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Abstract

An interactive system for designing curved surfaces
is proposed which is based on direct manipulation of a
single-view shaded image of this surface. Apart from
functions like carving in the surface or adding to it, and
local smoothing, sharpening or shifting of selected sur-
face regions, the system supports painting local gradient
distributions.

An iterative algorithm enforces conservativity of the
gradient map at all times, so that the shaded image corre-
sponds everywhere to a possible 3-dimensional surface.
This surface can be output either as a gradient map, to be
used e.g. in bump mapping, or as an adaptively tiled tri-
angular mesh.
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1. Introduction

Designing curved surfaces in 3-d space has long been a
major application of Computer Graphics and direct ma-
nipulation interaction techniques. In order to input such
surfaces, techniques can be distinguished to be either 0O,
1, or 2-dimensional.

In CAD practice, O-dimensional input seems to be the
most often used: indeed, a multitude of surface represen-
tation schemes ([Boehm 84]), based on control points has
been developed since the introduction of Bezier curves in
the early 60-s (see for instance [Catmull 78]).

Input techniques based on 1-dimensional data be-
came available with the Coons and Gordon patches
([Boehm 84]), where boundary curves provide a rich vi-
sual cue and design aid as to the local shape of the surface.
Although in present day CAD-practice, modern versions
of Coons patches do occur [Kuriyama 94] they seem to be
less widely used than control points-based techniques.

The possibility of genuine two-dimensional input
techniques has been explored occasionally in the Com-
puter Graphics community ([L.Williams 90]). Interest-
ingly, in non-computer practice, the popularity of 0, 1,
and 2 dimensional input techniques appears to be exactly
in opposite order. Since the dramatic improvement of

the technique of realistic painting in the 12th and 13th
century, artists succeeded to create convincing and plau-
sible visual impressions of a variety of curved surfaces.
They essentially reproduce the light and shade distribu-
tions that reflect from these surfaces, thus communicating
their geometric shape (of course, correct rendering of cast
shadows, as well as more subtle artistic techniques, adds
to the realism of paintings containing curved surfaces).

A painting, when regarded as a specification of the
geometry of the painted object, classifies in our cate-
gory of 2-dimensional input techniques. Drawing and
sketching outlines, contours and structural details such
as hatching is the non-computer based equivalent to 1-
dimensional input. The equivalent of O-dimensional (i.e.
control point-based) surface specification seems to be
rare in non-computer graphics contexts, although some
artists use distributions of dots to convey the impression
of curved surfaces.

The observed mismatch between the popularity of 0,
1, and 2-dimensional techniques in CAD-practice and
non-CAD practice, respectively, might arouse some mis-
trust as to the appropriateness of the user interfaces of
current free-form surface design tools. This paper aims
at provoking a discussion, (a) as to what alternatives
might provide for a truly intuitive input method for 3-
dimensional curved surfaces, and (b) as to what extend
paradigms from image processing and pattern recogni-
tion might be integrated into 3-dimensional CAGD prac-
tice. To this objective, a system is described in section 3,
based on representing a surface as a depth-map.

The system, called GRADED (from GRADient EDit-
ing), described in this paper is both inspired by tradi-
tional pixel-paint systems and image processing systems
(to be discussed in section 4) and by a technique in pat-
tern recognition (the so called shape-from-shading prob-
lem; cf. [Horn 70], [Horn 90]). Technical aspects of the
latter are discussed in section 5.

Converting the curved surface from its depth-map
representation to an adaptively tessellated wire frame
model and vice versa is the topic of section 6. Section
7 shows some results by means of a sample test case,
viz. free-hand modelling the details of a facial mask start-



ing from a coarse and rather featureless polygonal model.
Also we discuss the differences between our approach
and earlier related work, but we can only do so after hav-
ing explained the technical aspects of GRADED; hence
the overview of earlier work is postponed until section 8.

But first, section 2 lists the requirements that the tech-
nique should meet.

2. Requirements

Under normal circumstances, humans have no difficulty
in mentally reconstructing the geometric shape from
merely looking at, say, three white eggs in a white bowl,
even though the perceived image only contains shades
of gray. Moreover, with little training, even amateurs
are capable of producing a very similar visual impres-
sion with charcoal on paper in few minutes. Apparently,
shaded images are natural sources for visual communica-
tion of geometric features, both in passive tasks (under-
standing an image) and active tasks (drawing, i.e., defin-
ing a shape). This means that an intuitive user interface
for surface design should:

e 1. provide visual feedback of the surface under
construction in the form of shaded images;

e 2. allow modification of the surface under con-
struction via modification of its shaded image.

Traditionally, sculptors and ceramists have developed
techniques for shaping surfaces by carving or (in the case
of ceramists) adding material. Their progress is con-
trolled by visual inspection, both of the pattern of shading
when viewing the surface under construction from one di-
rection, or of the shape of silhouette contours by looking
from several directions. To match with these intuitive no-
tions, the user interface should also:

e 3. allow addition and removal of *material’,i.e. lo-
cally decreasing or increasing the proximity of the
surface to the viewer, simulating a variety of tool
shapes’ (i.e. a variety of height-distributions to be
used for these editing operations);

e 4. allow for 3-dimensional rotation of the surface
under construction for inspection purposes.

Finally, with the advent of intuitive image processing
techniques in the realm of 2-d images (scaling, smooth-
ing, sharpening, warping, et cetera) a variety of (local)
transformations can be applied to images. If these trans-
formations are applied to 2-dimensional images of 3-
dimensional objects, they can be interpreted as modifi-
cations of the displayed 3-dimensional objects instead of
merely their the 2-dimensional projections. For instance,

an apparent local reduction of the contrast in a shading
pattern may result from smoothing the associated area in
the surface. Therefore, applying such a contrast reduc-
tion operation to the 2-dimensional image should indicate
a smoothing of the underlying surface. Since these local
image transformations are highly intuitive, an intuitive
user interface for 3-dimensional surface design therefore
should also:

e 5. support the most common image processing op-
erations on the shaded images, with a correspond-
ing modification of the underlying surface.

Although a full implementation of the above require-
ments for truly arbitrary surfaces forms our ultimate goal,
we start in this paper by studying the feasibility of this
approach by restricting the class of modelled surfaces to
partial functions z = Z(z, y) where x and y denote the
coordinates parallel to the screen, say normalized from
0...1, and 7 is the local proximity to the viewer. We have
to allow Z to be a partial function on (0...1) x (0...1)
since the modelled surface may have an arbitrarily shaped
boundary and it may contain holes. So part of the domain
is not mapped to the surface.

This class is sufficiently large to contain complicated
surfaces such as facial masks and bas-reliefs, as well as
all separable casting-molds, and it matches with the class
of surfaces usually studied in the context of the shade-to-
shape problem. This restriction implies that requirement
4 only involves rotation of the surface for inspection, not
for modification. The extension to arbitrary surfaces (e.g.
surfaces with overhangs) is left for future work.

Further, requirement 5 asks for a connection with im-
age processing techniques, and requirement 2 will rely on
some notions from pattern recognition.

3. Free hand modification of depth-maps

A surface of the form z = Z(z, y) is conveniently rep-
resented in an M x M-sized depth map D(X,Y") where
0<X <Mand0 <Y < M. The type of D contains a
boolean b and a real value z. The relation between z and
D is defined as follows:

Z(£, Xy = D(X,Y).b=TRUE
X, L) € domain of =
D(X,)Y).z=
undefined = D(X,Y).b =FALSE
otherwise

In the presentation of algorithmic aspects in the rest
of this paper (with the exception of section 6) we ignore
the fact that 7 («, y) is a partial function, as well as the
limited domain of D(X,Y") in order to arrive at a sim-
pler notation (in the implementation of GRADED, these



aspects are of course fully taken care of). Therefore, in
the remainder of the paper we abbreviate D(X,Y).z by
D(X,Y).

Given D(X,Y), a shaded image is obtained by or-
thogonal projection, where pixel (X, Y") receives a color
¢ = C(n) depending on the normal vector n = N(X,Y")
in the point (X, Y, D(X,Y)). This normal vector in turn
depends on the local gradient p( X, Y) of the surface. The
n and p are defined as:

pe(X,Y)=D(X4+1,Y) - D(X,Y), )
py(X,Y)=D(X,Y +1)— D(X,Y), )
Na(X,Y) = pa(X,Y)/m, 3)
Ny(X,)Y) = py(X,Y)/m, )
NAX,Y)=1/m, )

where
m = /(14 po(X,¥)" + py(X,7)?). ©)

As with the z values, the p values are kept in a buffer in-
dexed by X, Y; this will be called the gradient buffer.

For the color function ¢ = C'(n), any local illumina-
tion light model may be used. Here, ’local’ means that the
function c is a function of the local normal vector n of the
surface only; that is: cast shadows, color bleeding or dis-
tance attenuation effects cannot be accommodated. We
note in passing that in many approaches to the shade-to-
shape problem, a strictly Lambertian surface is needed,
as well as a single point shaped light source with an ex-
actly known direction. We won’t need any of these as-
sumptions in GRADED.

In section 5 we will discuss how painting in
GRADED may result in modifying the gradient values
in the gradient buffer.

4. Operations from image processing

In the GRADED system, two buffers are kept: the depth
buffer contains the D(X,Y) values and the gradient
buffer contains the p(X, V") values that are derived from
the depth buffer. The contents of the depth buffer may
change arbitrarily, since with every depth distribution
there corresponds a gradient distribution. The converse
is not true: as we will see in section 5, the gradient buffer
is only allowed to represent gradient distributions that
meet the so called conservativity constraint. Section 5
discusses editing operations that operate on the gradient
buffer.

sec | depth buffer | gradient rendered view
buffer (=shading
pattern )
4 manipulated | derived computed
by from from
the user depth buffer | gradient buffer
5 derived from | derived from | manipulated
the gradient | shading directly by
buffer pattern the user

In the current section we discuss the manipulations
that operate directly on the contents of the depth buffer.
The effect of these operations are visible due to the
changes in gradient buffer they cause, since the shading
pattern is derived from the normal vectors and hence from
the gradient buffer via a local illumination model.

Most current pixel-paint systems support operations
for direct manipulation of the color of a selected region
of pixels, such as tinting and opaque painting. Tinting is
an operation which gradually increases or decreases the
red, green and/or blue components of the color of a set of
pixels in a region. Tinting and opaque painting are local
in the sense that they affect the color of a pixel only in de-
pendence of the color of the current brush (opaque paint-
ing) or in dependence of the color of the current brush
in combination with the previous color of that pixel (tint-
ing).

The shape of the brush defines the shape of the af-
fected region, and brushes may have a profile which spec-
ifies a variation of the effect of the brush (such as the den-
sity of the tint) over the affected region. The shape can be
viewed as a connected area of pixels; the profile is a real-
valued function defined on these pixels with values from
Otol.

’Shape’ and ’profile’ are attributes that apply to
brushes, as well as to all image processing tools having
a limited geometric extent.

Tinting (in the case of pixel painting) generalizes
straightforwardly in GRADED to an operator that in-
creases or decreases the local height of the surface,
D(X,Y) for (X,Y) in an affected region. These op-
erators are the add and carve operators, respectively.
For their shape and profile we implemented a variety
of shapes (rectangular block, (truncated) pyramid, Gaus-
sian, ellipsoid, cone, rhomboid). They are parameterized
by the size of the shape, the gradient and the eccentricity.

To set the size, orientation and eccentricity parame-
ters interactively, the control widget in the user interface
to specify the tool shape has a circular shape; the polar
coordinates r and ¢ of a selected point within this circu-
lar area define both an orientation (¢) and an eccentricity
(derived from 7). See figure 1. A separate conventional
linear slider is used to scale the size of the brush shape.
Examples of the effect of the add-operator with several



brush shapes are shown in the top row of figure 5. This
figure shows the user interface of the GRADED system.
Apart from the painting canvas (on the right) and the cir-
cular tool selection widget, a low-resolution wire frame
is displayed in the lower left hand corner of the window.
This wire frame rendering can be rotated in 3 directions
interactively and it displays in real-time (albeit at a low
resolution) the shape of the edited surface.

Apart from the local operators tinting and opaque
painting in pixel paint systems, there are operators which
are non-local. The new color at pixel (X,Y") then not
only depends on the previous color in (X, Y") but also on
the previous colors in other pixels, e.g. the neighbors of
(X,Y). Similar as with colors, such operators can be de-
fined for z—values in the depth buffer. We implemented
the following operators:

e smooth: D(X,YV)pew = (1 — a)D(X,Y) +
OZgyerage Where Zgyerage 18 @ weighted average of
D(X,Y) and its neighbors. The coefficient « is
the tool profile; it varies between 0 and 1 over the
affected region of the tool depending on the cur-
rent tool shape and the definition of the tool pro-
file function. Smoothing has the effect of averag-
ing shape details of the surface under the tool.

e sharpen: D(X,Y)pew = (1 — @)D(X,)Y) —
OZgyerage. Sharpen is the inverse operator of

smooth.

e contract: D(X,Y)pew = (1 — a)D(X,Y) —
aD(X +x,Y +n); the vector (x, ) is pointing in
the direction (X — Xo,Y — Yy) where (Xy, Yp) is
the centre of the affected region of the brush. The
magnitude of (, n) is taken proportional to the lo-
cal value of the tool’s profile function. The contract
operator locally shrinks shape features in the tool’s
affected region. Also the D(X,Y").b-attributes are
affected; this means that applying contraction near
the boundary of the surface also contracts part of
the boundary.

o expand: D(X, Y )pew = D(Xp, V) if (X,Y) is
closer than a given threshold to (X, Yp), the cen-
tre of the tool’s affected region. Otherwise, it is the
contract-operator with a vector (—y, —7) instead
of (x,n). The expand operator locally widens
shape features in the tool’s affected region. Also
the D(X,Y").b-attributes are affected.

o shiftt D(X,Y)pew = DX 4 afY + «e).
Again, o emulates the tool profile; the vector (&, €)
is taken along the main orientation direction of the
tool shape. Also the D(X,Y").b-attributes are af-
fected; this means that applying a shift operator

near the boundary of a surface also shifts part of the
boundary.

e cut: D(X,Y).b = FALSE for (X,Y) inthetool’ s
affected region where the profile value exceeds 0.5.

e create: D(X,Y).b = TRUE for (X,Y) in the
tool’s affected region where the profile value ex-
ceeds 0.5.

For all non-local operators, the D(X,Y )pey has to
be computed first for all pixels (X,Y") in the tool’s af-
fected region before the old z—values may be overwrit-
ten by D(X,Y"), zpeq in order to avoid unwanted order-
dependencies. The effect of some of the non-local oper-
ators is shown in the top right image in figure 5.

5. Painting gradients: a pattern recognition-
based technique

Although the image processing-based operators from
section 4 add to the intuition of a direct manipulation-
based interface for curved surface design, they are not
sufficient to comply with requirement 2 of section 3: “al-
low modification of the surface via modification of its
shaded image”. A possible work-around could be to im-
plement a full shade-to-shape algorithm (see for instance
[K.M.Lee 94]), which takes a user defined shaded image
as input for conversion to a depth map. Three observa-
tions plead against this option:

e most shade-to-shape algorithm require rather re-
stricted illumination conditions. This means,
among other things, that the light source’s shin-
ing direction be known exactly. The user (=de-
signer) has to comply with these conditions up to
an impractically high degree of accuracy. Or stated
differently: the user has to paint a very accurate
shading pattern in order to get the surface shape
that she/he had in mind.

o a full-fledged shade-to-shape algorithm requires a
large numerical effort. This may be unacceptable
in interactive contexts, where a (nearly) real time
response is essential.

o the problem to be solved in surface design is less
involved than a full shade-to-shape problem, since
an artist who paints a shaded image of a curved sur-
face can do so because he knows what the local sur-
face gradient has to be. So the local surface gradi-
ent (which is available and can be edited directly in
the gradient buffer) is in principle available as input
to the shape recovery algorithm.



We can phrase this last observation differently (see
also figure 2): given the known direction of the illumi-
nation, a painter does an (approximate) mental calcula-
tion to convert the known surface gradient into a shade.
To this aim, we provide the designer with a method to di-
rectly input gradients p(X,Y") into GRADED. This facil-
itates the task for the system since it does not have to in-
vert the illumination equation ([K.M.Lee 94]). Still we
can give the user the impression that he/she is painting di-
rectly with shades, thanks to the one-to-one relation be-
tween the gradient p, the normal vector n and the associ-
ated color C'(n). Again making use of the circular input
widget we introduced in section 4, this works as follows.

The circular area mentioned before can be interpreted
as a 2-dimensional projection of a hemisphere which is
placed in the same illumination field C'(n) as the sur-
face under design. Now observe that all possible orienta-
tions p occur somewhere on this hemisphere. This means
that the circular area looks like an illuminated hemi-
sphere, displaying all possible colors in the co-domain of
C(N(p)) distributed over its surface. Selecting a point
in this area therefore selects a point on the surface of
the hemisphere, and at the same time a unique orienta-
tion (hence also a normal vector), and the color to use to
paint in the gradient buffer those parts of the surface hav-
ing the same orientation as the selected part of the hemi-
sphere. Therefore the user may either conceive his se-
lection on the basis of a shade-color or of a surface ori-
entation (normal): in both cases he chooses a consistent
(color, orientation)-pair.

Points X,Y where D(X,Y) is undefined are ren-
dered in a color which does not occur in the co-domain of
C'(n). Inthe examples in section 7, the illumination func-
tion is chosen to consist of the contribution of two differ-
ently colored light sources in two different directions; the
material is predominately diffuse although a small specu-
lar reflection component adds somewhat to the perceived
plasticity of the surface.

If the user paints or edits in this manner, directly
into the gradient buffer p(X,Y"), the remaining prob-
lem is to convert the resulting gradient distribution to
D(X,Y)-values such that requirement holds for all
(X,Y). Such a conversion, however, is not possible for
arbitrary p(X,Y") (see also [Brooks 92]).

Indeed, conservativity must be maintained. Con-
servativity holds that the accumulated displacement in
z—direction over any closed loop has to sum to zero. See
figure 3. A closed loop consists of pixels that are either
horizontally or vertically adjacent (in a 4-connected met-
ric). Let a closed loop of N subsequently adjacent pix-
els be given by (X;,Y;),i = 0---N — 1 (the points
A, B,C, Din3).

The subsequent z—values from the depth buffer are
zi = D(X;,Y;), and the subsequent differences as speci-
fied from editing the gradient buffer p(X, V') are d;. This
means that, for 4-connected points,

pa(Xi, Ye) if (Xoga, Vi) = (Xi + 1L Y3)
4= 4o (X YD) b (Xipr, Vi) = (X3, Vi + 1)
) (X Yh) i (Xig, Yig) = (X0 - 1Y)
—py(Xi, Ye) if (Xogr, Vi) = (X3, Yo = 1)

Conservativity requires that

N-1
Z d; = 0.
1=0

Now, suppose the user desires to alter the orientation of
the surface. He edits a set of p values, as indicated by
the arrows in the upper left diagram of figure 3. A non-
conservative loop may result, in which case the user has
painted a gradient distribution that does not correspond
to any possible z—function. So the gradient components
that correspond with the d; for these loops must be ad-
justed. Since we assume no a priori knowledge about
which gradients should be adjusted most (in other words,
all gradients are assumed to be equally likely), an equal
amount of adjustment should be applied to all d;, say

In the upper right diagram in figure 3 these corrections
are indicated by A = _ Ly Nl d;. Now conservativ-
ity holds for the corrected gradient components:

N i=0
N-1
E I
i=0

This is indicated in the lower left diagram in figure 3: the
loop A’, B, C’, D' is closed. It is not clear yet, however,
how this adjustment should apply to the z—values in the
loop, in other words: all z— values in the loop can be off-
set by an arbitrary constant without affecting the loop’s
conservativity. Let z; be adjusted with an amount d ;.
Then we can demand

1 N-1
2
LY
1=0
to be minimal under the boundary condition that

' ' '
di = ziy1— %
= Zi41+ dz;i+1 — 2 — dz;i (7)

forz = 0--- N —1. The latter set of boundary conditions
is dependent, however, owing to the loop being closed.
An independent set of boundary conditionsis obtained by
having ¢ run from 0 to N — 2. We can solve for the d;
using the Lagrange multiplier technique. This amounts
to adding terms A;(ziy1 + dsiy1 — 2 — doy — df) tO



iy d,;* fori = 0...N — 2. The \’s introduced here are
the Lagrange multipliers that can be solved for later (al-
though it turns out that we don’t actually need their val-
ues). In vector notation, this amounts to finding a station-
ary value of

%(dz, d.)+ (\,S(z+d.) — ).

Here d. is the vector of N components d ;; A is the vec-
tor of N — 1 Lagrange multipliers, A;; z is the vector of
N components z;; d’ is the vector of N components d.
The N — 1 x N matrix S is defined by S; ; = —1 and
S;i41 = 1for 0 < ¢ < N —1; all other elements are 0.

The minimization problem gives rise to the 2N — 1
sets of linear equations in the unknowns d, and A:

(85 )05 )-(e's )

The coefficient matrix in the left hand part is symmetric
(I'is the N x N identity matrix) and has a 2 x 2 block
structure. It can be inverted in closed form for arbitrary
N . For instance, the inverse for NV = 6 reads:

-5 -3

-4
4

&
HHLL

1
1
1
1
1
1

SRS

1
1
1
1
1
1
1

[ Y IR
W=

AW ———
DR LN - —

. 3 4

1 3 4 5

8 5 5 4 3 2 -1
4 4 4 -8 6 4 2
3003 3 3 6 9 6 3
2 2 2 2 2 4 6 4
B -1 -3 5

-1 -1 -1

which nicely shows the generic structure of the in-
verse matrices (note that the entries in the lower right
block are minus the products of the row and column in-
dices in that block). With this matrix, the z—adjustments
for the considered loop, d.;, represented by the vector
d., are obtained by merely multiplying the lower right
block with the vector d” — Sz. The lower right diagram
in figure 3 shows the final adjustment: the z-values in the
loop have been shifted by an amount § which results from
the minimisation procedure outlined above.

It does not follow from the conservativity constraint,
however, what adjustments should apply to the gradients
p(X,Y) and the z—values D(X,Y") for pixels (X,Y)
that are within the loop; moreover, since conservativ-
ity has to hold for the entire domain (X,Y"), the above
adjustment should occur for a set of loops which is in
some sense ‘complete’. Two strategies have been imple-
mented:

¢ Cover the entire domain with loops of size N = 4,
consisting of (X, V), (X +1,Y), (X +1,Y +1),
and (X, Y +1) forall (X,Y). These minimal loops
have no interior pixels, so adjusting merely the gra-
dients and the z—values on the loops proper en-
forces conservativity.

o Cover the entire domain with loops of size N = 8§,
consisting of (X,Y), (X + 1,Y), (X + 2,Y),
(X+2,Y+1),(X4+2,Y+2),(X+1,Y+2),
(X,Y 4+ 2),and (X,Y + 1) for X and ¥ even.
These loops have one interior pixel, namely (X +
1,Y +1) for X and ¥ even.

The adjustment for the z—value in this interior
pixel and those components of p that do not affect
conservativity of the loop as a whole is computed
using a similar minimization principle, demanding
conservativity for the four square sub-loops of size
N = 4 (note that enforcing conservativity for any
three of them automatically yields a conservative
fourth loop).

For both strategies we have to cope with the fact
that most pixels are shared by several (up to four) loops.
Therefore an iterative procedure has been implemented
where first the adjustments are calculated and accumu-
lated for all loops separately but not yet applied to the
contents of the depth-buffer and the p—buffer. Only after
all loops have been processed, the accumulated values of
all adjustments are applied. This approach avoids any un-
wanted order dependencies. In pseudo-code, this reads:

do {
for all pixels (x,y) set d_z(x,y):=0;

for all loops {
compute corrections c_i for the z-values
of the pixels in that loop;

set d_z(x,y):=d_z(x,y)+c_i;

} /* this does not affect the pixel’s z-values yet */

for all pixels (x,y) set D(x,y):=D(x,y)+d_z(X,y);

for all pixels (x,y) derive rho(x,y) from D(x,y);
} until convergence /* the corrections are

* sufficiently small */

One iteration of the N = 4 algorithm tends to result in
corrections in the direct neighborhood of the painted re-
gions whereas the N = 8 algorithm affects a somewhat
more extended region. On the other hand, the N = 4 al-
gorithm requires somewhat more iterations until conver-
gence, which spreads out the affected region. When con-
verged, the result of both algorithms is very similar; also,
since computing the correction of a NV = 8 loop is more
expensive than a NV = 4-loop, the total computational ef-
fort of both methods is about the same.

6. Converting depth-maps to wire frames
and back

Although useful applications can be thought of for a sur-
face z = Z(»,y) in the form of a discrete depth map



D(X,Y), such as offset mapping or merging of depth
buffers in the context of a Z-buffer hidden surface algo-
rithm, most applications rely on an object space represen-
tation instead.

A naive way to convert the D(X,Y") map into an ob-
ject space representation is to produce a wire frame mesh
with a regular triangular topology with one vertex for ev-
ery pixel (X, Y") within the domain of D, and next reduc-
ing the number of triangles, e.g. using the algorithm of
([Turk 92]).

As an alternative, we describe an algorithm based on
an adaptive tessellation of the domain (X, Y") within the
domain of D. It is a three pass algorithm which ini-
tially triangulates the M x M domain with two trian-
gles (one with vertex coordinates (0,0, f,(0,0)), (M —
1,0, f(M—1,0),(M —1,M —1,f.(M —1,M —
1)) and the other one with (0,0, £,(0,0)), (0, M —
L f(0,M=1)),(M—=1,M—1, f,(M—1,M—1)); the
function f, returns the values D(X,Y")) even for X and
Y on non-grid locations, using bi-linear interpolation on
the depth-buffer.

The algorithm is parameterized with L, , the max-
imal allowed edge length; L,,;,, the minimal allowed
edge length, and F which is the maximal relative
z—difference between the midpoint of any edge and the
underlying surface.

Schematically, the three passes work as follows (see
also figure 4):

Pass 1 serves to get a triangular mesh with a suf-
ficiently high minimal density such that loops 2 and 3
won’t miss any shape details:

reset all edge labels;
do {
loop over all edges e {
if( |e| > L_max ) label e;
introduce a split point halfway e;
}
loop over all triangles t {
if t possesses one or more labelled edges,
split t using the split points;
update the edge administration;
reset all edge labels;
}

} until all edges are shorter than L_max;

Pass 2 serves to separate regions in the domain where
Z(x,y) is defined from regions that do not belong to the
surface. To this aim, a three-valued function f3(X,Y")
returns a value IN, ON or OUT for arbitrary, non-
integer X and Y by bi-linearly interpolating the values of
D(X,Y).b, treating them as real values (FALSE = 0.0
and TRUE = 1.0). We apply threshold values of < 0.45
to classify OUT, > 0.55 to classify IN and between 0.45

and 0.55 to classify ON. This function serves to detect if
an edge crosses a domain boundary: if f; is evaluated on
the two extremes of an edge and classifies IN and OUT,
respectively, the edge crosses a domain boundary.

reset all edge labels;
do {
loop over all edges e with |e|>L _min {
if e crosses a domain boundary {
using binary sectioning on f b, find an inter-
section point;

label e;

}

loop over all triangles t {
if t possesses one or more labelled edges,
split t using the found intersection points;
update the edge administration;
reset all edge labels;

}

} until no edges longer than L min cross a do-

main boundary;

Next, in pass 3 edges are split in regions where a high
curvature exists.

reset all edge labels;
do {
loop over all edges e with |e|>L _min {
if the z-difference of the midpoint of e and the
surface underneath is more than |e|/E,
introduce a split point halfway e;
}
loop over all triangles t {
if t possesses one or more labelled edges,
split t using the split points;
update the edge administration;
reset all edge labels;
}
} until no edges longer than L min deviate too

much from the surface;

Finally, the output wire frame mesh consists of all tri-
angles of which no points classify OUT.

The inverse conversion, from a wire frame representa-
tion to a depth map takes place using a conventional scan
conversion algorithm ([Foley 90]) using the depth buffer
D to account for hidden surface elimination. The latter
conversion is needed when reading an object represented
as a wire frame into GRADED.



7. Results

In figure 6, the effect of enforcing conservativity is de-
picted. In the left part, the topmost shading pattern has
been painted directly by the user; the lowermost pattern
results from enforcing conservativity according to the al-
gorithm in this paper. Figure 5, lower row, demonstrate
a sample session with the GRADED system. We start
from a simple facial mask that was modelled using con-
ventional wire frame modelling techniques. It is input in
GRADED, and with both local and non-local image pro-
cessing tools and direct manipulation of the shaded im-
age, much detail is added (especially note the eyes and
the lips, the eyebrows, the cheeks and the labio-nasal
folds). Finally, the mask is output as an adaptively tes-
sellated wire frame mesh and rendered (see rightmost part
in figure 6) from a different view point using a more ad-
vanced illumination model. It turns out that sketching
complex surfaces that have curved features on relatively
large scale, such as a facial mask, from scratch is still a
quite elaborate task. On the other hand, adding detail to a
surface which has the right global shape is very intuitive:
the transformation between the first and last versions of
the mask required under 20 minutes. A second example
is shown in figure 6. The image in the middel is the result
after 2 hours work in a gradient painting session where
the author painted, from scratch, a picture of his own right
hand. With a 180 X 180 resolution, painting and conser-
vativity reconstruction operate near realtime on a SUN
SPARC 10 workstation.

8. Related work

The development of GRADED has been inspired by the
earlier work of several authors.

First, manipulating a surface which is represented in
terms of a grid of samples can be seen as a special case of
editing control-points in tensor product surfaces. In this
regard, GRADED can be viewed as an editor for piece-
wise 1st order B-spline surfaces. An earlier example of
editing spline surfaces is ([R.Parent 77]).

In the Thingworld system of Pentland, Essa, Fried-
man, Horowitz, and Sclaroff ([Pentland 90]) the user has
access to a simulated lump of material where the shape
can be modified by using *forces’. Using modal analysis,
the user may distinguish between global and local shape
operations.

Galyean and Hughes ([Galyean 91]) describe a direct
manipulation tool for surface design where the user has
direct access to the surface representation which is an im-
plicit surface, represented as voxels. The surface is mod-
ified by adding or removing voxels to the inside region of
the (closed) surface.

In both the Thingworld system and the Galyean-
Hughes system, no restrictions are imposed on the edited
surface whereas in GRADED only surfaces of the form
z = Z(x,y) may occur. On the other hand, this means
that a complete repertoire of image procesing operators
is immediately available to express arbitrary shape details
in GRADED.

In the 3-D paint system of Williams ([L..Williams 90]),
also the connection with traditional image processing
operations is made. But unlike GRADED, it uses non-
standard video hardware. Also, unlike GRADED, it
associates depth-values with a grey-scale distribution.
From our experience with GRADED, it turns out that as-
sociating surface gradients to color values works quite
intuitive, because the displayed colour values approxi-
mate what one would see in the ‘real world’ if the sur-
face were illuminated by coloured light sources. On
the other hand, natural illumination conditions don’t as-
sociate shading values to depth value distribution, and
therefore in Williams’ system, the user is confronted with
a non-standard image of the surface, which may cause a
considerable learning time.

Haeberli ([Haeberli 90]) also uses the notion of user
input surface gradients, although he uses this information
to obtain brush parameters for the shape and orientation
of a simulated brush. The resulting image is 2-D.

In the sculpting system of Coquillart ([Coquillart 907])
a truly 3-D relief is modelled, but the user controls the
shape via a network of control vertices rather than via di-
rect manipulation of the surface proper.

A system where truly direct manipulation operations
to define surface relief are supported has been described
by Hanrahan and Haeberli ([Hanrahan 90]). In their sys-
tem, however, the relief is implemented as bump maps, so
only small scale surface modifications can be achieved.

In the field of pattern recognition, much work
has been done to solve the shade-to-shape problem
([K.M.Lee 94]). Since we provide orientation rather than
shading information, however, in the GRADED system
a particularly simple version of this problem occurs, and
a relatively straightforward algorithm suffices to provide
the near real-time performance needed in an interactive
system.
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Figure 1: Clicking a point in the widget specifies orientation and the eccentricity of the brush shape.
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Figure 2: Top: the classic painting technique requires the translation from imaginary surface orientation to reflected
light intensity. Bottom: the proposed technique in GRADED allows the designer to bypass this translation. The actions
on a shaded background require human mediation.

Figure 3: The phases in forcing conservativity for one loop. Upper left: the arrows result from the user’s intention to
edit the gradient. Upper right: these arrows are corrected. Lower left: now A’, B’ C’, D’ isa closed loop. Lower right:
a translation in the z-direction causes the new loop to be as close as possible to the original one.
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Figure 4: A schematic view of the surface triangulation. The shaded region represents the domain of z. a. Initially,
the triangulation consists of two triangles. b. After pass 1, the triangles have been subdivided such that every edge
has length at most L,4,. c. After pass 2, the boundary of the domain of z has been found. The white dots indicate
the intersection of previously existing edges with the boundary. These intersections are connected by thick lines. The
dashed lines are needed to maintain the triangulation. d. After pass 3, further subdivisions have taken place to adapt to
differences in curvature. In this case, two edges have been split; the split points are indicated by white circles and the
dashed lines are needed to maintain the triangulation. e. The result consists of all triangles with no points classifying
OUT.
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Figure 5: Upper left: a sample of brush shapes and brush profiles used to add, carve and cut in the depth buffer. Up-
per right: the application of some image processing operators to distort, shift, smoothen and sharpen the depth buffer.
Lower left: a simple polygonal model of a face represented in GRADED. Lower right: the same face after editing in
GRADED.

Figure 6: Upper left: a shading distribution painted into the gradient buffer. Lower left: the result of conservativity
restoration. Middle: a relief-painting of a hand; Right: the face of;, figure 5, rendered from a different view point.
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