Programming Support for Blossoming

Wayne Liu
wbliu@vlsi.uwaterloo.ca

Electrical and Computer Engineering

Stephen Mann
smann@cgl.uwaterloo.ca
Computer Science Department

University of Waterloo
Waterloo, Ontario, N2L 3G1 CANADA

Abstract

A CH+ library has been created to facilitate pro-
totyping of curve and surface modeling techniques.
The library provides blossoming datatypes to sup-
port creation of modeling techniques based on blos-
soming analysis. The datatypes have efficient oper-
ations that are generalizations of important CAGD
algorithms and can be used to implement many algo-
rithms. Most importantly, the library is able to inter-
operate with user-supplied datatypes or routines to
create complex modeling techniques.

Résumé

Une librairie de fonctions C++ a été créée pour fa-
ciliter le prototypage de techniques de modélisation
de courbes et de surfaces. La librairie donne acces a
des structures de données de type “formes polaires”
qui aident a la création de techniques de modélisation
basées sur une analyse “blossoming” (de forme po-
laire). Les opérations, efficaces, sur les structures de
données sont des généralisations d’algorithmes im-
portants en Conception Géométrique Assistée par
Ordinateur (CAGD); plusieurs types d’algorithmes
peuvent étre basés sur ces opérations. L’aspect le plus
important de cette librairie est la possibilité de fonc-
tionner avec des structures de données ou des rou-
tines fournies par l'utilisateur, pour créer des tech-
niques de modélisation complexes.

Keywords: Blossoms, Curves and Surfaces, Graphics
data structures and data types, Software

1 Introduction

Computer Aided Geometric Design (CAGD) is con-
cerned with modeling curves and surfaces on comput-
ers. Research focuses on finding various techniques
of representing curves and surfaces in computer-
compatible form, and algorithms for manipulating

these representations. This research has applications
in CAD/CAM. For a general introduction to CAGD,
see [6].

The most successful techniques represent curves
and surfaces with piecewise polynomial functions,
such as Bézier patches and NURBS. Many properties
of such techniques are most easily studied using blos-
soming analysis. Blossoming analysis was introduced
into CAGD in the mid-1980’s[12, 3]. Since that time,
it has proven to be a simple and powerful mathemat-
ical tool. It does not require advanced mathematical
concepts, yet it reveals the properties of important
modeling techniques. Researchers continue to apply
blossoming analysis to find new modeling.

In addition to analyzing new ideas mathematically,
researchers must also implement prototypes, com-
puter programs that test the practicality of these
ideas. Thus, programming is an essential step in
CAGD research.

The task of programming involves translating from
the mathematical analysis into computer code. This
translation is often difficult. The problem lies in
translating mathematical concepts, such as piece-
wise polynomials, into computer language concepts,
such as floating-point arithmetic. It is unclear how
to translate from one to the other, and in general,
they bear no resemblance to each other. Ideally, the
programmer should be able to manipulate the same
concepts in the code as in the analysis. Then, the
translation process would be straight-forward, and
the programming would be simple. The solution is
to create datatypes for blossoming.

A datatype is simply an abstract set of objects
with operations that can be performed on these ob-
jects. In this case, the objects correspond to con-
cepts used in the blossoming analysis, such as blos-
soms, blossom arguments, or spaces. The operations

perform meaningful actions on the objects in terms
of blossoming analysis. Thus, the programmer can
use the operations to manipulate the mathematical
concepts in the code.

In this article, we discuss the Blossom Classes, a
C++ library we developed to support programming
with blossoming datatypes. The library is designed
to be useful for many applications. The library pro-
vides a set of general datatypes that can be used to
code many modeling techniques. In creating oper-
ations for the datatypes, we discovered generaliza-
tions of important CAGD algorithms. The resulting
operations are eflicient building blocks for many al-
gorithms.

In this paper, we only give an introduction to the
Blossom Classes. For a more detailed description,
the interested reader is referred to [8].

1.1 Previous Work

DeRose and Goldman [5] first proposed the approach
of using blossoming datatypes. Their proposed sys-
tem extends a coordinate-free geometry program-
ming package [4] with a blossom datatype. Their
datatype supports the creation and manipulation of
Bézier curves and patches.

The major work implemented using the blossom-
ing datatype approach was by Dahl. He provided a
blossom datatype in Weyl [2], a language for CAGD
research. The Weyl language provides datatypes
that closely mimic the corresponding mathematical
concepts. Weyl also has an interactive, graphical en-
vironment. The goal of Weyl was to provide an en-
vironment where researchers can manipulate mathe-
matical objects in familiar ways and receive graphical
feedback.

However, Weyl is unsuitable for creating complex
modeling techniques. The biggest drawback is that
the Weyl language environment is “closed”: it cannot
be used as part of another system, nor can other
tools be easily integrated with it. This is a serious
problem as the Weyl environment does not provide
all the facilities that researchers need. For example,
if a surface fitting scheme requires the use of singular
value decomposition, that function would have to be
created in the Weyl language.

Finally, although object oriented programming has
been used for other purposes in CAGD [1, 14], it
has not been used to develop a blossoming package
(although Bartels mentions the idea [1]).

1.2 Overview
In Section 2, we review the technique of blossom-
ing analysis. In Section 3, we describe the design of

the Blossom Classes. In Section 4, we evaluate the
usefulness of the library by using it to implement
different techniques and algorithms.

2 Background on Blossoming

Blossoming analysis is based on the blossom, which
is defined as a symmetric and multi-affine (affine in
each argument) map of n arguments. The following
theorem [12] states that polynomials and blossoms
are essentially the same.

Theorem 2.1 (The Blossoming Principle)
There is a one-to-one correspondence between the
degree n polynomials, F : X — Y, and the n—affine
blossoms, f : X™ — Y, such that

where X and Y are spaces of arbitrary dimension.

If f is a blossom of three arguments, then the
symmetric property implies f(z,v,2) = f(y,z,2) =
f(any permutation of z,y, z). The multi-affine
property implies

flow+ (1 —a)z,y,2) =
af(w,y,z) + (1 —a)f(z,y,2).

If we know f at certain sets of arguments, then
the symmetric and multi-affine properties allow us
to compute f at any set of arguments. For exam-
ple, as illustrated in Figure 1, given the values of
£(0,1,2), f(1,2,3), f(2,3,4), and f(3,4,6), it is pos-
gible to compute f(2.7,1.8,3.4). First, by the sym-
metric property,

£(0,1,2) = £(1,2,0).
Then, by the multi-affine property,

F(1,2,2.7) = F£(1,2,.1x0+.9x 3)

1£(1,2,0) +.9f(1,2,3).

Thus, from the first pair of values of f, the new value
£(1,2,2.7) can be computed. In a similar manner,
using the next pair and the last pair, f(2,3,2.7) and
£(3,4,2.7) can be computed. These three new values
combine to give f(2,2.7,1.8) and f(3,2.7,1.8), which
in turn combine to give f(2.7,1.8, 3.4). This example
evaluated the blossom of a curve. Since the concept
of a blossom is independent of dimension, the same
approach can evaluate surfaces.

The blossom can also be used to evaluate the
derivatives of a polynomial. If we distinguish points

L£(1,2,0) + 9£(1,2,3) = £(1,2,2.7)

£(1,2,3)

[—

f(O, 172) = f(17279)

£(3,4,6)

£(2,3,2.7)

£(2.7,1.8,3.4)
£(2,2.7,1.8)
1(2,3,4)

Figure 1: Evaluating a blossom

from vectors in an affine geometry sense, then the
evaluation of a blossom at an argument set consist-
ing only of points yields a point. However, if one or
more of the arguments are vectors, then the evalua-
tion is proportional to a derivative of the polynomial.
Ramshaw has shown [12] that the directional deriva-
tive of a polynomial F' in direction ¥ is given by

a F _ n—1- 1

SF(@) = nf(e"). (1)
If more than one argument is a vector, then we ob-
tain higher order derivatives. Note that in this equa-
tion, we have used the tensor form of the blossom
(i.e., there are no commas separating the blossom
arguments). For an introduction to tensors, see for
example [12, 8]. We will continue to use tensor no-
tation for the remainder of this paper.

2.1 Blossom Knots
The arguments of the known values of the blossom
must follow a pattern to allow the computation of
new blossom values. The arguments are generated
by the knot net for the blossom.

A one-dimensional knot net for a degree n blossom
is the set of points in the domain

{a07 a1y ...,0n-1, bOa bla LR bn—l}
The blossom values generated from this knot net are
Py = flan—1---ao),
Py = flan—2---aobo),
P, = flan—1-%---aobo---br),
P, = f(bObn—l)

The values of the blossom, Py, are called the coef-
ficients of the blossom. Thus, the knot net for the

previous one dimensional example is {0,1,2,3,4,6};
for cubic Bézier curves over the interval [0,1] the
knot net is {0,0,0,1,1,1}.

Note that modeling applications are only inter-
ested in using a piece of the polynomial. For 1-D
blossoms, that piece is the segment of the polyno-
mial over [ag, bg). Thus, Figure 1 shows the segment
of the curve over the interval [3,4). This segment is
related to a segment of a longer B-spline.

A two-dimensional knot net for a degree n blossom
is the set of points in the domain
L] bn—la €0y C1y e ey cn—l}

{a07 A1y...50n—-1, bOa bla .

The blossom values generated from this knot net are

Poo = flan—1---ao),

Pio = f(an—2---aoco),

Po1 = f(an—2---aobo),

Py = flao--an_1-i_jbo---bico---cj),
Pon = flco - cn-1).

For cubic Bézier patches over the domain triangle
{a, b, c}, the knot net is {a,a,a,b,b,b,¢,¢c,c}. Mod-
eling applications are interested in the piece of the
polynomial over the domain triangle {ao, bo, ¢o}-

In higher dimensions, the knot net consists of
points {tx;: k£ = 0..d,l = 0..n — 1}. For blossoms of
arbitrary dimensions, it is more convenient to index
the coefficients using multi-indices, which are tuples
of integers. For a blossom of dimension d and degree
n, its coefficients are P; where 7 is a multi-index of
d+1 integers, (o, .. .,%q), and the sum of its elements
1819+ -+ 1g =n.

Specifying blossom values generated by a knot net
is equivalent to specifying a polynomial in B-basis

form [10]. B-bases are the most important class of
polynomial bases for CAGD: Bézier curves and sur-
faces, segments of B-splines, and B-patches are all
special cases of polynomials in B-basis form. The fa-
miliar monomial basis is also closely related to the
B-basis.

Although we will not be discussing B-splines in
detail in this paper, it is worth noting that the blos-
som illustrates the connection between Bézier curves
and B-splines. A degree n B-spline with knot vector
{to,...,tm—1} has control points f(#;,...,ti1n_1) for
1 = 0..m — n. Thus, if we have the blossom, we can
extract either Bézier or B-spline control points.

3 Blossoming Library

Blossoms can be made into datatypes very natu-
rally because of two properties of blossoming anal-
ysis. First, blossoming gives a unified representation
of different modeling paradigms: the representation
of a curve or surface is given by a set of blossom argu-
ments and a set of coeflicients. How these two sets of
parameters are assigned depends on the application.
For example, they may be set interactively or as a
result of filtering data. Second, blossoming gives a
unified view of the operations on different modeling
paradigms. Operations extract various kinds of in-
formation from the representation. For example, an
application may want to obtain the location of vari-
ous points on a surface, or derivatives, or a bounding
box. Since a blossom is conceptually a function, ob-
taining any kind of information corresponds to eval-
uating the blossom at certain arguments.

3.1 Overview of Design

We wrote the Blossom Classes as a C++ library. Be-
cause it is a library, users can easily incorporate the
Blossom Classes into their applications, and can use
it with other tools, like matrix libraries. The Blos-
som Classes library is part of the Waterloo Com-
puter Graphics Lab Splines project [1], and works
with the datatypes in the Splines library. In addi-
tion, the Blossom Classes library is specifically de-
signed to work with the Standard Template Library
(STL) [15], which is a library of generic algorithms
designed to work with many different classes. STL
is part of the new C++ standard, and thus will be
available to all C++ users.

The outstanding feature of the Blossom Classes li-
brary is that it works with user-supplied classes. Like
STL, it is designed so that a datatype can have many
implementations by different classes. The idea is to
specify a datatype by an abstract interface, i.e., as

a set of functions that a class must provide in or-
der to implement that datatype. The library code
manipulates the datatype using only the functions
defined in the abstract interface. In our library, this
abstract interface was implemented using the C++
template facility. While we provide one implementa-
tion of these abstract data types, users can integrate
their own classes with the library simply by provid-
ing the functions required in the abstract interface.
Users can also use this facility to create specialized
implementations that are more efficient for certain
applications.

user
application

blossom blossom geometry

operation datatype datatype

Figure 2: Components of Blossom Classes.

The overall design of the the library is shown in
Figure 2. It has three components: the blossom
datatypes, the geometric datatypes, and the opera-
tions on blossoms. The heart of the library is the
blossom operations. These operations manipulate
blossom objects using the abstract interfaces (shown
as black bars in the diagram) for blossom and ge-
ometry datatypes. Blossom datatypes store geome-
try objects as arrays of knots and coefficients, also
accessing them through their abstract interface. On
the other hand, the user application directly uses any
functionality provided by the actual classes (shown
as boxes), rather than being limited to the functions
in the abstract interface.

In the following sections, we describe each of these
components in more detail. First, we look at the
blossoming datatypes, and describe the functions
that it must support in order for the blossom op-
erations to work. In addition, we present an actual
implementation of a blossoming datatype included
in the library. Next, we give the same information
for the geometry datatypes. Finally, we describe the
blossom operations, which applications use to ma-
nipulate the blossoms. In the interests of brevity, we
will only give the details about functionality used in

our examples; a full description can be found in [8].

3.2 Blossoming Datatypes
A blossom is simply an array of coeflicients over a
knot net. The user works with blossoms in a natu-
ral way by setting the knots and the coefficients di-
rectly. This design means the library only supports
polynomials represented in B-basis. As arbitrary B-
bases are supported, many useful paradigms can be
implemented: Bézier curves or surfaces, B-splines,
B-patches, monomials. However, other useful bases,
like Lagrange bases, are not directly supported.
The abstract interface of blossom datatypes con-
sists of the following:

e the definition for the following four classes: the
class for the array of blossom coeflicients, the
class for the array of knots, the class for the
geometry datatype for the domain and the ge-
ometry class for the range

o the functions getDegree, getSpace,
getCoeffs, getKnotNet, and makeBlossom.
The most important of these are the functions
getCoeffs and getKnotNet which return the
knots and coefficients of a blossom. Details
about these two functions are given in the

Blossom Operations section.

The library supplies an implementation of a blos-
som datatype in the Blossom class. The class pro-
vides blossoms of arbitrary dimension and degree.
In addition, the class is a templated class with two
template arguments: Blossom<domain,range>. The
first argument is the geometry type to use as the do-
main of the blossom, while the second argument is
the type to use as the range. Of course, other blos-
som classes can be used instead. For example, when
the application only deals with curves, more efficient
versions of blossoms can be implemented.

Section 4 contains some example applications that
use the Blossom class, so here we describe the func-
tionality of the class that is used in the examples.

The class provides several constructors. The con-
structor Blossom<domain,range>(n) creates a de-
gree n blossom. The knots are initialized to be the
Bézier knots over the standard basis in the domain.
The coefficients are initially created using the de-
fault constructor for their class. The constructor
Blossom<domain,range>(b,n) creates a blossom in
Bézier basis form using the basis b. Other func-
tions manipulate the knots and coefficients, such as
getCoeffs(), getCoeff (i), setCoeff(i,pt), and
setKnot(k,1l,pt).

Since the Blossom class implements arbitrary di-
mension blossoms, it indexes its coeflicients using
the MultiIndex class, which implements arbitrary
dimension multi-indices. Thus, the variable i in
the previous paragraph refers to a MultiIndex ob-
ject. Operations on MultiIndex objects include
addition (i+j), multiplication by an integer (3*i),
E(d) which creates the multi-index (0,...,1,...,0),
where all elements are 0 except the dth element is 1.

Geometry Datatypes
The geometry component contains datatypes for
working with domain spaces, range spaces, and
scalars. We made these datatypes separate from the
blossoming datatypes so that the actual implementa-
tion of geometric datatypes can change without any
change in the blossoming datatypes. Different mod-
eling paradigms, such as polynomial, homogeneous
polynomial, or rational polynomial curves and sur-
faces, can be obtained by using different types for
the geometry component,

The abstract interface of geometry datatypes con-
sists of the following:

e the definition for the five classes fundamental to
affine geometry: the geometric space, the basis,
the points, the scalars, and the array used to
extract coordinates

e the standard operations of affine ge-
ometry: getDimension, getStdBasis,
getCoordsFromBasis, getSpace,
getBasisElement, setBasisElement, and
makeBasis, and combination. The most
important of these are the operations

getCoordsFromBasis and combination, which
compute the linear combinations required by
the blossom operations.

The library provides the PtDomain class, which im-
plements linearized spaces of arbitrary dimension.
The class can also be used as a projective range
space. The library also supports the built-in type
double as an efficient one-dimensional space.

The examples of Section 4 use the PtDomain
class. The PtDomain class uses the Pt class as
the point type. The Pt class provides conve-
nient constructors for one, two, and three dimen-
sional points by specifying their homogeneous coor-
dinates with respect to the standard basis: Pt(x,w),
Pt(x,y,w), Pt(x,y,z,w). The function cross re-
turns the cross product of two 3-D vectors. The func-
tions getStdFrame(d) returns the standard Carte-
glan frame in d-dimensional space (e.g. (0,0,1),

(0,1,0), and (1,0,0) for 2-D space). The
tion getStdSimplex(d) returns the standard sim-
plex (e.g. (0,0,1), (0,1,1), and (1,0,1) for 2-D space).
(By convention, in homogeneous coordinates a vec-
tor has last coordinate of 0, and a point has last
coordinate of 1.)

func-

3.3 Blossom Operations

The heart of the Blossom Classes are the blossom op-
erations. The blossom operations are all templated
functions. They operate on blossoming datatypes
through their abstract interfaces. The operations
are useful basic building-block operations that can
be used to implement different algorithms (see Sec-
tion 4).

We present the operations in three parts: the op-
erations for defining blossoms, the operations that
evaluate blossoms, and the operations that manipu-
late the knots and coefficients of a blossom.

Defining Blossoms

To get a representation of a curve or surface one must
assign the knots and the coefficients. These func-
tions are not actually part of the blossom operations
component, but rather are provided by the blossom
datatype. They are described here since they are
used in conjunction with the blossom operations.

The operation f.setCoeff(i,P) will set the ith
coeflicient of the blossom f to the range point P,
where i is an index into the coefficient array. The
operation f.setKnot(k,l,x) sets the (k,1) knot
of £ to the domain point x. The arguments k and 1
are ints; in the one dimensional case, if k is 0, we
are setting a; to x, and if k is 1, we are setting b; to
X.

Figure 3 shows the effect of these operations on a
curve segment. The left diagram shows the original
blossom; the middle diagram illustrates moving one
coeflicient; and the right diagram illustrates moving
one knot. By convention, the segment is drawn over
the interval [ag, bo). Thus, in the left two pictures,
the segment is over [2,3), but in the right-hand pic-
ture, the segment is over [2,4).

Evaluating Blossoms

Evaluating the blossom extracts information from
the representation. Partial evaluation is also pro-
vided for reusing intermediate results of an evalua-
tion.

The evaluation routines implement the algorithm
illustrated in Figure 1. The algorithm is a generaliza-
tion of the de Casteljau algorithm for Bézier curves
and surfaces, and the de Boor algorithm for B-spline

curves. It extends these algorithms to evaluate ar-
bitrary blossom arguments for arbitrary dimension
polynomials in B-bases form. In the same way, par-
tial evaluation extends the Boehm knot-insertion al-
gorithm.

The operation P = eval(f,args) evaluates the
blossom £ at the list of range points stored in args
and return a point in the range. The £ parameter is
any blossom datatype object, and the args parame-
ter is any STL forward iterator object that returns
points in the domain.

The operation P = diagonalEval(f,x) evaluates
a blossom at a single argument, x, n times.

The operation f£2 = partialEval(f, args,
args_end, (blossom*)0) returns a new blossom
that is the partial evaluation of a blossom. The
operation takes a blossom object £ and returns an
object of type blossom, where the type is indicated
by the (blossom*)0 parameter. The return type
can be different from the type of f£. The args
parameter is an iterator that marks the beginning
of the list of arguments, while args_end marks the
end. With the variant £2 = partialEval(f, pt,
(blossom*)0), the blossom f is evaluated at the
single argument pt.

Figure 4 shows the evaluation of a one-dimensional
blossom. The left diagram illustrates a full evalua-
tion; the middle diagram illustrates a partial eval-
uation of f resulting in f;; and the right diagram
illustrates a partial evaluation of f> resulting in fs.

Swapping Knots

The knot swapping operations compute the coeffi-
cients of a blossom over an altered knot net. They
are used to perform knot insertion and basis con-
version. They employ an algorithm similar to par-
tial evaluation, except that they they perform their
calculations “in place,” and do not need to allocate
extra memory.

While these operations change both the coeffi-
cients and the knots of the blossom, they do not
change the function that the blossom represents.
That is, evaluating a blossom at the same arguments
before and after swapping will yield the same results.

The operation knotReplaceCoeffs(f,k,x) com-
putes the coefficients of the blossom f over a new
knot net that has x at position (k,n-1), where n is
the degree of the blossom.

The operation knotSwapCoeffs(f,k,from,to)
computes the coefficients of the blossom over the new
knot net, where

1. the knot at (k,from) is moved to position

1=(2,1) f.setKnot(1,0,4)
f.setCoeff (i,P)

P =f(123) P=f(123) P=f(124)

Py = f(234)
f.coeffs = {Po, P, Py, P3} f.coeffs = {Po, P, P>, Ps} f.coeffs = {Py, P, P>, Ps}
f.knots = (0, 1, 2, 3, 4, 6) f.knots = (0,1, 2, 3, 4, 6) f.knots =(0,1, 2, 4, 4, 6)

Figure 3: Operations for defining blossoms. The coeflicients and knots resulting from each operation are
shown below each figure.

argvector = {2.7,3.4,2.2} f2=partialEval(f, 2.7, f3=partialEval(f2, 3.4,
Q=eval(f,argvector.begin()); (blossom*)0); (blossom*)0) ;
F(122.7) = £2(12)
[T O
£2(23.4) = fa(2)
F(242.7) = f2(24) P
O~~~ g f2(4 3-4) = f3(4)
F(442.7) = fo(44)
fo.coeffs ={f(122.7), f(242.7),

f.coeffs = {Po, P, P>, P3} F(442.7)} fs.coeffs = {f2(23.4), f2(43.4)}
f.knots = (0, 1, 2, 4, 4, 6) fz.knots = (1, 2, 4, 4) fs.knots = (2, 4)

Figure 4: Operations for evaluating blossoms. The coeflicients and knots resulting from each operation are
shown below each figure.

knotReplaceCoeffs(f,1,2.7); knotSwapCoeffs(f,1,2,0); knotSwapCoeffs(£f,1,0,2);
knotReplaceCoeffs(f,1,6.0);

f(442.7) f(244)

T244)

f.coeffs = {Po, P, Py, P3} f.coeffs = {Po, P, P>, Ps} f.coeffs = {Py, P, P>, Ps}
f.knots = (0,1, 2,4, 4, 2.7) f.knots = (0, 1, 2, 2.7, 4, 6) f.knots =(0,1, 2, 4, 4, 6)

Figure 5: Operations for swapping knots of a blossom. The coefficients and knots resulting from each
operation are shown below each figure.

(k,to), and

2. if from<to, the knots (k,from+1)..(k,to) are
moved forward one position to
(k,from)..(k,to-1), otherwise, they are moved
backward one position.

The user must be careful in using these two opera-
tions as they may cause a knot net to become invalid
(i.e. the B-basis may become degenerate).

Figure 5 shows the effect of these operations on
a curve segment. In the left-hand picture, the knot
net is changed from (0,1,2,4,4,6) to (0,1,2,4,4,2.7).
This latter sequence does not correspond to a legal
B-spline knot sequence, since the knots must be in
increasing order in a B-spline. One result of this
violation is that the curve segment over [2,4) no
longer fits inside the convex hull of the control points.
The middle picture corresponds to the legal knot
sequence (0,1,2,2.7,4,4). Note that the two opera-
tions of knotReplaceCoeffs and knotSwapCoeffs
has effectively computed a knot insertion of the cor-
responding B-spline. The right-hand picture shows
the reverse operation, knot deletion.

In the one-dimensional case, the two operations
knotReplaceCoeffs and knotSwapCoeffs are usu-
ally used together because of the relationship to B-
splines. However, these operations extend to higher
dimensions, and in that case, there may be occasion
to use them separately.

4 Evaluation of the System

This section aims to evaluate the Blossom Classes
library’s performance in practice by demonstrating
its use in two different situations. The first example
uses the Blossom Classes for manipulating monomi-
als and B-patches to show that the library simplifies
common CAGD computations. The second exam-
ple implements several variations of the change of
basis algorithms, demonstrating some of the more
advanced features of the library.

4.1 Simple Demonstration

Monomials

This example shows how to use the library for manip-
ulating polynomials in the familiar monomial basis.

It prints out values of the polynomial 2% — 222 + 42 +
3.

1 typedef Blossom<PtDomain,Pt> blossom;
void main() {
blosson f(getStdFrame (PtSpace(1)),3);
Pt coeffs[] = { Pt(1,0), Pt(-2.0/3.0,0),
5 Pt(4.0/3.0,0), Pt(3,1) };
copy (coeffs,coeffs+4,f.getCoeffs() . .begin());

for (double x = 0;x<=1;x+=.1)
cout << diagonalEval(f,Pt(x,1)) << endl;
¥

Line 3 creates a cubic blossom whose knot net is
{g, S', S', 0, 0, 0} (a Bézier basis over the standard 1-
D frame). Lines 4-6 set the coefficients over this knot
net. By the relation given in [8], the coefficients are
{g, —%(i %g, 3}. As discussed in that paper, every
coeflicient except the last is a vector. Lines 7 and 8
evaluate the polynomial in the interval [0,1].

Shaping and Tessellating a B-patch

The next example uses the library to make B-patches
with different knots and coeflicients. It demonstrates
the three common operations of creating a blossom,
setting knots and coefficients, and evaluating.

1 typedef Blossom<PtDomain,Pt> blossom;
void tessellate(const blossom &f) {
int n = f.getDegree();
Pt u(1,0,0), v(0,1,0);
5 for (double x=0;x<=1;x+=.1) {
for (double y=0;y<=1-x;y+=.1) {
vector<Pt> argvector(n-1,Pt(x,y,1));
blossom £f2 = partialEval(f,
argvector.begin(), argvector.end(),

10 (blossom*)0);
Pt norm = cross(diagonalEval(f2,u),
diagonalEval(£f2,v));

Pt pos = diagonalEval(f2,arg[0]);
cout << pos << pos+norm << endl;
15 ¥
3
3

void main() {
20 blossom f(getStdSimplex(PtSpace(2)),2);
Pt coeffs[] = { Pt(0,0,0,1), Pt(1,0,0.5,1),
Pt(2,0,0,1), Pt(0,1,0.5,1),
Pt(1,1,1,1), Pt(0,2,0,1) };
copy (coeffs,coeffs+6,f.getCoeffs () .begin());
25 tessellate(f);
f.setCoeff (E(0)+E(2),P£(.5,1.5,.5,1));
tessellate(f);
f.setKnot (0,1,Pt(1,.5,1));
tessellate(f);
30}

On line 20, the main routine
ates a quadratic blossom with knot net
{(1,0,1),(1,0,1),(0,1,1),(0,1,1),(0,0,1),(0,0,1) }

(Bézier knot net over the standard simplex in
2-space). Lines 21-24 set up the initial coeffi-
cients, and line 25 calls the tessellate function.
Lines 26-29 demonstrate moving a coefficient and a
knot. In line 26, the expression E(0)+E(2) creates

cre-

Figure 6: Results of simple example code.

the MultiIndex (1,0,1). The effect is to move
coefficient Py o of £. The effect of these operations
on the shape of the patch can be seen in Figure 6.

The tessellate function (lines 2-17) evaluates
the points and normals on the surface over a tes-
sellation. Lines 5 and 6 iterate over the tessellation
of the standard simplex in increments of .1. The
computation of the normal starts in lines 7 and 8 by
partially evaluating £ at the point Pt(x,y,1) n—1
times to get £2. Then, according to Equation 1, the
directional derivatives are obtained by evaluating £2
at u and v (lines 4,11,12). The normal is the cross
product of the two directional derivatives. Finally,
the point on the surface is obtained by reusing £2
and evaluating at Pt(x,y,1) (line 13).

This program outputs a list of points (and nor-
mals) on the surface. The top row of Figure 6 dis-
plays these points and normals. To make the shape of
the patches easier to see, on the bottom row, we drew
only the points, with adjacent points connected; we
also added the B-patch control nets for these sur-
faces.

Evaluation

As these simple examples demonstrate, common op-
erations can be performed easily, in the obvious way.
The operations have the same run-time and sta-
bility characteristics as the standard de Casteljau
algorithm. However, since the algorithms are for
B-patches, they are a little less efficient than the
de Casteljau algorithm for Bézier patches.

4.2 Basis Conversion

As a more complex example of using the blossom
package, we will develop an algorithm to convert
polynomials from one B-basis representation to an-
other. Basis conversion can be used to convert curve

segments in Bézier or monomial form to B-spline
form, and vice versa; or between B-patch and Bézier
patch form. Basis conversion is also an important
part of other algorithms, such as polynomial compo-
sition [11].

For simplicity, we solve the one-dimensional case.
The following algorithms generalize to arbitrary
dimensions. The problem, stated formally, is
this: given the coeflicients of f over the knot net
{ag, ...y an-1,b0,...,bn_1}, compute its coeflicients
over the knot net {af,...,al,_1,b0,...,b,,_1}.

We will present three methods of basis conversion,
and present the code to implement each method us-
ing our library. The purpose of these code blocks is
a) to show some examples of the techniques required
to produce efficient blossoming algorithms and b) to
show that our library is capable of supporting these
techniques.

For each approach, we give a diagram showing
the number of affine combinations required by the
algorithm. The number of affine combinations re-
quired for basis conversion depends on the degree of
the polynomial and on the dimension of the various
spaces involved. All three examples are for a degree
3 polynomial with a dimension 1 domain. In each
computation diagram, the black circles represent the
initial control points; the white circles are the con-
trol points for the new basis, and every vertex of a
triangle (except the black points) requires one affine
combination to compute.

One solution for basis is to di-
rectly evaluate each of the new coefficients, P, =
flal, i 4 - -agbpy---b},), over the new knots:

conversion

AR, £
AR, A2,

Figure 7: Simple basis conversion; performs 24 affine
combinations. In this figure, the initial (black) points
are f(agalao), f(alaobo), f(aobobl), f(boblbg) fOI' all

four de Casteljau diagrams.

1 typedef Blossom<PtDomain,Pt> blossom;
void basisConverti(blossom &f,
Pt a[l, Pt b[1) {
int n = f.getDegree();
5 blossom g(n);
for (int k=0;k<n;k++) {
g.setKnot (0,k,alk]);
g.setKnot (1,k,b[k]);
¥
10 vector<Pt> argvector(n);
for (i=0;i<n;i++) {
Pt *p = copy(b,b+i,argvector.begin());
copy(a,atn-i,p);
g.setCoeff (i*E(0)+(n-1)*E(1),
15 eval (f,argvector.begin()));

}

Line 5 creates a new blossom that will contain the
new coefficients. Lines 6-9 set the knots of the
new blossom. Line 11 iterates over each coefficient.
Lines 12 and 13 set up the vector of arguments
(ah, i 1 ---abby--- b)), and line 15 evaluates the ar-
guments. Line 17 changes £ to reflect the new knots
and coefficients. The computation performed by this
algorithm is shown in Figure 7.

This first solution is inefficient because the partial
evaluations are recomputed each time. The next so-
lution reuses the partial evaluations. This algorithm
is the Sablonniere’s basis conversion algorithm [13].

1 typedef Blossom<PtDomain,Pt> blossom;
void basisConvert2(blossom &f,
Pt all, Pt b[1) {
int n = f.getDegree();
5 blossom g(n);
for (int k=0;k<n;k++) {
g.setKnot (0,k,alk]);

Figure 8: Sablonniere’s basis conversion; performs 16
affine combinations.

g.setKnot(1,k,b[k]);
¥
10 blossom £2 =f;
for (int i=0;i<n;i++) {
g.setCoeff (i*E(0)+(n-1)*E(1),
eval(£2,b,b+1i, (blossom*)0));
blossom £f2 = partialEval(f2,a,a+n-1i,
15 (blossom*)0);

.setCoeff (n*¥E(0), £2.getCoeff (0*E(0)));
= g;

H 09 <~

}

This routine is the same as basisConvertl up
to line 9. For each 0 < ¢ < n, £2 holds the
partial evaluation of £ on the arguments af---a]
(lines 10,14,15). Then, the coefficient of g is com-
puted by finishing the evaluation on the arguments
arguments b/, . ---by (lines 12,13,17). The computa-
tions performed by this algorithm is shown in Fig-
ure 8. This solution is still inefficient because the
partial evaluations are thrown away each time.

The final solution uses knot swapping to replace
each old knot with the corresponding new knot. This
algorithm is Goldman’s basis conversion algorithm
for local B-spline bases [7]. If the knot nets are
Bézier, the code is simply performing repeated sub-
division.

1 typedef Blossom<PtDomain,Pt> blossom;

void basisConvert3(blossom &f,

Pt all, Pt b[1) {
int n = f.getDegree();

5 for (int k=0;k<n;k++) {
knotReplaceCoeffs(f,0,alk]);
knotSwapCoeffs(f,0,n-1,k);

¥
for (k=0;k<n;k++)

10 knotReplaceCoeffs(f,1,blk]);
knotSwapCoeffs(f,1,n-1,k);

¥

¥

/

Figure 9: Goldman basis conversion; performs 12
affine combinations.

Lines 6 and 7 insert the knot a}, into position (0, k)
of the knot net of £, displacing the old knot a;. This
is done for all k. Lines 10 and 11 does the same
thing for b,. The computations performed by this
algorithm is shown in Figure 9. Because of the way
knot swapping works, this algorithm is much more
efficient than the previous two.

Evaluation

This example shows the Blossom Classes is useful
for experimenting with algorithms. There are many
ways to achieve the same, mathematically equivalent
result, yet each way leads to a different implementa-
tion. The Blossom Classes package makes it easy
to obtain these implementations by translating the
analysis into code in a direct way.

4.3 Other Algorithms

The blossoming package described in this paper is
for polynomial functions. We also have developed
a B-spline package (described in [8]), and used this
B-spline package to develop a simple but efficient al-
gorithm for degree raising b-splines [8, 9].

We have also used the blossom package for poly-
nomial composition algorithms. In addition to pro-
viding straight-forward translation of mathematics
to C++ code, the blossom package allowed us to eas-
ily test a new, optimal polynomial composition algo-

rithm [8, 11].

5 Conclusions

Blossoming datatypes facilitate research by making
modeling prototypes easier to write. The datatypes
also make programs easier to read. They make it
easy to see whether a program is correct by seeing
whether the operations manipulate the concepts cor-
rectly. Thus, programs become easier to maintain
and change.

We implemented the Blossom Classes library to
provide these datatypes. Moreover, users can re-
place the Blossom Classes library’s own datatypes
with user-supplied datatypes. This ability to inte-
grate user’s datatypes into the library is important
for two reasons: it means users can fit the library
into existing applications, and users can specialize
the datatypes for greater efficiency or extend them
for greater functionality.

The blossoming package 1is
anonymous ftp at ftp.cgl.uwaterloo.ca in

available via

pub/software/blossom/. See the README
there for more details. This same package
can be access on the World Wide Web at

ftp://ftp.cgl.uwaterloo.ca/software/blossom/

6 Acknowledgments
We would like to thank the reviewers for their helpful
comments that greatly improved this paper.

References

[1] Richard Bartels. Object oriented spline soft-
In Pierre-Jean Laurent, Alain Le
Méhauté, and Larry L. Schumaker, editors,
Curves and Surfaces in gemetric design, pages

27-34. A K Peters Ltd, 1994.

ware.

[2] Austin Dahl. Weyl: A language for computer
graphics and computer aided geometric design.
Technical Report TR 92-06-02, University of
Washington, June 1992.

[3] Paul de Faget de Casteljau.
volume 2 of Mathématiques et CAQ. Hermes,
51 rue Rennequin, 75017 Paris, 1985.

Formes a Poles,

[4] Tony DeRose. A coordinate-free approach to
geometric programming. In Math for SIG-
GRAPH. SIGGRAPH Course Notes #23, 1989.
Also available as Technical Report No. 89-09-
16, Department of Computer Science and Engi-
neering, University of Washington, Seattle, WA
(September, 1989).

[5] Tony DeRose and Ronald Goldman. A tu-
torial introduction to blossoming. In H. Ha-
gen and D. Roller, editors, Geometric Modeling.
Springer, 1991.

[6] Gerald Farin. Curves and Surfaces for Com-
puter Aided Geometric Design. Academic Press,

third edition, 1990.
[7] Ronald Goldman and Phillip Barry. Wonderful

triangle: A simple, unified algorithmic approach

[10]

[11]

[15]

to change of basis procedures in CAGD. In Tom
Lyche and Larry L. Schumaker, editors, Mathe-
matical Methods in CAGD II. Academic Press,
Inc, 1992.

Wayne Liu. Programming support for
blossoming. Master’s thesis, University
of Waterloo, Waterloo, 1995. ftp://cs-
archive.uwaterloo.ca/cs-archive/CS-95-40/CS-
95-40.ps.Z.

Wayne Liu. A simple, efficient algorithm for
degree raising b-spline curves. Submitted for
publication, 1996.

Suresh Lodha and Ronald Goldman. A multi-
variate de Boor-fix formula. In Pierre-Jean Lau-
rent, Alain Le Méhauté, and Larry L. Schu-
maker, editors, Curves and Surfaces in Geo-
metric Design, pages 301-310. A K Peters Ltd,
1994.

Stephen Mann and Wayne Liu. An analysis of
polynomial composition algorithms. Technical
Report CS-95-24, University of Waterloo, Wa-
terloo, Ontario, N2L 3G1 CANADA, 1995.

Lyle Ramshaw. Blossoming: A connect-the-dots
approach to splines. Technical Report 19, Dig-
ital Equipment Corporation, Systems Research

Centre, 21 June 1987.

P. Sablonniere. Spline and Bézier polygons as-
sociated with a polynomial spline curve. CAD,

10(4):257-261, 1978.

Philipp Slusallek, Reinhard Klein, Andreas
Kolb, and Giunther Greiner. Object oriented
framework for curves and surfaces with ap-
plications. In Pierre-Jean Laurent, Alain Le
Méhauté, and Larry L. Schumaker, editors,
Curves and Surfaces in gemetric design, pages

457-466. A K Peters Ltd, 1994.

Alexander Stepanov and Meng Lee. The
standard template library. Technical Re-
port HPL-94-34, Hewlett-Packard Labroatories,
April 1994.

