graph-
ics, 24, 2 (1990), 41-50.

[2] Bechtel, Inc. WALKTHRU: 3D Animation and
Visualization System. Promotional literature,

1991.

[3] Brooks, Jr., Frederick P. Walkthrough - A Dy-
namic Graphics System for Simulating Virtual
Buildings. Proceedings of the 1986 Workshop on
Interactive 3D Graphics.

[4] Clark, James H. Hierarchical Geometric Mod-
els for Visible Surface Algorithms. Communica-
tions of the ACM, 19, 10 (October 1976), 547-
554.

[5] Deyo, R. J., J. A. Briggs, and P. Doenges. Get-
ting Graphics in Gear: Graphics and Dynam-
ics in Driving Simulation. Computer Graphics
(Proc. SIGGRAPH ’88), 24, 4 (July 1988), 317-
326.

[6] Dijksta, E.W. A Note on Two Problems in Con-
nexion with Graphs. Numerische Mathematik 1,
1959, 269-271.

[7] Evans and Sutherland Computer Corporation.
ESIG:4000, Promotional literature, 1993.

[8] Funkhouser, Thomas A., and Carlo H. Séquin.
Adaptive Display Algorithm for Interactive
Frame Rates During Visualization of Com-
plex Virtual Environments. Computer Graphics
(Proc. SIGGRAPH ’93), (August 1993), 247-
254..

[9] Funkhouser, Thomas A. Database and Display
Algorithms for Interactive Visualization of Ar-
chitectural Models. Ph.D. thesis, Computer Sci-
ence Division (EECS), University of California,
Berkeley, 1993. Also available as UC Berkeley
technical report UCB/CSD-93-771.

[10] Funkhouser, Thomas A., Seth Teller, Carlo
Séquin, and Delnaz Khorramabadi. The UC
Berkeley System for Interactive Visualization
of Large Architectural Models. Presence, 5, 1,
January, 1996.

[11] Goral, Cindy M., Kenneth E. Torrance, Donald
P. Greenberg, and Bennett Battaile. Modeling
the Interaction of Light Between Diffuse Sur-
faces. Computer Graphics (Proc. SIGGRAPH
’84), 18, 3 (July 1984), 213-222.

[12] Schachter, Bruce J. (Ed.). Computer Image
Generation. John Wiley and Sons, New York,
NY, 1983.

[13] Teller, Seth J., and Carlo H. Séquin. Visibil-
ity Preprocessing for Interactive Walkthroughs.
Computer Graphics (Proc. SIGGRAPH ’91),
25, 4 (August 1991), 61-69.

[14] Teller, Seth J. Visibility Computations in
Densely Occluded Polyhedral Environments.
Ph.D. thesis, Computer Science Division
(EECS), University of California, Berkeley,
1992. Also available as UC Berkeley technical
report UCB/CSD-92-708.

[15] Virtus Walkthrough. Promotional literature,
1991.

[16] Zyda, Michael J., David R. Pratt, James G.
Monahan, and Kalin P. Wilson. NPSNET: Con-
structing a 3D virtual world. ACM SIGGRAPH

Special Issue on 1992 Symposium on Interactive

3D Graphics, March, 1992.

