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Abstract
An algorithm is presented which, given the parameters

of an Iterated Function System (IFS) which uses affine
maps, constructs a closed ball which completely con-
tains the attractor set of the IFS. These bounding balls
are almost always smaller than those computed by exist-
ing methods, and are sometimes much smaller. The algo-
rithm is numerical in form, involving the optimisation of
centre-point and radius relationships between the overall
bounding ball and a set of smaller, contained balls which
are derived by analysis of the contractivemaps of the IFS.
The algorithm is well-behaved, in that although it con-
verges toward an optimal ball which it only achieves in
the limit, the process may still be stopped after any finite
number of steps, with a guarantee that the sub-optimal
ball which is returned will still bound the attractor.

Keywords: Fractals, Iterated Function Systems, IFS,
Minimisation Surfaces.

1 Introduction
Iterated Function Systems (IFSs) are a prominent tech-
nique for the generation and analysis of fractal struc-
tures [7, 21, 1, 4]. In IFS theory, fractals arise as the
attractor sets of an iteration process on a certain func-
tion, theHutchinson operator, which combines the effects
of a given set of contractive maps. It is generally use-
ful, in most applications of IFSs, to be able to place re-
liable a priori bounds on the spatial extent of such attrac-
tor sets, before commencing the iteration process. In a
rendering context, for example, this could be used to de-
termine if an attractor is visible in a given viewport, and
to appropriately rescale the viewing coordinate system if
it is not. However, the problem of how to compute such
spatial bounds, before rendering, is not straightforward.
Analysis of each contractive map in isolation, for exam-
ple, yields no locational information except for the maps’
fixed points, which together give only a general idea of
the position of the whole attractor set. To solve the prob-
lemmore exactly, what is needed is a methodwhich anal-
yses the characteristics of all maps of the Hutchinson op-
erator simultaneously, since the attractor is the very result
of their mutual interaction. In this paper, a new algorithm
along these lines is proposed which can compute a reli-
able bounding ball around the attractor set, for the most
commonly-used type of IFS – those based on affine trans-
formations. In comparison with existing techniques for
bounding attractor sets, the new algorithm almost always
calculates smaller bounding structures, its efficiency be-
ing only marginally surpassed in certain special cases.

We begin by reviewing the basic theory of IFSs, in Sec-
tion 2. In Section 3, we progress to consideration of the
bounding problem and formalise our goal of constructing
a bounding ball. In Section 4, previous approaches are
studied, and their performance is assessed. The new al-
gorithm is then presented in Section 5. In Section 6, com-
parison of bounding efficiency is made between the new
algorithm and the previous approaches. Finally, in Sec-
tion 7, conclusions are presented and possible extensions
of the current work are indicated.

2 Iterated Function Systems
Let us briefly review the definition and basic properties
of Iterated Function Systems. For more detailed exposi-
tion of the material presented here, and in particular for
proofs of results, the readermay refer to virtually any text
on fractal geometry [1, 4, 9, 16, 15, 17].
Let �X� d� be a complete metric space. Then an IFS F

may be simply defined by a finite set of contractive map-
pings on that space. The usual notation [1, p.82] leaves
the metric d understood:

F � fX � w�� w�� � � � � wmg �

for some m � N , where each wi, for i � �� � � � �m, is a
contractive Lipschitz function onX :

wi � X � X
d�wi�x� � wi�y�� � si�d�x� y� � �x� y � X� (1)

for some constant si, with � � si��. Any suitable value
si in the above equation is termed a contractivity factor
of wi (also called contraction ratio). Usually, however,
we take si to be the infimum of these possible values, and
refer to it simply as the contractivity factor of wi.
Typically, in the literature, the mapswi are affine func-

tions on Euclidean spaces, and the distance metric d used
is simply the Euclidean distance. In this paper, we shall
concern ourselves exclusively with such self-affine IFSs.
For IFSs of this sort, the component map contractivity
factors are straightforward to calculate. Let wi�x� �
Aix � Bi, for x � X , i � �� � � � �m, expressed in the
usual manner in terms of a linear matrix Ai and a trans-
lation vector Bi. Then the contractivity factor si may be
calculated as the square root of the maximum eigenvalue
of the matrix product AT

i Ai [15, p.372]. Since AT
i Ai is

a symmetric matrix, none of its eigenvalues can have an
imaginary component. Thus, one of the simpler eigen-
system solution algorithms, such as Jacobi Transforma-
tion [18, pp.360–367], may be applied. This calculation
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Figure 1: Characterisation of si as the magnitude of the semi-
major axis of Ei � fAix j x � Cg.

is based on a characterisation of si as a measure of the di-
rection of weakest contractivity of the mapwi, computed
as the modulus of the semi-major axis of the ellipse Ei

formed by transformation of the unit circle C by Ai (see
Fig. 1).
LetH�X� be the space of non-empty compact subsets

of X . We now define “set-wise” versions of the maps of
F to operate onH�X�. Let

wi � H�X�� H�X� �
wi�A� � fwi�x� j x � Ag �

for all A � H�X� � i � �� � � � �m. We may now define
the Hutchinson operator,H , as

H � H�X�� H�X�

H�A� �
m�
i��

wi�A� �A � H�X� � (2)

It may be proven thatH is a contraction mapping on the
metric space �H�X� � h�, where h is the usual Hausdorff
metric onH�X� with respect to the underlying metric d.
Because H is contractive and H�X� is complete, itera-
tion ofH converges to a unique fixed point inH�X�, the
attractor of the IFS, which we denote by A:

H�A� � A�
lim
n��

HnA � A� for any A � H�X� � (3)

Since A � H�X�, it is by definition a non-empty com-
pact subset of X . Except for some specially-constructed
cases, A will be fractal in form – that is, its “fractal di-
mension”, as computed by one of a range of standard
methods, is a non-integral number. Such sets are very
complex in structure, with detail at all scales.

3 Spatial Bounding of IFS Attractor Sets
Before committing resources to renderingA (by the Ran-
dom Iteration Algorithm [2] or some other method [12,
14]), is it possible to make any global statements about

the general location and extent of this set? Yes, it is. An
important first basic observation is that since the attractor
is by definition a compact set, it must occupy a finite local
region of space. In this section, we consider the problem
of how to place a bound on the possible position and size
of this region in someway, by constructing a structurally-
simple bounding set which must fully enclose the attrac-
tor.
Probably the simplest type of structure to use as a

bounding set is the ball, a generalisation to arbitrary di-
mensions of the familiar two-dimensional concept of a
disc. Balls are convenient to use here since they allow
certain problems arising from directionality in the IFS
maps to be avoided�. Let B��X� d� � x� r� denote a ball
in the metric space �X� d�, centred at x � X , with radius
r � R�:

B��X� d� � x� r� � fy j d�x� y� � r� y � Xg �

Usually, the metric space may be assumed from the con-
text and the above ball is thus referred to simply as
B�x� r�.
We now have the language to state our goal precisely.

Let F � fX � w�� w�� � � � � wmg be an IFS, as before,
with attractor set A � H�X�. Then we seek parameters
xm � X and rm � R�, such that

B�xm� rm� � A�

with rm a minimum.

4 Previous Approaches
As part of a paper dealing with the rendering of IFS at-
tractor sets, Hart and DeFanti [12] propose an iterative
algorithm which generates, based on an arbitrary initial
ballB�, a sequence of balls fBig

�

�
which converges to-

ward a bounding ball B� containing A. Hart has since
revised and updated this paper [11], but the operation of
the bounding algorithm has remained unchanged. Hart
and DeFanti define the algorithm only for R�, but their
approach is easily generalised to a Euclidean spaceX of
arbitrary dimension. Let

Bi � B�xi� ri� �

for i � �� �� � � � ��, with xi � X , and ri � R
�. The ini-

tial values x� and r� are arbitrary (the authors suggest us-
ing the origin and unity, respectively). Then new centre
and radius values are produced using the following for-
mulae:

xi�� �
�

m

mX
j��

wj�xi� � (4)

ri�� � max
j�����m

fd�wj�xi� � xi��� � sjrig � (5)

where sj is the contractivity factor of map wj .
This algorithm performs well in practical terms for the

application to which Hart and DeFanti put it – ray-traced

�This simplification is at the expense of bounding efficiency, since
the use of directional information should help to more closely bound the
attractor. We shall touch on this topic again in Section 6.
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rendering of fairly dense three-dimensional IFS attractor
sets. The algorithm converges quickly toward a bound-
ing sphere which is fairly well centred on their example
attractor sets and whose radius is close to the minimum
value necessary to bound the attractor for the given cen-
tre point. By recursively instantiating this sphere during
ray-casting, the authors are able to adaptively refine their
knowledge of the spatial layout of an attractor set to any
required degree of precision. A ray is considered to in-
tersect the attractor if it enters a bounding sphere whose
diameter implies a suitably small associated pixel cover-
age. Their system manages to produce beautiful, highly-
detailed images of some interesting fractal sets.
However, impressive images notwithstanding, the un-

derlying bounding algorithm has two undesirable charac-
teristics. Firstly, the centre point of even the limit ball,
x�, is, in general, not as well centred onA as it could be.
Ideally, x� should be located at the geometric centre, c,
ofA— the value of x � X such that the bounding radius
expressionmax fd�x� y� j y � Ag is minimised. It may
be proven that x� is in fact located at the barycentre of
the invariantmeasure of the IFS�. For general IFSswhose
maps are not symmetrical in action, this has the effect
of biasing x� away from the geometric centre of A (see
Fig. 2), although it must remain within a tight convex hull
drawn around the set, due to the convexity property of
barycentric combination. The second drawback with the
algorithm is that although the limit ballB� can be proven
to bound A, it is actually impossible to guarantee this
condition for any of the finite balls Bi in the sequence.
The basic problem here is that the ball sequence always
converges directionally towardsB� from one side� (see
Fig. 3), and it can happen that the particular combination
of centre and radius values necessary to boundA only oc-
cur together in the limit. We do not have space here for
formal proofs of all these results. They may be found in
a separate report [20].
Canright [5] describes a bounding algorithm which is

rather different in approach from that of Hart and De-
Fanti. Again, balls are used as bounding structures, but
instead of trying to bound the whole attractor A with a
single ball, Canright attempts to construct a set of smaller
ballsBi, each of which bounds the image ofA under one
of the IFS maps wi, for i � �� 	� � � � �m:

Bi � wi�A� �

where the centre of each ball Bi is the fixed point of the
associated mapwi. The subsetswi�A� are termed attrac-
torlets, since they are contracted copies of the overall at-
tractor. Since

Sm

i�� wi�A� � A, by the definition of the
Hutchinson operator, the union of all of these balls, the

�We do not have space here for a full definition of the invariant mea-
sure. Loosely speaking, it is an importance weighting function defined
on A which also remains invariant under the action of the IFS maps.
More details can be found in most texts on fractal geometry [1, 4, 16,
15, 17].

�There is a good reason for this behaviour. As we see in the Ap-
pendix, if all component IFS maps are affine, then the centre point se-
quence equation (Eq. 4) is itself a contractive affine function. Thus, the
point sequence fxig is a linear progression.

0 1

0.5

0.8182

x�c

Figure 2: Inefficient bounding ball centre loca-
tion by Hart and DeFanti’s algorithm for the IFS
fR� w��x� � ���x� w��x� � ���x� ��	g. The extent
of A is the unit interval. Optimal ball centre is at c � ��
,
allowing a radius of ��
. Computed ball centre (the barycentre
of the invariant measure indicated by the superimposed his-
togram) is at x� � ������, necessitating a larger radius of
������ in order to bound A. (Note that in this diagram, the
extents of these 1D balls are illustrated in two dimensions by
their minimally-enclosing circles.)
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Figure 3: Hart and DeFanti ball sequence for the 1-D IFS�
R� w��x� �

�

�
x� w��x� �

�

�
x� ��

�
, starting with the ini-

tial ball B� � B��� ��. The extent of A is the interval ��� ��.
If i is finite, then xi � ri � �, implyingBi �� A.
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Figure 4: Attractorlet bounding ball efficiency: optimal balls
(fine dashed line); smallest possible balls whenmap fixed points
(at the outer corners of the triangle) are used as centers (medium
dashed line); Canright’s computed balls (solid line).

so-called envelope, E , must contain A:

E �

m�
i��

Bi � A�

Canright proves that if certain relationships between the
radii of the balls are satisfied, then E � A. Let fi and si
be the fixed point and contracivity factor, respectively, of
map wi, for i � �� � � � �m. Then the radius of the attrac-
torlet bounding ball centred at fi, ri, is required to satisfy
the following condition:

ri �
si �� � sj�

�	 sisj
d�fi� fj� � (6)

for all j � �� 	� � � � �m, where i 
� j. Canright presents
two algorithms for calculating a suitable set of radius val-
ues. The first method is iterative, but returns its answer
in a finite number of steps. The second is not explicitly
iterative (it does contain a sort). Both methods are com-
putationally equivalent.
However, although E may be a provably valid bound-

ing structure, it is generally not very efficient, for two rea-
sons. Firstly, the map fixed points tend not to be very
well-centred on their associated attractorlets, forcing the
resulting bounding ball radii to be larger than necessary.
Secondly, in general, the algorithms do not even com-
pute as efficient radii as they might for these already sub-
optimal centre points. In fact, one can see fromEq. 6 that
for a pair of IFSmapswhose contractivity factors are both
arbitrarily close to unity (not an unreasonable construc-
tion), the consequent computed radius value can increase
without limit! Fig. 4 illustrates these issues, using the
familiar Sierpinski Triangle as an example, while Fig. 5
shows a simple example of a 2-map IFS where the radius
values are clearly unreasonably large. For more rigorous
analysis of these inefficiencies in Canright’s algorithm,
the interested reader is again referred to [20].

5 The New Algorithm
In this section, a new algorithm for IFS bounding ball
construction is presented which improves on the perfor-

Figure 5: Inefficient bounding by Canright’s
algorithm for the weakly-contractive 1-D IFS
fR� w��x� � ��	x� w��x� � ��	x� ���g. In this case,
the attractor A is the interval ��� ��, shown at the centre of
the diagram as a small line. This set is optimally bounded by
the ball B���
� ��
�, shown in grey. The computed envelope
E consists instead of the union of the two much larger balls,
B��� 	� and B��� 	�, shown in black.

mance of the previous methods. Like Hart and Defanti’s
approach, the method is iterative, gradually approaching
a boundingball ofminimum radius. Here, however, com-
puted balls are always guaranteed to contain the attractor,
even after a finite number of iterations. What is more, the
new algorithm converges toward a bounding ball whose
efficiency can be matched by Hart and DeFanti only for
their best case (well-centred barycentre). The new al-
gorithm also compares very favourably with Canright’s
algorithms, usually producing a bounding ball which is
much more efficient than Canright’s envelope structure.
Our treatment here is divided into three parts. First, we

state the algorithm in general terms. We then show that a
minimisation surface which is at the core of the algorithm
will have a simple form, as long as the IFS maps obey
certain conditions. Finally, we show that these conditions
are met by self-affine IFSs, and that some optimisations
can be made for this case.

5.1 General Statement of the Algorithm
We start our description of the algorithm by deriving
some basic conditions for a ball which, if fulfilled, guar-
antee that the ball will contain the attractor of a given IFS.

Theorem 1 Let F � fX � w�� w�� � � � � wmg be an IFS,
with attractor setA, as before. Let si be the contractivity
factor of map wi, as before. Suppose that, for some x �
X and r � R�,

B�x� r� � B�wi�x� � sir� � (7)

for i � �� � � � �m. Then,

B�x� r� � A�

Proof: We construct an inductive proof, that if the
condition of Eq. 7 holds, then B�x� r� is a superset of its
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image under repeated application of the Hutchinson op-
eratorH . That is, we prove

B�x� r� � Hj�B�x� r�� � �j � �� 	� � � � ��� (8)

Firstly, let us assume that

B�x� r� � Hj�B�x� r�� � �j � �� 	� � � � � k� (9)

for some k � N . As induction step, we attempt to prove
that this equation holds for k��. For this, it is sufficient
to prove the added term, that

B�x� r� � Hk���B�x� r�� �

From Eq. 9, we have that B�x� r� � Hk�B�x� r��.
Since all maps wi, i � �� � � � �m, are contrac-
tive, they are thus continuous [1, p.80]. There-
fore, wi�B�x� r�� � wi

�
Hk�B�x� r��

�
. Thus,Sm

i�� wi�B�x� r�� �
Sm

i�� wi

�
Hk�B�x� r��

�
, or,

to rephrase, H�B�x� r�� � Hk���B�x� r��. But Eq. 9
also implies that B�x� r� � H�B�x� r��. Therefore,

B�x� r� � Hk���B�x� r�� �

as required. Finally, we prove Eq. 9 to be true for k � �:

B�x� r� � H�B�x� r�� �

That is,

B�x� r� �

m�
i��

wi�B�x� r�� �

For each map wi, i � �� � � � �m, we may write down that

d�wi�x� � wi�y�� � sir� �y � B�x� r� �

Therefore,

B�wi�x� � sir� � wi�B�x� r�� for i � �� � � � �m�

But, from our original conditions, we know that
B�x� r� � B�wi�x� � sir�, for i � �� � � � �m. Thus,

B�x� r� � wi�B�x� r�� for i � �� � � � �m�
� B�x� r� � H�B�x� r�� �

So by induction, Eq. 8 is true. In particular, since
H��B�x� r�� � A, this means that B�x� r� � A.

So, we have established Eq. 7 as a sufficient condi-
tion to guarantee that a ball contains the IFS attractor.
We shall now examine how we may construct a ball with
such properties. Let the condition of Eq. 7 hold, for a ball
B�x� r�. Then this implies

d�x�wi�x�� � sir � r� for i � �� � � � �m� (10)

This relationship is illustrated in Fig. 6, which shows ex-
ample balls for a simple three-map IFS inR�. Solving for
r, we get

r �
d�x�wi�x��

�	 si
� for i � �� � � � �m�

s�r

x w��x�

s�rw��x�

s�r

w��x�

r

Figure 6: Sub-ball centre point and radius relationships.

Let us define

gi�x� �
d�x�wi�x��

�	 si
� (11)

for x � X , i � �� � � � �m. Then, we can recast r as a
functionwhich returns theminimal admissible ball radius
value for a given centre point x:

r�x� � max
i�������m

fgi�x�g � (12)

In order to illustrate what these radius functions look like
for a self-affine IFS, let us consider some plots, for an ar-
bitrary example IFS F :

F �
�
R
�� w�� w�� w�

�
�

where

w��x� �
h
	���
�� 	���
�
	������ ������

i
x�

h
����	
��	
��

i
�

w��x� �
h
	��	��� 	���


	������ ���	�

i
x�

h
������
���	��

i
�

w��x� �
h
	��	��
 ������
	�����
 	���	�

i
x�

h
���
��
�����	

i
�

Fig. 7 shows contour plots for the associated radius func-
tions g�, g�, g�, as well as the combined function r. They
illustrate a general feature, that for affine IFS maps, the
associated g functions, and hence, the combined radius
function r, are “basin-like” in form.
Fig. 8 illustrates perhaps a little more clearly the form

of r. One can see here how the graphs of the g functions
intersect to form an upper surface which is the graph of
r. This surface is a patchwork of different “zones of in-
fluence” of each of the g functions.
Now, applying Theorem 1, we reach the interesting re-

sult that for any chosen point x � X , the ballB�x� r�x��
must contain the attractor of the IFS, A. Let

rm � min
x�X

fr�x�g �

Assume that this minimum occurs at a point x � xm.
Then the minimal ball we seek is B�xm� r�xm��.
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Figure 7: Contour plots of g and r functions.
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Figure 8: The radius function r is the maximum of the func-
tions g�, g�, g� – that is, the top surface of the graph in (a) above.
Note the different “zones of influence” due to g� (dark grey), g�
(medium grey) and g� (white). In (b) we can see the same struc-
ture from a lower view angle.

The core of the new algorithm is the minimisation of
r overX . In some simple cases, when dealing with low-
dimensional spaces and IFSs with few maps, it may be
possible to solve for the minimum analytically. In gen-
eral, however, a numerical procedure must be used. In
this context, the “basin-like” nature of r proves to be quite
useful. When the underlying IFS maps are affine, it is
possible to formally prove that r has no local maxima
or minima and that the global minimum must occur at a
unique point ofX (i.e. there are no plateaus) [20]. These
properties are of considerable importance in the selection
of a minimisation algorithm. Coping with local minima
is often the single-most difficult aspect of the minimisa-
tion process, and one that must usually be carefully tuned
to the problem at hand. Here, we can ignore this issue.
Additionally, although plateaus in a minimisation func-
tion can usually be classed as more of an irritation than
a real impediment to solution, it is nice to know that this
feature is also absent from r, as it enables us to charac-
terise our solution for rm as being unique. Taking these
two factors into account, therefore, we can be optimistic
that a relatively simple, “off-the-shelf” minimisation al-
gorithm should be effective in our search for rm.
Before going further, we note that if we assume that we

are using the Euclidean distance metric, we may gain in
efficiency byminimising the square of r (easily computed

-0.2 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

Figure 9: Bounding ball returned by new algorithm.

with the dot product), rather than r itself. This allows
us to avoid repeated use of the computationally-costly
square root function. Since r is constructed frommaximi-
sation and minimisation operations on strictly-positive
quantities, the squaring operation does not change the lo-
cation of the minimum point xm. Let �i�x� � x	w�x�,
for x � X , i � �� � � � �m. Then we define

r��x� � max
i�������m

�
�i�x� � �i�x�

��	 si�
�

�
�

Therefore,we can nowminimise the simpler r� to find the
location of the minimal ball centre xm and then compute
rm as the square root of the value of r� at that point.
Now let us consider the minimisation algorithm itself.

We will not engage in an exhaustive review of suitable al-
gorithms, as the field is quite broad (see Press et al. [18],
for example) and many different approaches should be
feasible. It should be noted, however, that some algo-
rithms may not cope well with the “composite” nature
of the minimisation surface. For instance, direction set
approaches which allow only fixed stepping directions
(say, parallel to the coordinate axes) have been found
to be prone to getting stuck in the valley-like seams be-
tween the regions of influence of the IFS maps. A ver-
sion of Nelder and Mead’s flexible Downhill Simplex
Method [18] has been tested on the problem and seems
to work well, quickly returning a good approximation to
the global minimum point.
In order to start the minimisation process somewhere

near the attractor, we can use the fixed point of one of
the maps of the IFS, or the average of these points, or
evenHart and DeFanti’s measure barycentrex� (see Ap-
pendix) as its starting point. The initial step size (charac-
teristic scale) of the minimisation algorithm can be set to
a certain fraction (say, �

��
) of the value of r at the starting

point. As a termination condition, we can require that the
distance between successive step points should drop be-
low a certain small fraction of the current value of r.
As an example, application of this algorithm to the IFS

F whose radius function plots we saw in Figs. 7 and 8
yields the bounding circle B�������� ��	�� � �����,
shown circumscribing the attractor in Fig. 9. One may
verify that the centre of the circle is at the location of the
minimum value of r in those plots.
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Figure 10: Just-touching bounding-ball hierarchy of the new
algorithm (on left). If the radius is smaller, not all balls nest (top
right). If larger, the fit is poorer (bottom right).

6 Bounding Ball Efficiency
In this section, we examine the efficiency of the balls
computed by the new algorithm, and compare its perfor-
mance with the algorithms of Hart and DeFanti and Can-
right.
Let us begin by investigating the optimality of the

bounding balls produced by the new algorithm – is it pos-
sible to fit a smaller bounding ball around the attractor
than the one which the algorithm computes? In general,
the answer is “yes”. For example, referring to Fig. 9,
we can see that it is possible to manually draw a smaller
bounding circle around the attractor. However, although
the new algorithmmay not compute the absolutely small-
est bounding ball around a particular IFS attractor set, it
does calculate the smallest bounding ball that may be hi-
erarchically instantiated. That is, the computed ball is the
smallest that may be instantiated recursively in a bound-
ing hierarchy of balls [12], where each parent ball is guar-
anteed to contain its child balls (see Fig. 10). The fact
that the algorithm computes the smallest ball that may
be so instantiated is a consequence of its original con-
struction as the minimal ballB�x� r� such thatB�x� r� �
B�wi�x� � sir�, for i � �� � � � �m.
However, although the top-level bounding ball is not

in itself optimal, the new algorithm still performs well
compared to the approachesofHart andDeFanti andCan-
right. As an empirical test, all three algorithms were ap-
plied to a sample set of two thousand randomly-generated
two-dimensional IFSs. Each IFS had between three and
ten maps, each map being constructed as the composition
of random x and y shears and scales (with parameters be-
tween -1 and 1), a random rotation, and a random transla-
tionwithin the region ��� ����� ��. Because of the shears,
such a map is not guaranteed to be contractive, although
with the above choice of parameters, it is likely. If a given
map turned out not to be contractive (as determined by the
eigenvaluemethod of Section 2), it was discarded and an-
other candidatemapwas generated in its place, and so on,
until a valid map was found.
Results are plotted in Fig. 11 in the form of a cumula-

tive frequency graph of the efficiencyE in bounded area
of the new algorithm’s computed balls, relative to the ar-
eas of both Hart and DeFanti’s balls and Canright’s enve-
lope. E is simply the area of each algorithm’s bounding
structure (ball or envelope, respectively, for Hart and De-
Fanti and for Canright), divided by the area of the new al-
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Figure 11: Cumulative frequency distribution of the area
bounding efficiency E of the new algorithm, relative to both
Canright’s and Hart and DeFanti’s algorithms.

gorithm’s ball. The area of Canright’s envelopewas com-
puted by reference to Green’s Theorem [22], summing
area contributions linked to arcs of the boundary of the
envelope.
The graph can be read as follows: take a certain value

ofE on the horizontal axis and follow it up to the curve of
one of the algorithms. The associated value on the verti-
cal axis is the proportion of the sample IFSs for which the
new algorithm produced a bounding ball whose area was
less thanE times smaller than the old algorithm’s bound-
ing structure (ball or envelope, respectively, for Hart and
DeFanti’s and Canright’s algorithms). Not all data points
are plotted on the graphs, as for both of the algorithms,
there were some very large outlying values of E. For in-
stance, in the worst test result for Hart and DeFanti’s al-
gorithm, it computed a bounding ball which had almost
600,000 times the area of that returned by the new al-
gorithm. The worst result for Canright’s algorithm was
lower than this (perhaps surprisingly, given the concerns
we expressed in Section 4 over its potentially large ball
radius values), with a value of E � 	�� ���.
Generally speaking, we can see from the graphs that

the new algorithm performs better than either of the pre-
vious ones. In an attempt to define an overall index of per-
formance relative to the previous algorithms, we compute
the median of both distributions�. This results in a value
of 	�� forHart andDeFanti and �	�� for Canright. These
are the “typical” gains in efficiency in bounded area that
one could hope to see when using the new algorithm for
general two-dimensional IFSs. Note that in higher di-
mensions, the typical efficiency of the new algorithm (in
terms of ratios of n-dimensional volumes)will be greater,
since the volumes will increase in proportion to the n-th
power of the radius.
Fig. 12 shows an enlargement of the graph aroundE �

�. This plot highlights some interesting features of the
distributions of E. Firstly, for a small number of IFSs
(1% of the sample set), Canright’s envelope structure ac-
tually has less area than the new algorithm’s ball (that
is, E � �). The best such value in the data set is
E � ���
. Such a situation can occur for certain “op-
timal” IFSs for Canright’s algorithms whose fixed points
are well-centred on their attractorlets (see Fig. 13, for ex-
ample).
A second interesting observation from the enlarged

�For highly-skewed distributions like these, this is generally a more
descriptive statistic than the mean [6, p.30].
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Figure 12: Enlargement (aspect ratio not maintained) of the
plots of E (Fig. 11) around the value E � �. Canright’s solu-
tion betters the new algorithm (E � �) in 1% of cases, whereas
Hart and DeFanti’s can theoretically just equal it (E � �).

B

E

Figure 13: An optimal IFS for Canright’s algorithm. The en-
velope region E (in grey) has less area than the new algorithm’s
proposed bounding ball B.

graph is that it appears that the lower bound ofE for Hart
andDeFanti’s algorithm is exactly unity. That is, it is pos-
sible that their algorithm can produce balls which are as
small as those of the new algorithm, but no smaller. The
reason for this rather precise result is that Hart and De-
Fanti’s limit ball can be formulated in terms of the new al-
gorithm’s radius function r, evaluated at their limit center
point x� (see Appendix). Thus, their limit ball is a (usu-
ally sub-optimal) point in the solution space of the new
algorithm.

7 Conclusions
The algorithm presented is an improvement over existing
methods for calculating the bounds of an IFS attractor set.
It computes a ball in finite time which reliably bounds the
attractor and is smaller than the optimal balls of previous
methods in almost all cases. Our empirical comparison of
algorithms suggests that for two-dimensional IFSs, one
can expect the new algorithm to return a bounding ball
whose area is typically under one half that of Hart and
DeFanti’s ball and under one twelfth that of Canright’s
envelope structure. Perhaps more importantly, however,
there does not appear to be any upper limit on the area ra-
tios for either of these algorithms – their worst cases can
be arbitrarily bad. What is more, for higher-dimensional
spaces, such as R�, we can expect the disparities in n-
dimensional volume (Lebesgue Measure) to grow with
rn.
The algorithm is quite simple in form and should be

relatively easy to implement. The most difficult part of
this taskwill probably be the coding of the radius function

minimisation algorithm, but it should be possible to apply
any of a number of off-the-shelf algorithms to this prob-
lem, as we have donewith the Downhill Simplexmethod.
This process is greatly aided by the fact that the mini-
mation surface we are dealing with has a provably sim-
ple “basin-like” form, with no local maxima or minima,
and no plateaus. Finally, we note that although the al-
gorithm does not in general compute the minimal-sized
bounding ball around the attractor, it does compute the
smallest-sized ball which may be hierarchically instanti-
ated. This feature may be useful for certain applications,
such as ray-tracing, and also when attempting to reason
mathematically about the bounding hierarchy.
As regards applications of the algorithm, there are

many in the field of IFS theory. Most uses of IFSs could
benefit from better knowledge of the spatial bounds of at-
tractor sets, even if only for the purpose of appropriately
sizing and centering images of these sets for display on
a computer screen. The algorithm was originally devel-
oped to serve as the core of a ray-tracing rendering sys-
tem for IFSs, much along the lines of Hart and DeFanti’s
work [12], and has proved to be useful there.
There are several interesting avenuesof researchwhich

arise from this work. Firstly, the new algorithm could be
generalised so that the overall boundingballB is required
to contain only its ellipsoidal images under the Hutchin-
son operator (i.e. B � H�B�), rather than the set of
balls used here. Typically, this should result in a smaller
top-level ball, since the boundinghierarchywill now con-
sist of tighter nested ellipsoids. Such an extension is
highly desirable since it would greatly increase the effi-
ciency of our ray-tracing application. Secondly, the algo-
rithm could be extended to handle more complex forms
of IFS, such as Recurrent IFSs [3], Language-Restricted
IFSs [19] or Mutually-Recursive Function Systems [8],
by solving the cyclic radius relationships in such a struc-
ture’s transformation graph. Both of these topics are sub-
jects of current research by the author. Finally, it would
be interesting to investigate the application of the al-
gorithm to some more exotic IFS variants, perhaps us-
ing non-Euclidean distance metrics [1] or nonlinear IFS
maps [10, 13].

A Analytic Solution for Hart and DeFanti’s Limit
Ball

Hart and DeFanti’s limit bounding ball B� �
B�x�� r��, which their algorithm approximates by
an iterative process, can in fact be directly solved for
analytically. Let wi�x� � Aix � Bi, for i � �� � � � �m,
be the component maps of a self-affine IFS, as before.
We define A � �

m

Pm

i�� Ai, and B � �

m

Pm

i�� Bi.
Then x� is simply the fixed point of the affine function
f�x� � Ax�B:

x� � �I 	A���B�

The reader may have noted a certain similarity between
Hart and DeFanti’s radius production equation (Eq. 5)
and the new algorithm’s original radius bounding in-
equality (Eq. 10). In fact, the two equations become ex-
actly equivalent as the limit of Eq. 5 is reached (i��).
Thus,

r� � r�x�� �
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where r is the radius function of the new algorithm
(Eq. 12). This means that �x�� r�� is a point on the
new algorithm’s radius minimisation surface. Since all
such points correspond to provably-valid bounding balls
around the attractor, this result provides us with proof that
Hart and DeFanti’s limit ball is indeed valid. It also gives
us a preferable, direct method for computing this ball:
solve for x� as above, then evaluate r at this point.
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