Hierarchical Visibility Culling for Spline Models

Subodh Kumar

*

Dinesh Manocha

University of North Carolina
Chapel Hill, NC 27599-3175, USA
Ph: (919) 962-1943. Fax: (919) 962-1799.
Email: {kumar,manocha}@cs.unc.edu

WWW: http://www.cs.unc.edu/~{kumar,manocha}

Abstract

We present hierarchical algorithms for visibility
culling of spline models. This includes back-patch
culling, a generalization of back-face culling for poly-
gons to splines. These algorithms are extended to
trimmed surfaces as well. We propose different spa-
tial approximations for enclosing the normals of a
spline surface and compare them for efficiency and
effectiveness on different graphics systems. We ex-
tend the culling algorithms using hierarchical tech-
niques to collection of surface patches and combine
them with view-frustum culling to formulate a ON E
(Object-Normal Exclusion)-tree for a given model.
The algorithm traverses the ON E-tree at run time
and culls away portions of the model not visible from
the current viewpoint. These algorithms have been
implemented and applied to a number of large mod-
els. In practice, we are able to speed-up the overall
spline rendering algorithms by about 20 —30% based
on back-patch culling only and by more than 50% us-
ing ON E-trees.
Keywords: NURBS rendering, Back-
patch, CAGD, ONE-tree.

Visibality,

1 Introduction

Many large-scaled CAD models like those of auto-
mobiles, submarines and airplanes are represented
using parametric spline surfaces. Such models are
composed of tens of thousands of surfaces and many
applications in CAD/CAM, virtual reality, anima-
tion and visualization need to render such models at
interactive frame rates. Current rendering systems
for large spline models on commercial graphics sys-

*Supported in part by an Alfred P. Sloan Foundation Fel-
lowship, ARPA ISTO Order A410, NSF Grant MIP-9306208,
ARO Contract P-34982-MA, NSF Grants CCR-9319957 and
CCR-9625217, ONR Contract N00014-94-1-0738, ARPA Con-
tract DABT63-93-C-0048 and NSF/ARPA Center for Com-
puter Graphics and Scientific Visualization. Approved by
ARPA for public release - distribution unlimited.

tems are not able to achieve real-time frame rates for
applications involving virtual worlds, walkthroughs
and immersive design.

Many techniques based on ray-tracing, scan-line
conversion, pixel-level subdivision and polygoniza-
tion have been proposed for rendering parametric
spline models [Cat74, NSK90, LCWBS80]. However,
polygonization based approaches are able to make ef-
ficient use of the hardware capabilities of the current
graphics systems and are significantly faster than
the rest [AES93, Deal9, LC93, SC88, FK90, RHD89,
AES91, KML95]. The resulting algorithms use uni-
form or adaptive subdivision of spline surfaces to
compute polygonal approximation. The approxima-
tion 1s a function of the current viewing direction and
is typically, re-computed at each frame. The result-
ing polygons are then rendered using the standard
graphics pipeline. However, the best known algo-
rithms based on such approaches are only able to
render models consisting of up to 600 — 700 patches
at interactive frame rates on high-end commercial
systems like SGI Reality Engine 2 [RHD89, KML95].

There is considerable literature on visibility pre-
processing and on-line culling of polygonal data-sets.
Our goal is to extend these techniques to curved and
spline models. The techniques for polygonal models
include view-frustum culling, obscuration culling and
back-face culling.

¢ View-frustum culling methods use spatial
data structures like octrees and hierarchical
traversals of such structures to cull out portions
of the model not visible [FVFH93]. These have
been extended to spline models using bounding
boxes and convex hulls of control polytopes.

e Obscuration culling techniques utilize algo-
rithms for hidden-surface removal and occlusion
culling [FVFH93]. However, most of the algo-
rithms for polygonal models are non-trivial to
implement and are unable to compute the visi-

ble surfaces in real-time for large models. The
extension of such algorithms to splines is even
more difficult. It involves computation of sil-
houettes and projection curves and is difficult
to perform in real-time for even small models.

e Back-face culling consists of comparing the
normal of a polygon with the viewing direction.
If the normal points away, the resulting polygon
is not rendered. Most of the high-end graphics
system have an implementation of this technique
as a part of the graphics pipeline.

In this paper, we extend back-face culling for poly-
gons to back-patch culling for splines. The idea
of back-patch culling was introduced in [KML95,
SAE93]. Our algorithm is more general, more effi-
cient and simpler to implement. It involves efficient
computation and representation of bounds on nor-
mals of a patch. We present algorithms for exact
back-patch culling for perspective projection. The
algebraic complexity of exact back-patch culling is
high for interactive applications and we present a
number of techniques for approximating them using
different spatial data structures. We evaluate these
spatial approximations using two criteria:

e [Ifficiency: It captures the overhead of visibility
computation for each frame. It measures the
time spent in visibility tree traversal.

o [ffectiveness: It measures the number of primi-
tives and surfaces being culled away by the vis-
ibility algorithm.

In most cases, there is a trade-off between these two
measures, and overall performance can be maximized
in different ways for different graphics systems. For
example, a graphics pipeline with polygon rasteri-
zation as the bottleneck should attempt to increase
the effectiveness at the cost of efficiency, shifting
some load to the processor performing visibility-tree
traversal. Our overall algorithm permits such fine-
tuning.

We also combine these algorithms with hierarchi-
cal data structures, view-frustum culling and apply
them to cull away portions of a large model. In par-
ticular we present a new hierarchical data structure,
ON E-tree (Object-Normal Exclusion tree), which is
used for view-frustum as well as hierarchical back-
patch culling. The resulting algorithms have been
implemented on different graphics systems and we
discuss their performance on a number of large mod-
els composed of up to tens of thousands of spline
surfaces. Back-patch culling improves the frame rate
by 20 — 30% by itself and the O N E-tree can increase

Figure 1: Back Facing Normals

the rendering performance by more than 50%. The
algorithms presented are also applicable to algebraic
surfaces and general implicit models.

The rest of the paper 1s organized in the following
manner. We review the notion of Gauss maps and
visibility for curved surfaces in Section 2 and use it
to establish an exact back-patch culling condition for
parametric spline surfaces. It is extended to trimmed
patches and we consider a number of data structures
for spatial approximations. We combine it with hier-
archical data structures and outline the construction
of ON E-tree in Section 3. We also present an effi-
cient tree traversal algorithm. Finally in Section 4,
we discuss the implementation and performance of
the algorithms.

2 Visibility Computations

In general, the exact computation of the visible por-
tions of a spline model 1s a non-trivial problem re-
quiring silhouette computation and projection curves
[KM94]. In this section, we show that it is rela-
tively simple to perform an approximate visibility
check to find most of the spline surfaces that are
completely invisible from the current viewpoint. The
algorithms presented are general and applicable to all
curved and orientable surfaces with first order conti-
nuity. They involve computation of Gauss maps and
bounds on Gauss maps. In the rest of the paper, we
will demonstrate these algorithms on Bézier surfaces.

A Bézier surface, F(u,v)=(3, ea) Zlen),

1s specified using control points and is a linear combi-
nation of Bernstein functions [Far93]. Moreover, the
entire patch is contained in the convex hull of the
control points. We denote the convex polytope of a
surface as Pp and its smallest volume axis-aligned
bounding box as Bp.

2.1 Back-facing Patches

Given a closed solid model whose boundary is com-
posed of Bézier patches, many of the patches are
not visible because their outward normals are facing
away from the viewer. In particular, if all the sur-
face normals for a Bézier patch point away from the
eye point and the viewing direction we refer to it as a

back-patch (Fig. 1(b)). The algorithm for back-patch

culling needs to compute a bound on the surface nor-
mals and we make use of Gauss maps to compute
these bounds.

2.2 Gauss Map

The partial derivative vectors of a Bézier surface,
F(u,v), with respect to u and v, respectively Fy (u, v)
and F, (u,v), are contained in the tangent-plane at
F(u,v). In the rest of the section, we shall drop
the (u,v) suffixes from these vector-valued functions
for more concise notation. At any point on the
surface F(u,v), the normal direction is given by
N = F, x F,. Bézier surfaces belong to the class
of surfaces called orientable surfaces such that their
normals can be oriented ‘inside’ or ‘outside’ the sur-
face [Nei66]. For a given model we can orient all
the surfaces by reversing the order of control points
such that N(u, v) points outside for each u, v for each
patch. Gauss maps provide a tool to compute IN.

The Gauss map G of a surface, F, is a map
G : F — 52, the 2-Sphere in R3, which takes
the point F(u,v) into the translation of the
vector U(u,v) to the origin, where U(u,v)
is the unit vector in the direction of N(u,v)

[Nei66].

The function G(u,v) can be used to compute the
unit normal of the surface at the point (u,v). How-
ever, this can be relatively expensive to compute and
in our application we instead use a pseudo-Gauss
map — we translate N instead of U. The pseudo
map can be represented as a Bézier surface itself,
and is therefore, defined using a set of control points.
If F is a tensor product m x n polynomial surface,
the pseudo-normal surface is a (2m — 1) x (2n — 1)
Bézier surface. If F is a rational surface, the degree
of the cross-product of the partial derivative vectors
is 4m x 4n. However it can be simplified [KML95]
to:

X W — £y X fW, — W x £,

N W3 (1)

f

where F = 5. Thus, the pseudo normal surface is
a 3m x 3n rational Bézier surface and can be repre-
sented by a (3m + 1) x (3n + 1) mesh. The control
points of the pseudo map are evaluated from the con-

trol points of the original surface F as follows:

1. Compute the control points of f, and f,. f;, and
f, are also Bézier surfaces.

2. If F is polynomial surface, compute the cross
product of £, and f, and return. The cross prod-
uct 1s computed by term-wise multiplication and
subtraction for each coordinate.

\
\
\
\

Figure 2: Visibility Computation

3. Compute W, and W,, respectively.

4. Piecewise multiply the W terms in (1), compute
all cross products and perform the coordinate-
wise subtraction.

5. Elevate the degrees along the u and v, respec-
tively, by 1 to compute the control points of the
pseudo-normal surface.

Notice that we do not need to divide by the weights
of the pseudo-normal patch. This is because the vec-
tors [X Y Z] and [WX WY WZ] are parallel. This
means that the open pyramid anchored at the origin
that bounds the normal surface remains the same.
Hence all the normal directions are still contained in

the convex hull or bounding box of [WX WY WZ].

2.3 Back-patch Condition
In general a point p on a surface with a normal n is
back facing if

Ep i >0,

where E is the eye point (see Fig. 1(a)). In other
words, an entire patch, F, is back facing if, V(u, v) €
[0,1] x [0, 1], N(u,v) makes an acute angle with the
vector joining the eye to F(u,v).

If S 1s a bounding sphere for the patch in the
XY, Z space, with radius r and center C, we com-
pute a region in space that contains all normal direc-
tions for back-patches. This is demonstrated in 2D
in Fig. 2(a). The rays {1 and {2 bound the sphere and
the patch, and lines pl and p2 are, respectively, per-
pendicular to these rays. Only the half spaces pl~
and p2~, respectively, may contain normal directions
for visible points. That is, there exist normal direc-
tions contained in pl~ or p2~ that are obtuse angles
with some ray bounded by /1 and [2. Hence the in-
tersection of half-spaces plt and p27T, call it H, is
the back-patch region.

For back-patch condition to be satisfied, the angle
that n makes with the vector joining the eye point
to C, must be less than the angle pl makes with it
(as shown in Fig. 2(b)). Thus direction n lies in H
if

cos(7y) > cos(90 — 0)
= cos(7y) > sin(f)
EC i r
= o1 -
[EC|6 ~ |EC|
= (C—E)- 1> r|i]

E is the only point not known till run-time, hence
at run-time this test performs one vector difference
and one dot product. The problem is, for values of E
close to C, # becomes large, making the bound loose.
This problem is alleviated in the next section.

2.4 Analytic Bound
The back-patch condition outlined in the previous
section can be applied to any primitive. For specific
cases we can apply that condition in an analytic man-
ner. For example, for Bézier surfaces, the visibility
can be tested as follows:

A patch is back facing if, V(u, v) € [0, 1] x [0, 1],

EF(u,v) - N(u,v) >0
= (F(u,v) —E) -N(u,v) >0
= F(u,v) N(u,v) —E-N(u,v) >0
= F(u,v) N(u,v) > E-N(u,v) (2)

Each of the two terms of (2) can be written as
Bézier functions. The visibility test reduces to check-
ing if there exists a (u, v) € [0, 1] x [0, 1] such that the
bi-variate function (F(u,v)— E) -N(u,v) < 0, which,
in turn, can be solved by testing if the function has
any roots in the domain [0, 1] x [0, 1]. This is a high
degree function, 4m + 4n for an m x n Bézier sur-
face, and solving for exact roots leads to efficiency
and accuracy problems. In addition, this operation
18 too expensive to be performed interactively at run-
time. Fortunately, we can bound the function by the
minimum and maximum valued control points (us-
ing Bernstein basis). This results in the following
algorithm:

1. Pre-compute the minimum value, mpg, of
F(u,v) - N(u,v). mp is the minimum control
point of the scalar function F - N. The control
points of F - N are computed as follows:

e Compute the [X Y Z] control points of N
using the algorithm in section 2.2.

e Pairwise multiply [WX WY WZ] func-
tions of F and N. This results in the ratio-
nal control points of F - N. Compute their
pairwise sum.

o Degree elevate the W coordinate of F to
4m x 4n.

e Divide each control point computed in step
1 by the corresponding control point of the
degree elevated W.

7

L.

Figure 3: Increased Effectiveness for Trimmed Patches

2. Pre-compute and store, the maxima of each co-
ordinate, respectively, of N(u,v). Call this vec-
tor of three maxima, Myy.

3. At run-time, if mp > My - E, the patch is back
facing.

2.5 Trimmed Patches

Many real world CAD models consist of trimmed sur-
faces. Trimmed surfaces have trimming-curves de-
fined on the domain as shown in Fig. 3(a). Such
surfaces consist only of the points enclosed by the
curves, as opposed to the full domain. Using the
full domain for visibility computation can lead to re-
duced effectiveness — the untrimmed region of the
patches may be back-facing while the full patch is
not. We define fullness of a domain as the ratio of
area in the un-trimmed region to the area of the do-
main. We do not compute exact fullness, but es-
timate it by tessellating the trimming curves into
piecewise linear segments, and calculating the en-
closed area. The first step to increase the fullness
involves the computation of the tight-fitting domain,

D (Fig. 3(a)):

Compute the minima and maxima of the trim
curve in the domain in both u and v co-
ordinates, respectively, t,, Unr, v;m, and vyy.
The new patch is obtained by subdividing the
original patch at v = wuy,,u = uy,v =
U and v = vy [Far93].

Unfortunately, for many trimmed patches this
does not result in a good bound. Such patches are
subdivided as follows:

1. Choose points on the curve, that decompose it
into ‘rectangle like” sub-curves. We have used
the inflection points of the curve in our imple-
mentation, and they yield good decompositions.

2. Find the closest fitting rectangular box around
each component of the curve. {Rg---Rg}

(Fig. 3(b)).

3. Add rectangles to fill the span D — U{R;}.

4. Recursively subdivide domains that have
fullness < Uy. We have found U; = % to work
well in our implementation.

This subdivision decomposes a patch F into a set
of possibly overlapping patches, say, {Fi,Fs...}.
One possibility is to treat these patches as separate
primitives, and perform visibility culling on each of
them. Unfortunately, this method leads to patch-
proliferation and inefficiency. In addition, 1t also
complicates the triangulation algorithm. Further,
extra processing is required to prevent cracks in the
rendered image. Instead, we compute the bounds for
each sub-patch, and finally re-merge them by com-
puting union of these bounds. This is more effective
than using the full domain. The heuristics that we
have found to work well are:

e Do not subdivide for more than 3 levels.
e Always merge sub-patches with any overlap.

e Ensure that patches are not decomposed into
more than 3 sub-patches. If the number of un-
merged sub-patches is large; merge the closest
ones recursively.

3 Hierarchical Visibility

For large databases, the number of primitives is quite
large. There is a substantial overhead of perform-
ing tests for each primitive per frame. On the other
hand we can hierarchically group [Cla76] primitives
together and use smaller number of tests to eliminate
invisible primitives. A wide variety of space parti-
tioning methods e.g. R-Trees, Quad trees, BSP, Oct
trees, etc. for view-frustum culling have been pro-
posed in the literature. Different methods are suited
for different applications. Each of these methods can
also be applied to back-patch culling in the following
manner:

Instead of constructing the hierarchy on ob-
Jjects, we construct a hierarchy on the gauss
maps of the objects. We refer to this as the
normal space hierarchy, as opposed to o0b-
ject space hierarchy, which is used for view-
frustum culling.

In our application, we use an approach similar to
R-Trees [BKSS90]. In essence, we maintain a hier-
archy of bounding boxes. This method greatly sim-
plifies the merging of the normal and object space
hierarchies into one structure. Thus we have to store
and traverse only one tree. The objects space hierar-
chy is constructed based on object space adjacency.

Figure 4: One-Tree

In fact, for normal space partitioning also, group-
ing patches too far apart in object space renders the
method ineffective. Thus object space proximity is
important for both hierarchies. We exploit this to
construct a single hierarchy for both spaces.

3.1 ONE-Tree

Naturally, the optimal hierarchies for view-frustum
and back-patch culling are different. It is possible
to maintain two hierarchies, one for view-frustum
culling and one for back-patch culling. But this re-
quires storage and traversal of two trees. Since, prox-
imity is still the basic criterion for both trees, we can
actually merge them into one structure. We call this
One-tree or Object-Normal exclusion tree. It facili-
tates the exclusion of invisible objects from further
processing, and is based on both object and normal
spaces.

Since, 1t 18 not always prudent to group objects
based on a combination of the two hierarchies, we
maintain the freedom to group objects based entirely
on one hierarchy. A small sphere can never be com-
pletely back-facing, but it could still be view-frustum
culled. Similarly about half of nearly parallel patches
will have a high probability of facing the same way
but they may not be close in object space. Hence
we allow different criteria for grouping at different
nodes of the tree. This leads to three different types
of nodes in ON E-tree (Fig. 4) —

e O-nodes: Perform only view-frustum test.

e N-nodes: Perform only back-patch test.

e ON-nodes: Perform both tests.

Allowing different node types can potentially in-
crease the tree size, but it allows us to avoid per-
forming potentially ineffective tests. The type of a

node is determined at the time of hierarchy construc-
tion.

Define the function looseness, L, of a pair of
bounding boxes By and Bs:

B Volume(B1) + Volume(B2)
£(B1, B2) = 2 x Volume(B1U B2)

This measures the effectiveness of combining boxes
B1 and B2 at a higher level, and lies between 0 and 1.
For sub-trees T} and T3, let the object space bound-
ing boxes be Bp, and B, and let the normal space
bounding boxes be By, and By,. To construct the
tree, at each level, for each such pair do:

if |[,(BF1, BFQ) — »C(BNUBNQH < Ky
classify 77 U T3 nodes as potential O N-nodes.
Assign £'(B1,B3) = L(Bp,) x L(Np,,Np,).
else I'F(,C,(BF1 , BFQ) < ,C(BN1 , BN2)
classify T} U T5 nodes as potential O-nodes.
Assign £'(B1,B2) = (£(BF,,Br,))%
otherwise
classify 77 U 75 nodes as potential N-nodes.
Assign £'(B1,Bs) = (L(Np,,Np,))2.

Of all the <73, T;> pairs, choose the one with min-
imum £'(B;,B;). K, is a user specified tolerance,
and 0.5 is a good starting value. The value K, can
be changed to fine-tune the efficiency-effectiveness
tradeoff. At K, = 1, all nodes are ON-nodes and
should be used for applications with high object-
normal space correlation. Similarly K, = 0 implies
no nodes are O N-nodes.

In addition to classifying a patch as completely
back-facing, we can also determine if a patch is com-
pletely facing towards the user. The condition be-
comes: F(u,v) N(u,v) < E-N(u,v), VY(u,v). Now
the maxima of F - N, Mp, must be less than the
minima of E - N, E -mp (cf. section 2.4). Analo-
gously for the non-analytic case, the cone in which
the gauss-map must lie gets reflected about the eye
point as shown in Fig.2(a). This test allows us to
trivially accept sub-trees without further traversal
down its branches. If all patches in a sub-tree are
front facing, we render the full sub-tree. Similarly if
a sub-tree is back-facing, we trivially reject the full
sub-tree.

3.2 Tree Traversal

We use two flags to guide the traversal, OnlyN ormal
and OnlyObject. If OnlyNormal is set for a sub-
tree, view-frustum tests are not performed even for
the O-nodes or ON-nodes. This condition occurs, if
a node decides that all its patches lie in the view-
frustum but the ones that are back-facing are not
vet determined. The function of OnlyObject is anal-
ogous. The traversal algorithm proceeds from the
root as follows:

Figure 5: Tree Traversal

1. If flag OnlyNormal not set, and an object node,
test object visibility.

2. If flag OnlyObject not set, and a normal node,
test normal visibility.

3. Perform operation according to the table in

Fig. 5.

3.3 Coherence

The visibility of models do not change significantly
from one frame to the next. We exploit this coher-
ence by starting the search at ‘decision points’ of the
ON E-tree for the last frame. The decision points are
those nodes of the tree at which the traversal termi-
nated with either a ‘Cull’ or a ‘Render’ decision. In
practice, we do not need to move up or down the
tree from any start point by more than a level. The
traversal proceeds as follows:

e If the decision in the last frame was ‘Cull’, and
that for this frame is not ‘Cull’, traverse down
the subtree.

e If the decision in the last frame was ‘Render’,
and that for this frame is not ‘Render’, traverse
up the subtree.

4 Implementation

| H

H]

Figure 6: System Organization: Pixelplanes b

| - | —— — |

Figure 7: System Organization: SGI Onyx, RE2

We implemented the hierarchical visibility algorithm
on two machines with quite different architectures
— Pixelplanes 5 (PXPL5) and SGI Onyx. The two
architectures are shown in Figs. 6 and 7.

Model Num. % patches Speedup Speedup
Patches culled on PXPL5 | on Onyx
Pencil 570 35% 23% 27%
Dragon 5354 38% 32% 32%
Car 10,012 29% 19% 24%
Sub-room 36,206 42% 29% NA

Table 1: The effectiveness of back-patch culling

We tested our implementation on a number of
models. Scenes from some of these are shown on the
color plate. For the performance figures quoted in
this section, we recorded thousand frames long view
sequences while a user pretended to inspect parts of
the model.

We present results for both, simple back-patch
culling without any hierarchy, and with the use of
ON E-tree. The effectiveness does not change by us-
ing the hierarchy. For a given frame the same patches
are culled away. The efficiency does improve by us-
ing the ON E-tree. About 10-25% fewer back-patch
tests needed to be performed by using the tree.

Table 1 shows the effectiveness of back-patch
culling using the cuboidal bounding box on the
pseudo-normal patches. The actual speedup of the
rendering is slightly higher for the Onyx, as CPU
was always the bottleneck. Table 2 shows the effect
of using different bounding volumes for the pseudo-
normal patches. While effectiveness (% culled) of us-
ing tighter bounds is higher, the efficiency is lower, as
seen by the number of tests needed per patch. Table
3 demonstrates the effectiveness of One-tree (with

cuboidal bounds).

4.1 Choice of Bounding Volumes
We compute a minimum-volume, eight vertex, axis-
aligned box, By, bounding the control points of the
pseudo-normal surface, N. Each point on N(u,v)
corresponds to a direction on F(u,v) and Py and
By define multiple sided polytopes in which all these
directions lie. Testing for visibility reduces to check-
ing whether each of these control points, or just the
bounding box By, is in the back-patch region H.

Instead of using a sphere to bound the points on
the surface, a rectangular box or the convex hull
can be used. This increases the effectiveness of
the technique but also increases the number of tests
needed, thus reducing the efficiency. Similarly, for
the pseudo-normal patch, a spherical bounding vol-
ume can be used. In general, owing to the higher de-
gree of the normal patches, their control points tend
to bound them less tightly, and spherical bounds are
the most loose.

Table 2 lists the performance of back-patch culling.
Some models have almost half of the patches culled

away. Since most patches are relatively flat, we have
found that using bounding boxes is good enough.
For a rational bicubic patch, the control polytope of
N{(u,v) consists of 81 control points, and its convex
hull typically has about 20 — 30 points. On the other
hand the bounding box has only eight points. In fact,
instead of a cuboid bounding volume, a spherical
bounding volume can give better speedup on some
systems. The number of tests per patch reduces to
one, while the average culling decreases from 36% to
29%.

For small systems where calculating or keeping ex-
tra bounding boxes is prohibitive, the view-frustum
can be used as the bounding volume of the patch,
specially for applications that use a narrow field of
view.

4.2 ONE-Tree

On average, our implementation of ON E-tree culled
45-60% of the model. About 65%-75% of the tree
nodes are ON-nodes. To evaluate their effective-
ness, let us consider other options — on one end
of this spectrum lies a ON E-tree with only object
space culling. On average 30-50% of the models were
culled using just the object space tree. Performing
only normal-space culling, we could cull 20-45% of
the models. Using a combination reduces the individ-
ual effectiveness of each method, since the sub-tree
used in the ON E-tree is not necessarily optimal for
either object space or normal space partitioning. In
addition, the size of ON E-tree is larger. But overall,
we can cull out more of the model, with fewer total
number of tests.

In our experiments we found that back-patch
culling is more effective when the eye-point is far
away from a patch. This, in fact, provides a con-
venient symbiosis between object space and normal
space visibility. When objects are farther from the
eye, object space culling is less effective as more of
the model lies in the viewing-frustum. On the other
hand, for zoomed-up views, when back-patch culling
is less effective, object space culling is able to cull
out many off-screen objects.

5 Conclusions and Future Work

We presented an algorithm to perform back-patch
culling and combined it, in a hierarchical framework,
with the more standard view-frustum culling. This
combination — the ON E-tree — can eliminate more
than half of the model from further processing, but
it slightly reduces the effectiveness of each method
individually. Maintaining two different trees i1s an
option but it is an open problem to better combine
the partitioning schemes without increasing the tree

Spherical bound Cuboidal bound Convex Hull
Model % culled | # Tests/patch | % culled | # Tests/patch | % culled | # Tests/patch
Pencil 33% 1 35% 1.44 36% 1.67
Dragon 32% 1 38% 1.80 44% 211
Car 22% 1 29% 1.66 33% 1.75
Submarine room 32% 1 42% 1.67 47% 1.81

Table 2: The effect of different bounds on the pseudo-normal patches

size significantly. In our algorithm, the children of a [Cat74]
node in a subtree consist of non-overlapping bound-
ing volumes. Extensions to allow such overlap could
be useful. In addition, using different bounds on dif- [€127¢]
ferent levels of the tree can increase effectiveness.
We also introduced the idea of coherent tree [Deass]
traversal. We feel that a better exploitation of co-
herence is possible. For instance, if we could mea-
sure the ‘degree of visibility’ of a patch, we would [Far93]
be able to trivially reject ‘highly invisible’ patches in
the next frame if the viewer position does not change
significantly. [Fico0]
For trimmed patches, we presented techniques for
partitioning the domains. We feel, our method is not
optimum though, and has scope for improvement. [FVFH93]
Further, our experiments were limited to only a few
thousand patches. For larger databases the fraction
of invisible primitives is also normally larger, and our [KM94]
method should perform quite well.
[KML95]
Per patch testing One-tree
Model % culled # Tests % culled # Tests
per patch per patch
Pencil 35% 1.44 42% 1.41 [LC93]
Dragon 38% 1.80 48% 1.67
Car 29% 1.66 52% 1.65
Sub-room 42% 1.67 57% 1.59 [LCWBSO]
Table 3: The effect of hierarchy on back-patch visibility
6 Acknowledgements [Nei66]
We thank Jim Boudreaux, Greg Angelini and Ken
Fast at Electric boat for the storage and handling [NsK9o]
system model. David Forsey provided us with the
dragon model. Ray Byrnes and Sam Schwartz de-
serve credit for the Ford car model. [RHDS9]
References
[AES91] S.S. Abi-Ezzi and L.A. Shirman. Tessellation of curved
surfaces under highly varying transformations. Pro-
ceedings of Burographics, pages 385-397, 1991. [SAE93]
[AES93] S.S. Abi-Ezzi and L.A. Shirman. The scaling behavior
of viewing transformations. IEEE Computer Graph-
ics and Applications, 13(3):48-54, 1993. [sCss]
[BKSS90] N. Beckmann, P. Kriegel, R. Schneider, and B. Seeger.

R* tree: An efficient and robust access method for
points and rectangles. In International Conference
on Management of Data, pages 322—-331, 1990.

E. Catmull. A subdivision algorithm for computer
display of curved surfaces. PhD thesis, University of
Utah, 1974.

J. H. Clark. Hierarchical geometric models for vis-
ible surface algorithms. Communications of ACM,
19(10):547-554, 1976.

T. DeRose and M. Bailey et al. Apex: two architec-
tures for generating parametric curves and surfaces.
The Visual Computer, 5(5):264-276, 1989.

G. Farin. Curves and Surfaces for Computer Aided
Geometric Design: A Practical Guide. Academic
Press Inc., 1993.

D.R. Forsey and V. Klassen. An adaptive subdivision
algorithm for crack prevention in the display of para-
metric surfaces. In Proceedings of Graphics Interface,
pages 1-8, 1990.

J. Foley, A. VanDam, S. Feiner, and J. Hughes. Com-
puter Graphics principles and practice. Addison
Wesley, Menlo Park, California, 1993.

S. Krishnan and D. Manocha. Global visibility and
hidden surface algorithms for free form surfaces. Tech-
nical Report TR94-063, Department of Computer Sci-
ence, University of North Carolina, 1994.

S. Kumar, D. Manocha, and A. Lastra. Interactive
display of large scale NURBS models. In Symposium
on Interactive 3D Graphics, pages 51-58, Monterey,
CA, 1995.

W.L. Luken and Fuhua Cheng. Rendering trimmed
NURB surfaces. Computer science research report
18669(81711), IBM Research Division, 1993.

J.M. Lane, L.C. Carpenter, J. T. Whitted, and J.F.
Blinn. Scan line methods for displaying parametrically
defined surfaces. Communications of ACM, 23(1):23—
34, 1980.

B. O’ Neill. Elementary Differential Geometry. Aca-
demic Press, 1966.

T. Nishita, T.W. Sederberg, and M. Kakimoto. Ray
tracing trimmed rational surface patches. ACM Com-
puter Graphics, 24(4):337-345, 1990. (SIGGRAPH
Proceedings).

A. Rockwood, K. Heaton, and T. Davis. Real-
time rendering of trimmed surfaces. ACM Computer
Graphics, 23(3):107-117, 1989. (SIGGRAPH Pro-
ceedings).

L.A. Shirman and S.S. Abi-Ezzi. The cone of normals
technique for fast processing of curved patches. In
EUROGRAPHICS, pages 261-272,1993.

M. Shantz and S. Chang. Rendering trimmed NURBS
with adaptive forward differencing. ACM Computer
Graphics, 22(4):189-198, 1988. (SIGGRAPH Pro-
ceedings).

