
In Figure 11(iii), this realizable update corresponds to
some path from a to k in the directed graph shown. As
noted above, the infinitesimal perturbation is not used in
practice; it is sufficient to know that some path in some
perturbation exists for the chosen crossing sequence. This
update is robust because few numeric computations are
used: one to find the highest vertex and one to find the
direction of traversal of the D1 surface. Most EV updates
can be performed symbolically [SG94].

5 Conclusions

TheD1 surfaces considered here form an important part of
the complete discontinuity mesh. The existence of such
surfaces was previously shown [PD86, GM90, Hec91,
Hec92a, LTG92]. A complete treatment of these surfaces
has been presented, along with a novel backprojection
update based upon a jittering argument.
This paper shows that the casting of D1 surfaces is

not as simple as it first seems. This presentation unifies
several methods involved in computing discontinuities:
The casting step of D2 surfaces considers visibility in
one dimension, that of D1 surfaces considers visibility
in two dimensions, and the general problem of handling
discontinuity surfaces is concerned with visibility in three
dimensions.
Two methods are presented to update the backprojec-

tion from cell to cell in a discontinuity mesh when the
segment crossed is a D1 discontinuity edge. The first,
rather “brute force,” method is based on [GM90]. The
second method uses a jittering approach to break a D1
surface into a set of D2 surfaces. This jittering does not
need to be performed in practice and in fact allows us
to update the backprojection by making use primarily of
symbolic information. It is not clear that the jittering
approach can be extended to nonconvex faces.

References

[BRW89] D. R. Baum, H. E. Rushmeier, and J. M. Winget.
Improving radiosity solutions through the use of an-
alytically determined form-factors. In Jeffrey Lane,
editor, Computer Graphics (SIGGRAPH ’89 Pro-
ceedings), volume 23, pages 325–334, July 1989.

[DF94] G. Drettakis and E. Fiume. A fast shadow algorithm
for area light sources using backprojection. Com-
puter Graphics Proceedings, Annual ConferenceSe-
ries 1994, 28:223–230, August 1994.

[Dre94] G. Drettakis. Structured Sampling and Reconstruc-
tion of Illumination for Image Synthesis. PhD thesis,
University of Toronto, January 1994.

[GCS91] Z. Gigus, J. Canny, and R. Seidel. Efficiently com-
puting and representing aspect graphs of polyhedral
objects. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(6):542–551, June 1991.

[GM90] Z. Gigus and J. Malik. Computing the aspect graphs
for line drawings of polyhedral objects. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, 12(2):113–122, February 1990.

[Hec91] P. Heckbert. Simulating Global Illumination Using
Adaptive Meshing. PhD thesis, CS Division (EECS),
Univ. of California, Berkeley, June 1991.

[Hec92a] P. Heckbert. Discontinuity meshing for radiosity.
Third Eurographics Workshop on Rendering, pages
203–215, May 1992.

[Hec92b] P. Heckbert. Radiosity in flatland. Eurographics,
11(2), 1992.

[LTG92] D. Lischinski, F. Tampieri, and D. Greenberg. Dis-
continuity meshing for accurate radiosity. IEEE
Computer Graphics & Applications, pages 25–39,
November 1992.

[LTG93] D. Lischinski, F. Tampieri, and D. P. Greenberg.
Combining hierarchical radiosity and discontinuity
meshing. In James T. Kajiya, editor, Computer
Graphics (SIGGRAPH ’93 Proceedings),volume 27,
pages 199–208, August 1993.

[Moo36] P. Moon. The Scientific Basis of Illuminating Engi-
neering. McGraw-Hill, 1936.

[NN85] T. Nishita and E. Nakamae. Continuous tone rep-
resentation of three-dimensional objects taking ac-
count of shadows and interreflection. In B.A.Barsky,
editor, Computer Graphics (SIGGRAPH ’85 Pro-
ceedings), volume 19, pages 23–30, July 1985.

[PD86] W. Plantinga and C. Dyer. An algorithm for con-
structing the aspectgraph. In Proc.27th Symp. Foun-
dations of Computer Science, pages 123–131, 1986.

[SG93] A. J. Stewart and S. Ghali. An output sensitive al-
gorithm for the computation of shadow boundaries.
In Proc. 5th Canad. Conf. Comput. Geom., pages
291–296, Waterloo, Canada, 1993.

[SG94] A. J. Stewart and S. Ghali. Fast computation
of shadow boundaries using spatial coherence and
backprojections. Computer Graphics Proceedings,
Annual Conference Series 1994, 28:231–238, Aug
1994.

[Tam93] F. Tampieri. Discontinuity Meshing for Radiosity
Image Synthesis. Ph.D. thesis, Cornell University,
Ithaca, NY, 1993. available as Cornell technical re-
port 93–1346.

[Tel92] S. J. Teller. Computing the antipenumbra of an area
light source. In Edwin E. Catmull, editor, Computer
Graphics (SIGGRAPH ’92 Proceedings),volume 26,
pages 139–148, July 1992.



Figure 11: (i) D1 discontinuity surface defined by a convex face. The four discontinuity surfaces intersect the face R
in the same line. (ii) EV discontinuity surfaces �1� �2� . . . �k�2 induced by perturbing the topmost vertex of a face F
of k vertices. (iii) There exists at least one feasible path from a to k.

4.4 A Symbolic Approach for
Surfaces Defined by
Convex Faces

Amore difficult problemarises with convex faces ofmore
than three edges. It is possible to dissect the D1 surface
that embeds the face into a set of EV surfaces (one for
each vertex/edge pair), but the size of such a set would
be in ��k 2� for a face of k edges. The naive approach
of computing all ��k 2� surfaces fails, however, since an
arbitrary crossing order of the surfaces will not work.

In what follows, we describe a jittering approach to
break a convex face of k edges defining a D1 surface into
k � 2 triangular faces, each defining a single EV surface.
This decomposition admitsmany crossing sequences, any
one of which can be chosen to update the backprojection
across the set of k � 2 EV surfaces.
In Figure11, assume that plane� embedding the face F

intersects the light source. Thus � embeds a D1 discon-
tinuity surface. Consider a viewpoint on face R crossing
the discontinuity line ��R. Behind � the visible portion
of the light source contains some lower chain of edges of
F . In front of � the visible portion contains some upper
chain from the face. Note that the upper and lower chains
are always disjoint.
A backprojection on the face R is updated across � as

follows. Let t be the vertex on F most distant from the
plane of R. Displace t infinitesimally in the direction of
the outward–pointingnormal ofF and call the new vertex
t�. Create k � 2 triangular subfaces by connecting t� to
adjacent pairs of the other k � 1 vertices of F . Number
the subfaces from f1 to fk�2 in clockwise radial order

around t�. See Figure 11(ii).

Thediscontinuity curves that nowariseonR are formed
from the intersection ofRwith the planes embedding the
subfaces. These planes are called subdiscontinuity sur-
faces and are labelled �1 . . . �k�2. It is clear from the
construction (and from Figure 11) that the subdiscontinu-
ity surfaces will be tangent to a convex curve.

We now describe how to choose a realizable crossing
sequence of �1 . . . �k�2.

Consider a viewpoint moving in a direction with a pos-
itive dot product with F ’s normal. (If the viewpoint is
moving in the direction opposite to the normal, we per-
turb t in that direction.) Any one of the subdiscontinuity
surfaces �1 . . . �k may be crossed first, since all surfaces
abut the region containing the viewpoint (region a in Fig-
ure 11). Choose the subdiscontinuity�i to be crossed first
such that at least one edge of F defining �i is present in
the backprojection and thus the initial update is feasible.

After crossing �i, the viewpoint is forced to cross the
subdiscontinuities �i�1 to �k�2 in increasing order and
is forced to cross �i�1 to �1 in decreasing order. Each
interleaving of the two sequences ��i�1� �i�2� . . .�1�
and ��i�1� �i�2� . . . �k�2� corresponds to some path
through the arrangement of discontinuity lines on R.
Thus every interleaving is realizable and it is sufficient
to choose one. The previous discussion is summarised in
the following lemma.

Lemma 2 Given a convex face of k edges which defines
a D1 discontinuity surface, the backprojection can be
updated across the surface in O�k� time.



the D2 surface in that order, resulting in the same change
to the backprojection as an update across the original D1
surface.
In Figure 9(i), vertex a is jittered out of the plane de-

fined by abcd. The discontinuities that result on face f
are the four lines in Figure 9(ii) which are labelled by the
corresponding discontinuity surfaces.
Any sequence of updates across the four discontinu-

ity surfaces that follows a path from point p to point q
in Figure 9(ii) is sufficient. There are twelve realizable
and twelve unrealizable such sequences. To find a re-
alizable sequence, it is sufficient to test the dot product
�b � a� � �d � c�. If it is positive, then the sequence
�acd� bcd� cab� dab� is realizable. If it is negative, then
that sequence would correspond to an unrealizable up-
date from point u to point v in the figure, but a realizable
update would be the sequence �bcd� acd� cab� dab� (or, in
general, exchange either pair of surfaces �acd� bcd� or
�cab� dab� in the original sequence).

Figure 9: (i) A D1 surface (shaded) defined by edges ab
and cd. Moving vertex a infinitesimally out of the surface
results in four D2 surfaces: acd, bcd, cab, and dab. (ii)
These surfaces intersect the face f in an arrangement of
four lines.

Intuitively, the unrealizable crossing orders are unreal-
izable because the regions of u and v don’t correspond to
either side of the original D1 surface, unlike the regions
of p and q. Note that the twenty-four crossing orders de-
scribed above are the only possible crossing orders, since
this is the number of permutations of four items.
Performing the infinitesimal perturbation is not neces-

sary in practice; it is sufficient to know that some perturba-
tion exists for the chosen crossing sequence. The previous
discussion is summarised in the following lemma.

Lemma 1 Given two coplanar edges not belonging to
the same face and defining a D1 discontinuity surface,
the backprojection can be updated across the D1 surface.

This update can be done in constant time for each such
pair of edges.

4.3 A Symbolic Approach for
Surfaces Defined by
Triangular Faces

The simplest face to embed a D1 surface is a triangular
face (see Figure 10). The description of the update in this
case will simplify the presentation of the convex face case
which follows.

Updating the backprojection across a triangular face is
simple. In Figure 10, imagine a viewpoint crossing the
discontinuity line from p to q. At p, edge z appears in
the backprojection and at q, edges x and y appear. If the
viewpoint ismoving from p to q, we simply replace the se-
quence of edges �z� in the backprojection by the sequence
of edges �x� y� (or a portion thereof). To determine the
portion of �x� y� that replaces �z�, we project the triangle
vertices onto the plane of the light source (with a cen-
tral projection through the point at which the viewpoint
crosses the D1 surface). Only those edges of �x� y�whose
projections falls inside the visible part of the source (de-
fined by the backprojection) are inserted. This ensures
that an occluded edge is not added to the backprojection.
This algorithm is just a special case of that of Gigus and
Malik [GM90].

Figure 10: Crossing a D1 discontinuity defined by a tri-
angular face. From p to q, edge z in the backprojection
is replaced by edges x and y. From q to p, x and y are
replaced by z.



Figure8: The three-dimensional scene that gave rise to the
two–dimensional scene of Figure 6. The lightly shaded
D1 surface is defined by edges ab and cd. The cells of
the two–dimensional discontinuity mesh that have non–
empty backprojections (five of them in Figure 6) corre-
spond to D1 discontinuity lines in the three–dimensional
scene. Note that the discontinuity points in the two–
dimensional mesh of Figure 6 correspond exactly to dis-
continuity points in the three–dimensional mesh above.
Some other mesh edges touching these points are shown
as thin lines.

4 Updating the Backprojection
Across a General D1 Surface

This section describes methods to update the backpro-
jection across a D1 discontinuity surface. The particular
method used depends upon how the discontinuity surface
is defined.

4.1 Surfaces Defined by an
Arbitrary Face

The following algorithm is abased upon thework ofGigus
and Malik [GM90] and takes advantage of the fact that
we only update the boundary of the visible light source,
while their application must update the more complex
visible surface map.
Consider the case in which the D1 surface is defined

by a face F . For a viewpoint on the surface, the lower
chain of F is the sequence of (parts of) edges visible from
the viewpoint. The upper chain is the sequence of (parts
of) edges visible looking from a large circle — which

is centred at the viewpoint — toward the viewpoint but
not through the viewpoint. As Gigus and Malik [GM90]
point out, for a face of n segments, both can be computed
in O�n� time with a two–dimensional visible surface al-
gorithm that exploits the fact that F is a simple polygon.
The D1 surface partitions the ambient space into two

halfspaces: an outsidehalfspace, containing the outward–
pointing normal of the face, and an inside halfspace.
As the viewpoint traverses the D1 surface, edges of F

that are present in the backprojection will disappear, to be
replaced by other edges of F . If the viewpoint traverses
from outside to inside, the edges that disappear will be
from the upper chain, while those that replace them will
be from the lower chain. Conversely, if the viewpoint
traverses from inside to outside, lower chain edges will
disappear, to be replaced by upper chain edges.
The following procedure updates the backprojection as

the viewpoint traverses the D1 surface: For each edge e of
face F present in the backprojection, locate the edges in
the opposite chain to that of e which have the same cen-
tral projection onto the viewpoint (the endpoints of the
chain can be found in O�logn� time with binary search).
Replace e with those found in the opposite chain. Al-
ternatively, we can merge the upper and lower chains in
radial order around the viewpoint, replacing an edge in
one by an edge in the other whenever it occurs in the
backprojection.

4.2 A Symbolic Approach for
Surfaces Defined by Two
Separate Edges

This section describes a novel, alternative, method to up-
date the backprojection across a D1 surface that is defined
by two edges of the scene. In this approach, we break each
D1 surface into a number of simpler D2 surfaces. We then
determine the order in which these new surfaces must be
traversed to update correctly the backprojection. This ap-
proach is more robust than that of the previous section
because almost all of the computation is done symboli-
cally.
We break the discontinuity into a number of EV sur-

faces by jittering one endpoint of one of the edges in-
finitesimally in a direction out of the plane. This results in
four D2 surfaces which are infinitesimally different from
the originalD1 surface. See Figure 9. The key point is the
following: An update of the backprojection across the D1
surface is equivalent to a sequence of updates across the
four D2 surfaces, in some order, called the crossing order.
However, not every crossing order of the four D2 surfaces
admits successful updates; a crossing order is realizable
if the backprojection can be successfully updated across



quickly the backprojection on at least one segment of the
scene.

In what follows, we describe how to propagate the
backprojection from a cell of one segment into a cell
of another segment. Once on the second segment, the
backprojection can be propagated to the other cells of the
second segment by incrementally updating it across the
discontinuity lines that separate the cells (as described
above). By repeating the segment–to–segment and cell–
to–cell propagation, the backprojection can be efficiently
computed for every cell in the mesh.

Consider a discontinuity line, defined by endpoints u
and v, that intersects the interior of a segment at a point
w. Without loss of generality, assume that u is closer to
the segment than v. Let Cu be the cell adjacent to u and
let Cw be the cell adjacent to w that is on the side of huvi
opposite to Cu. Refer to Figure 7.

The backprojection in Cu is propagated to Cw by up-
dating it across the discontinuity lines that pass through
u. The update is performed in radial order around u and
until huvi is reached.

For example, in Figure 7, the discontinuity lines are or-
dered clockwise around u: huai, hubi, huvi, huci. Note
that no change occurs in the backprojection when the
viewpoint crosses a discontinuity line above u; only by
crossing below uwill u have an effect on the backprojec-
tion.

In summary, we have described how to compute effi-
ciently the two–dimensional discontinuitymesh and how
to compute efficiently the backprojection of each cell of
the mesh.

Figure 7: The backprojection in cell Cu is propagated to
cell Cw by updating it across the discontinuity line huai,
followed by hubi. The light source, not shown, is above
everything.

3 Casting a Discontinuity
Surface

In a three–dimensional scene, a D1 discontinuity sur-
face occurs in two situations: either (a) two segments
are coplanar and the plane embedding them intersects the
light source or (b) the plane embedding a face of the scene
intersects the light source. Identifying D1 surfaces has
been studied elsewhere [GM90, Hec92a, LTG92, DF94]
and will not be treated here.
A D1 surface is a bounded, infinite region of a plane. If

two edges define the surface, the surface consists of those
points x from which a ray can be drawn that intersects
one edge, then the other edge, then the light source (in
that order) without intersecting the interior of any object
between the first edge and the source (recall Figure 1).
Similarly, if a face defines the surface, the ray must in-
tersect the face and the source (in that order) without
intersecting the interior of any object between the face
and the source.

3.1 Using Two–Dimensional
Meshing to Cast a D1 Surface

Given a D1 discontinuity surface in a three–dimensional
scene, the casting operation determines the discontinuity
segments that (a) are intersections of the D1 surface with
scene faces and (b) are visible from the source.
It is easy (although not very efficient) to intersect theD1

surface with each face of the scene to form a list of poten-
tial discontinuity segments. Drettakis and Fiume [DF94]
use a heuristic to speed this up: The ambient space is di-
vided into voxels, each of which records the scene faces
that intersect it. The D1 surface is first intersected with
the voxels to determine a set of candidate faces, each of
which is intersected to determine the potential disconti-
nuity segments.
The casting procedure follows: The potential discon-

tinuity segments, along with a segment corresponding to
the light source, are input to the two–dimensional discon-
tinuity meshing algorithm of Section 2. That algorithm
outputs the description of a two–dimensional discontinu-
ity mesh consisting of discontinuity cells and their back-
projections. Only those discontinuity cells from which
some part of the source is visible correspond disconti-
nuity edges in the three–dimensional mesh. The casting
operation simply outputs the three–dimensional segments
corresponding to these cells! Note that the discontinu-
ity points that bound these cells in the two–dimensional
mesh correspond exactly to discontinuity points in the
three–dimensional mesh. Figure 8 shows an example.



scene intersects the uv line between u and v, no disconti-
nuity point is deposited (in this case, each of s2 and s2� is
identical to one of s1 and s3).
The segment stacks must be maintained during p’s

progress along the source in order to determine quickly,
whenever p crosses a uv line, whether a discontinuity
point needs to be deposited. We could do this without us-
ing segment stacks, but then we would have to determine,
whenever p crosses a uv line, what parts of the scene are
visible from p. This would take time proportional to the
number of segments in the scene every time p crosses a uv
line. The extra effort involved inmaintaining the segment
stacks eliminates this potentially expensive step.
The complete mesh algorithm of this section was im-

plemented by the authors in two days with about 1000
lines ofC code. For a scene of 100 segments the program
took 2 seconds on a 166MHz PentiumPC.We expect this
to become much faster when the code is improved with
more sophisticated data structures for the priority queue
and the segment stacks.

2.2 Computing the Backprojections

Each cell of the mesh has a backprojection which de-
scribes the topology of the visible source, as seen from
that cell. We will compute backprojections in a few key
cells of the mesh and will propagate them from cell to
adjacent cell throughout the mesh. The propagation will
involve updating the backprojection incrementally as the
viewpoint crosses discontinuity lines that separate adja-
cent cells.

Updating the Backprojection Across a Discontinuity

Each discontinuity line is defined by two segment end-
points u and v and is denoted huvi. There are several
ways that the backprojection can be updated as the view-
point crosses huvi:

� If neither u nor v is on the source:

– If u and v bound segments to the same side of
huvi, then one of u and v replaces the other in
the backprojection (e.g. hdfi in Figure 6).

– If u and v bound segments on opposite sides of
huvi, then segment uv appears or disappears in
the backprojection (e.g. hdei in Figure 6).

� If either u or v is on the source:

– If u and v bound segments to the same side of
huvi, then segment uv appears or disappears
in the backprojection (e.g. hbfi and haci in
Figure 6).

– If u and v bound segments on opposite sides of
huvi then one of u and v replaces the other in
the backprojection (e.g. hbei in Figure 6).

Figure 6: A scene with a source ab and three segments.
The backprojection in each cell of the bottom segment is
shown below the cell.

Computing Backprojections in Cells

This section describes how to compute the backprojection
in each cell of the discontinuitymesh, which is computed
with the algorithm of Section 2.1.
From some segments of the scene, the whole light

source is visible from every point of the segment. These
segments are said to be fully visible. For example, in
Figure 6, segment cd in is fully visible but segment ef is
not.
The algorithm of Section 2.1 can be modified to deter-

mine these segments, as follows. That algorithm initially
computes the segments that are visible from one end of
the source. Any segment that is not initially visible is
flagged as “not fully visible.” While the algorithm pro-
ceeds, discontinuity points are deposited on segments.
Any segment on which a discontinuity point is deposited
is also flagged as “not fully visible.” (Since a discon-
tinuity point separates two cells in which the topology
of the visible source is different, in at least one of those
cells, the whole source can’t be visible.) Once the algo-
rithm terminates, any segment that has not been flagged
as “not fully visible” is fully visible. Note that at least
one segment of the scene will be fully visible, since it is
not possible to establish a cycle of overlapping segments
in two dimensions.
On each fully visible segment is a single cell of the dis-

continuity mesh. The backprojection of this cell consists
of the whole light source. Thus, we can determine very



Figure 5: As point pmoves from p1 to p2 along the light source, the two rays pu and pv exchange position in the radial
order around p. The segment stacks in each region defined by these rays (regions 1,2,3 at p1 and regions 1�,2�,3� at p2
above) are updated to reflect the crossing. Below each region, these stacks are shown before and after p crosses the
discontinuity. In cases (i), (ii), and (iii), a discontinuity point is deposited on the bottom segment R.

to three regions; let s1, s2, and s3 be the topmost segment
of each region (in counterclockwise radial order around
p) before p has passed the discontinuity (e.g. at p1 in
Figure 5). Let s2� be the topmost segment of the middle
region after p has passed the discontinuity (e.g. at p2 in
Figure 5). For example, in Figure 5(i), s1 � F� s2 �
F� s3 � R, and s2� � H.
Given s1, s2, s2� , and s3, the applicable case in Figure 5

is easily determined:

� Case i: u and v have edges to the same side of the
uv line and either s1 or s3 is different from both s2
and s2� . A discontinuity point is deposited on the
one of s1 and s3 that is different from both s2 and
s2� . In Figure 5(i), segment R is different from the
segments F andH.

� Case ii: u and v have edges to opposite sides of the
uv line and either s2 or s2� is different from both
s1 and s3. A discontinuity point is deposited on the
one of s2 and s2� that is different from both s1 and
s3. In Figure 5(ii), segment R is different from the
segments F andH.

� Case iii: u and v are joined by a segment and the
other two segments adjacent to u and v are to the
same side of the uv line. Once again, either s1 or
s3 is different from both s2 and s2� . A discontinuity
point is deposited on the one of s1 and s3 that is
different from both s2 and s2� . This is segment R in
Figure 5(iii).

� Case iv: u and v are joined by a segment and the
other two segments adjacent to u and v are on op-
posite sides of the uv line. No discontinuity point is
deposited.

Some other situations exist, which are not shown in
Figure 5: (Case v) If either u or v has two adjacent seg-
ments on opposite sides of the uv discontinuity line, no
discontinuity point is deposited, since a viewpoint cross-
ing theuv linebelow these segments cannot see the source
at all when looking upward along the uv line; (Case vi) If
another segment of the scene intersects the uv line above
u, no discontinuity point is deposited (in this case, s2 and
s2� are identical); (Case vii) If another segment of the



2.1 Computing the Mesh

Following is the algorithm to compute the discontinuity
mesh.

1. (Refer to Figure 4.) Position a point p at one end-
point of the source segment. From p draw rays to
each segment endpoint in the scene. Sort these rays
radially around p. For each region between pairs of
adjacent rays, determine the segments that intersect
the region and sort them by increasing distance from
p. The list of segments in each region is called the
segment stack. In each region, the topmost segment
on the stack is visible from p.

2. Consider each pair of adjacent regions: If the top-
most segments in the two corresponding segment
stacks are different, deposit a discontinuity point on
the more distant of the two segments. In Figure 4, a
discontinuity point would be deposited on segment
gh at its intersection with the second ray from the
left.

3. Move p toward the other end of the source, main-
taining the rays from p. Whenever two adjacent rays
become collinear, p lies on a discontinuity line, the
treatment of which is described below. After treating
the discontinuity, exchange the two rays in the radial
ordering around p.

4. When p reaches the other end of the source, repeat
Step 2.

This algorithm can be implemented efficiently using a
priority queue which contains the positions on p at which
rays become collinear. For n rays, the queue will con-
tain n � 1 entries, since only adjacent rays can become
collinear. Step 3 above consists of removing from the
queue the next closest position to p, moving p to that
position, treating the discontinuity at p, and adding new
positions to the queue after the two rays are exchanged in
the radial order.

Treatment of Discontinuities

A discontinuity is detected in Step 3 above when two
adjacent rays become collinear and the region between
them “collapses.” As p moves past the discontinuity, the
rays are exchanged in the radial order and a new region
appears between them. Two thingsmust be done here: (a)
the segment stack of the new region must be computed,
and (b) a discontinuity point might have to be deposited
on some segment.
The new segment stack is easily obtained bymodifying

the segment stack from the old, collapsed region. Let the

Figure 3: A two–dimensional scene with a source and
three segments. A viewpoint at u can see a part of the
source. This part of the source disappears from view
when the viewpoint moves to v. The line through d and e
is a discontinuity line and i is a discontinuity point.

Figure 4: The algorithm initially draws a ray from a point
p (positioned at one end of the source) to every segment
endpoint in the scene. For each region between adjacent
rays, the segments that intersect that region are recorded
in order of increasing distance from p (these are shown at
the bottom).

discontinuity line be defined by two endpoints u and v,
where p is closer to u than it is to v. Looking along the
discontinuity line toward p, the segments adjacent to u
and v (of which there are three or four, since the segments
belong to polygons) will appear to the left of, to the right
of, or collinear with the discontinuity line (see Figure 5).
Modify the segment stack of the old, collapsed region
by (a) removing any left edges adjacent to u and any
right edges adjacent to v and (b) adding any right edges
adjacent to u and any left edges adjacent to v.
Next, we determine whether to deposit a discontinuity

point. Consider Figure 5. The rays pu and pv are adjacent



Figure 1: A D1 discontinuity surface (lightly shaded) and
its intersection with a face f of the scene. As a viewpoint
crosses the surface from a to b, the area of the visible
light source is discontinuous in its first derivative since
the boundary of the source (darkly shaded), which was
delimited by edge e1, becomes delimited by e2, which is
more distant.

direction, whereas a viewpoint on a D1 surface can look
in many directions.) D2 surfaces will not be discussed
further in this paper.

2 Discontinuity Meshing in
Flatland

The problem of casting a D1 surface is, in fact, a special
case of discontinuitymeshing, which occurs in the plane.
This section describes general two–dimensionalmeshing.
Section 3 will show how it applies to D1 casting.
Heckbert was the first to use discontinuity meshes in

Figure 2: A source ab and a segment cd. The scene below
the source is partitioned by the dashed discontinuity lines
intofive regions; different parts of the source are visible in
each region. For example, in the region labelled �ac� db�,
two pieces of the source are visible, one delimited by the
endpoints a and c, the other delimited by d and b.

computer graphics. He showed [Hec92b] how to use a
visibility algorithm to compute the discontinuity mesh.
Discontinuity meshes are akin to aspect graphs [PD86],
which are used in computer vision.
We extend Heckbert’s work with (a) a new algorithm

— based on the plane sweep paradigm— to compute the
discontinuitymesh and (b) an efficient computation of the
backprojection in each cell of the mesh.
In the plane, a scene consists of a set of simple, non-

intersecting polygons and a distinguished line segment
called the light source. Each polygon consists of a cycle
of segments. We assume without loss of generality that
the source is parallel to thex axis and emits light in the�y
direction, which is termed downward. Parts of polygons
above the source are ignored since they receive no direct
illumination.
From any viewpoint in the scene, the source may be

partially or fully obscured by other segments. In general,
the source appears as a (possibly empty) sequence of dis-
joint pieces, ordered radially around the viewpoint. This
sequence of disjoint pieces is called the backprojection
of the viewpoint. Each piece of the backprojection is de-
limited by two endpoints; these can be endpoints of the
source or endpoints of other segments in the scene. See
Figure 2.
In the plane, the discontinuity mesh is a set of maximal

cells on the segments of the scene such that the backpro-
jection is constant within each cell. Adjacent cells on a
segment are separated by discontinuity points, which are
the intersection of the segment with discontinuity lines. A
discontinuity line passes through two segment endpoints
(call them d and e) and intersects the source without in-
tersecting any segment between d, e, and the source. See
Figure 3.



A Complete Treatment of D1 Discontinuities
in a Discontinuity Mesh

Sherif Ghali A. James Stewart

Department of Computer Science
University of Toronto

fghali,jstewartg@dgp.toronto.edu

Abstract

This paper presents a treatment of first–order discontinu-
ities (D1) that arise in discontinuitymeshes. An algorithm
is described that, given a planar D1 discontinuity surface
in a polyhedral scene, computes the corresponding dis-
continuity curves on the faces of the scene. A method is
described to efficiently update the backprojection across
a D1 discontinuity curve. An alternative update method
is presented which is novel and numerically robust.

Keywords: D1 discontinuity, discontinuity meshing,
shadows, radiosity, global illumination.

1 Introduction

For global illumination algorithms operating on polyhe-
dral scenes illuminatedby an area light source, the discon-
tinuitymesh is used to model accurately sharp changes in
illumination [Hec91, Hec92a, LTG92, LTG93, Tam93].
The backprojection is a topological description of the

boundary of the visible light source, as seen from some
viewpoint. The discontinuity mesh is a set of maximal
cells on the faces of the scene such that the backprojection
is constant for all viewpoints within each cell. Adjacent
cells on a face are divided by discontinuity curves, which
are the intersection of the face with discontinuity sur-
faces [PD86]. Discontinuity curves are line segments or
conic sections, whereas discontinuity surfaces are subsets
of planes or quadric surfaces.
The backprojection in one cell can be efficiently up-

dated to compute that in adjacent cells and hence can be
propagated to all other cells of the mesh [GM90, GCS91,
SG93, SG94, DF94, Dre94]. Given the backprojection
within a cell of the discontinuity mesh, the exact pri-
mary irradiance of any point in the cell can be com-
puted with a simple contour integral around the boundary
of the visible source for a source with constant emis-
sion [Moo36, NN85, BRW89].

First–order discontinuities (termed “D1”) correspond
to discontinuities in the first derivative of the illumina-
tion [Hec91]. There are two ways in which a D1 disconti-
nuity surface can arise: (a) two edges of the scene (one of
which might be on the light source) are coplanar and the
planar surface embedding the edges intersects the light
source, and (b) the plane embedding a face of the scene
intersects the light source. An example of the former is
shown in Figure 1.

D1 discontinuities are important for two principal rea-
sons: First, the D1 discontinuities can be perceptually
important, which most often occurs when a D1 disconti-
nuity is defined by an edge in the scene that is parallel to
an edge on the light source. Second, if present in a scene,
they must be incorporated into the discontinuitymesh: If
a discontinuityline ismissing from themesh, the two cells
adjacent to the missing line will appear in themesh as one
combined cell. That combined cell will no longer have
a single backprojection, preventing efficient computation
of exact primary irradiance and efficient propagation of
the backprojection.

Two operations are necessary to treat D1 discontinu-
ities. First, a D1 surface must be cast; this operation
determines the curves that are the intersection of the D1
surface with the faces of the scene. This is not a sim-
ple surface/face intersection problem because only those
curves that are visible from the light source are counted.
Second, the backprojection must be updated across a D1
surface in order to propagate it from cell to adjacent cell
of the discontinuity mesh. Both operations are described
in this paper, as well as an alternative update method that
is novel and robust.

D2 surfaces have been treated elsewhere ([GM90,
SG93, DF94], among others). Although D2 surfaces can
be of higher algebraic degree than D1 surfaces, their treat-
ment is simpler. (This is partly because a viewpoint on a
D2 surface can only look toward the light source in one


