
1

Exploring Human Visualization of Computer Algorithms

Sarah Douglas1

Donna McKeown2

Christopher Hundhausen1

1Computer & Information Science Dept.
2Psychology Dept.

University of Oregon
Eugene, OR 97403

(503) 346-3974
douglas@cs.uoregon.edu

ABSTRACT
Many educators have used Algorithm Visualization (AV)
to teach students of computer science about how computer
algorithms work. Our study sheds light on two important
questions: (a) How do people conceptualize algorithm
animations in the first place; and (b) To what extent do
such visualizations accord with AV software. In the first
half of this study, pairs of graduate students in computer
science were asked to construct animations for a simple
sort (bubble sort) using ordinary art materials. In the
second half, they implemented a bubble sort visualization
using an interactive AV program called LENS [1], which
allows one to construct and view an animation of any C
program. The way in which pairs visualized the same sort
differed tremendously from each other and did not accord
completely with the animation language provided by
LENS. This paper analyzes those differences by a detailed
examination of the semantics of the human visualizations,
the algorithm code, and the LENS AV language.

KEYWORDS: visualization, algorithm visualization,
mental models, empirical studies, individual differences

INTRODUCTION
Algorithm visualization (AV) can be defined as the
process of viewing an algorithm through a series of
pictures, or through a movie. In AV the algorithm’s
dynamic procedural behavior is represented as state
changes to graphic entities. This illumination of the logic
that underlies algorithm behavior has been used for
communicating concepts about the algorithm and for
testing correct implementation. Pioneered by Brown
University’s Electronic Classroom project [2], and
formalized by Marc Brown’s seminal dissertation
Algorithm Animation [3], AV has gained an enthusiastic
following among undergraduate computer science
educators who have come to see it as an effective and
innovative method for teaching algorithms. In a culture in
which the proverb “A picture is worth 1,000 words” is

held so dearly, it should be no surprise that a learning
technique designed to exploit the visual sense has been
embraced so widely; indeed, thus far, its powerful intuitive
basis has been sufficient to justify its use.

Despite this enthusiasm, AV’s effectiveness in learning
algorithms has not been demonstrated empirically. For
example, in one of the few experimental studies to date
Stasko, Badre, and Lewis [4] published disappointing
results. In the Stasko et al. study computer science
graduate students taking an advanced algorithms course
were presented with information about a pairing heap
algorithm in two different media: text-only versus text-
and-animation. The text-and-animation condition was
presented on the XTango animation system. XTango is
derived from Tango [5] and provides minimal interactivity
by allowing speed control, but not rewind or replay
capability. Learning was measured by a test of 24
questions. These questions reflected three different types
of knowledge and thinking: declarative, analytical, and
procedural. It was hypothesized that the text-and-
animation condition would particularly benefit the
acquisition of procedural knowledge. Unfortunately, the
results of the study as measured by test scores revealed no
significant advantage for AV. In fact the test results for
both conditions indicated poorer performance than
expected, with the animation group showing no advantage
in the test of procedural knowledge.

The authors cite two reasons for these results. One was
primarily methodological: the presentation materials in
either condition failed to provide students with enough
information to be able to reconstruct enough of the
procedural elements of the algorithm to do well on the
test. More importantly the authors feel that understanding
the algorithm may be prerequisite to understanding the
passive viewing of an animation of the algorithm—clearly,
a situation that learners do not enjoy. Most systems
implementing AV, including the XTango system cited
above, present an animation predefined by a human
teacher who already understands the algorithm on which it
is based.

In addition to understanding the underlying concepts of
the dynamic process, students also must understand the
relationship between those concepts and the graphical

4/9/95 2 18:35 PM

representation. For example, in an AI tutoring system for
teaching about the cardiovascular system [6], we
generated a dynamic graphical network of cause and effect
relations between variables such as pressure, flow and
resistance to create visual explanations of simulation
behavior. Students had difficulty understanding this
predefined graphical representation even though they
demonstrated knowledge of the process being illustrated.
That is, a graphical representation as a “language” per se
must be understood before it can aid in explanation.

Stasko et al. [4] describe this as a mapping from the
abstract computational algorithm domain to the animated
computer graphics domain. For example, in the movie
Sorting Out Sorting [7] the magnitude of the elements
being sorted are represented by different length and color
of rods. Our prior research suggests that both the
graphical language elements and the mapping may not be
self-evident. The trick, then, for an AV system is to get
the graphical representation right.

To salvage the use of AV for novice learners the Stasko et
al. study proposes that future algorithm animation systems
research must focus on ways to support students
constructing their own animations with the purpose of
promoting an ‘active learning’ process as opposed to the
‘passive learning’ of watching the animation produced by
someone else.

In cognitive terms how would algorithm learning be
enhanced by the interactive construction of an animation
by novice learners? We can suggest two ways: abstracting
essential features of the algorithm focuses the learner on
high level concepts about the algorithm, and the
construction of a visualization enhances remembering
those features. Indeed, the psychologist Paivio argues that
we have more than one kind of code for representing
constructs [8]. Specifically he proposes both a verbal and
visual code. The more codes we can relate the material to,
the better we can remember it.

This suggests the following steps for the use of an
interactive AV system:

(1) Conceptualize the algorithm through text and
pseudocode;

(2) Conceptualize a visualization for the algorithm;

(3) Map that conceptualization to the AV graphical
language; and

(4) Manipulate the AV system’s interface to program
the animation.

Given this, successful usability of future interactive AV
systems depends critically on understanding more about
how people visualize algorithms and whether those
visualizations can be mapped onto AV language elements.
Thus, as a plausible next step in research, we decided to
conduct a qualitative empirical study of expert users and
their naive visualizations of a simple sorting algorithm.
We chose expert users since there was a certainty that they
already understood the algorithm. Since we are also
interested in gaining a better understanding of the usability

of AV software which allows users to construct their own
algorithm animations, we continued our study with
participants learning and using an experimental prototype
of a highly interactive version of XTango called LENS [1]
to produce animations.

Our study sheds light on two important questions: (a) How
do people conceptualize algorithm animations in the first
place; and (b) To what extent do such visualizations
accord with AV software. The focus of this paper will be
primarily on conceptualizations; however, we will also
consider how these impact the design of any interactive
AV system using LENS as a prototypical example.

EMPIRICAL STUDIES
Our approach was to present participants with bubble sort,
an algorithm with which they were already familiar. We
then asked them to construct an animated visualization.
Some of the participants went on to use LENS to animate
the same sort and one other.

Study 1: Constructing Paper Animations
Participants
We videotaped three same-sex pairs of participants (two
consisting of women, one consisting of men) during 45 to
70 minute sessions. All participants were graduate students
in computer science at the University of Oregon, and all
had prior experience with the C programming language
and the X Windows environment. Two pairs had no prior
experience with AV, and one pair’s experience was
limited to a knowledge of the sorting animations pioneered
by the film Sorting Out Sorting [7].

Procedure
We provided our pairs of participants with art supplies—a
full spectrum of colored construction paper, scissors, and
different colored pens—and presented them the following
task: “If you were to explain the bubble sort algorithm to
someone who had never seen it, how would you do it?

#include <stdio.h>

main()

{

int n,i,j;

int temp;

int a[50];

int count;

printf("Input number of elts in array\n");

scanf("%d",&n);

printf("Enter the elements\n");

for (count=0; count<n; ++count)

scanf("%d",&a[count]);

for (j=n-2; j>=0; --j)

for (i=0; i<=j; ++i)

if (a[i] > a[i+1])

{ temp = a[i];

a[i] = a[i+1];

a[i+1] = temp;

}

}

Figure 1. The C bubble sort algorithm that participants
animated

Feel free to use any of these resources (construction paper,
scissors, etc.) to assist you in your explanation.” Prior to

4/9/95 3 18:35 PM

the videotaping sessions, all participants reported that they
had previously seen the bubble sort algorithm, and that
they understood it. However, we provided participants
with C code for their reference. (See Figure 1.) These
“construction paper” sessions were videotaped and
analyzed. If they decided to design a visualization for a
sample data set, we recommended that they only step
through a few of the iterations for simplicity's sake.

Method
We employed a qualitative research technique called
constructive interaction [9,10], in which two persons are
videotaped as they problem solve or perform tasks given
by the researcher. By using two participants a situation of
collaborative problem solving is created whereby each
participant must inform the other in an explicit verbal and
visual record about problems, causes, and solutions. In this
study, we used constructive interaction to collect the data
which we then reviewed using conversational analysis
techniques developed by Douglas [11]. This provided an
interpretation of participants’ intentions, expectations and
strategies.

Observations
As it turned out, in explaining bubble sort to a
hypothetical novice, all participants made extensive and
intriguing use of the art supplies with which we supplied
them. In fact, all pairs of participants used the materials to
create a homemade animation of bubble sort operating on
a sample data set; they augmented their construction paper
animations extensively with their own gestures and
comments. Our most significant observation was that in no
case could the homemade animations constructed by our
participants be produced by LENS.

20

4

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

4

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

20

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

20
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

810 4

4

4

4

4

4

20

20

20

20

20

8

8

8

8

8

8

8

10

10

10

10

10

10

10

AAAA
AAAA
AAAA
AAAA
AAAA

= red
= pink
= green

First Pass Second Pass

Note: Patterns are
used here to
represent the
actual colors.

.

.

.

.

.

Figure 2. The model created by the Number Pair to
demonstrate bubble sort.

One pair, we shall call them the Number Pair, used
numbers (e.g. 5, 4, 3) to indicate the magnitude of each
array element. This group used color to illustrate
significant state changes. Figure 2 shows the color
scheme which indicated whether an element was when
two elements were being compared (turned pink), and to

show the difference between sorted elements (turned
green) and unsorted elements (red). Each pass of the array
was then depicted as a (separate) horizontal row of
(number-labeled) elements whose colors indicated what
had happened during that pass. At the end of their
demonstration, they had accumulated a history “array” of
the sort, each of whose (horizontal) rows showed one pass
of the bubble sort. A new column designated the start of a
new pass.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Note:
Colors
used were
actually:

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

Black

Red

Green

Blue

Purple

Figure 3. The model created by the Color Pair to
demonstrate bubble sort.

In contrast, another pair, the Color Pair, used color to
indicate magnitude; in particular, Figure 3 shows the
legend they constructed (see triangles at the top of the
figure) that defined a canonical (spectral) order for a five-
element array. They demonstrated, by illustrating the array
after each successive pass, how the bubble sort gradually
placed an unsorted array into that ascending order.

Goal

AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA

300
250
200
150

Figure 4. The model created by the Football Pair to
demonstrate bubble sort.

4/9/95 4 18:35 PM

Like the first pair, this pair had built, by the end of the
sort, a history “array” in which each bubble sort pass
occupied a row. Since they gave each array element its
own color, the movement of array elements throughout the
sorting process could be clearly seen.

Figure 4 shows how another pair, the Football Pair, also
used color to denote magnitude. Their visualization
depicted an American football game to describe bubble
sort using the "weight" (or magnitude) of each player (or
element). Players who weighed more "knocked over" the
smaller players (they exchanged places in the array). The
ball carrier and the player next in line symbolized what
two elements were being compared at any given time.
The first player was given "the ball" and started moving
down the line of other players. If the next player weighed
less, the ball carrier knocked the next player over and
continued down the line. If the next player weighed more,
then the ball was “fumbled” and the larger player now
carried the ball with the previous ball carrier staying in the
same place.

Discussion
Despite the variety of visualizations created by different
pairs in this task, there were some common patterns. In all
cases, subjects began to solve the task by first agreeing on
how the sort worked. Two of the groups created sample
data and stepped through exactly how the algorithm would
react to specific elements. After this stage of defining the
sort, pairs would begin to generate ideas on how best to
describe the sort to a novice. They would mention the fact
that the audience would not know certain ideas, such as
pseudocode, or the "proper spectral order" of colors. In
order to help others understand their animations, two of
the groups constructed legends to show their audience how
their colors mapped onto magnitude. Finally, all of the
groups created a sample data set and used it to show
exactly how the algorithm would react to specific
elements.

Study 2: How do people’s visualizations accord with
AV Software?
Two of our three pairs of participants who constructed
paper animations continued on to learn LENS and to
implement the bubble sort and one other sort animation
with it. The second sort animation task is not reported in
this paper since its usability details are beyond the scope
of this paper.

The major difference between LENS and traditional AV
software (see, for example, [3, 5,12]) is that it provides the
user with a set of graphic objects and transformation
processes which allows the user to construct the
visualization for an algorithm interactively, and at
runtime. Written for XWindows, LENS allows users to
load the source code of their C programs into an
interactive environment, in which they occupy a scrollable
source code window.

Using the interesting events paradigm established by
Brown [3], users can interactively annotate their

algorithms by (a) identifying points in their programs at
which interesting events occur; (b) determining what
graphical sequence would appropriately characterize those
events; and (c) mapping the interesting events to graphics
by manipulating the user interface. In targeting the
activities of “high-level debugging, program testing, and
refinement, not low-level debugging” (Mukherjea &
Stasko, 1993, p. 3), the LENS system purports to provide
direct-manipulation support for activity (c) noted above.
The user interface to LENS offers a menu of animation
primitives (flash, move, exchange, change color, change
fill, create/delete image) which animate rectangles. These
primitives map interesting events in the code to the
underlying Tango AV language [5] on which LENS is
based. The spatial extent (either height or width) of
rectangles is automatically determined by the value of
elements in C code arrays.

Procedure
Participants were given a three page description of
procedural instructions for implementing a predefined
animation for bubble sort defined by the authors. If
implemented correctly this animation is illustrated in the
final sorted state in Figure 5.

The C code for bubble sort given to them in Study One
was already loaded into the system. Participants were
shown how to define the “interesting events” in the
algorithm code and then map them to graphical animation
events.

Figure 5. The LENS animation window which shows the
final state of a dynamic bubble sort animation like the one

participants defined in the study.

Users can choose to specify as many animation events as
they wish using this process, and may even choose to
specify multiple animation events on the same line. At any

4/9/95 5 18:35 PM

point in the process of annotating an algorithm, users may
view the animation currently defined on the algorithm
causing an animation window to appear. Users may start
the animation by clicking a button in that window. Thus,
we see that LENS supports an iterative process of
animation specification, in which users may interactively
annotate the algorithm with animation primitives, and
view, at any point, the animation to which those primitives
give rise.

Observations
We are happy to report that, in both cases, our participants
seemed to comprehend the bubble sort animation they
defined; however, the participants did not immediately
recognize that the animation was mapping array element
magnitude to bar height (see Figure 5). In these cases,
participants initially uttered remarks like “Huh?” and
“What?,” until it became clear that the bars were gradually
falling into order, at which point they said something to
the effect of “Oh, I see; height indicates value.”

MAPPING VISUALIZATIONS
In order to analyze the visualizations of the human
participants and the LENS system, we have adopted a
mapping technique which relates conceptual entities,
attributes and transformations in the algorithm pseudocode
to the graphical entities, attributes and transformations of
the visualizations. These graphical languages demonstrate
both the similarities and differences in these multiple
representations.

All of the pairs of participants created their own graphical
language to describe the bubble sort in Study 1. Table 1
summarizes the mapping between entities and attributes
defined in the algorithm and those created by each pair,
and LENS. For example, the Number Pair used numbers in

a row of contiguous squares to designate an array. LENS
uses variable height or width rectangles which are drawn
in a non-contiguous row. Some algorithm entities such as
temporary storage and subscripts are not represented in the
animation of either the human participants or LENS.
Likewise, the legend of color codes, used by the Color
Pair and the Football Pair to help the observer understand
the correct order of sorted elements, is not available in
LENS. Instead, LENS relies on the common-sense notion
of increasing size. All human participants represented their
animations as columns of rows of state changes. This
history was not available in the LENS history. We do not
know whether our participants did this because of the
textbook use of this representation or because they wanted
observers to have a visual history as external memory.

Table 2 summarizes the mapping between transformations
defined in the algorithm and those created by each pair,
and LENS. For example, the Number Pair used color to
show when two elements were being compared (turned
pink), and to show the difference between sorted elements
(turned green) and unsorted elements (red). LENS used
flashing to focus attention on the pair being compared and
depended on a left to right ordering of shorter to taller
rectangles to signify the correctness of sorting order.

Based on this mapping comprison, we can make at least
three interesting generalizations that can be observed from
this mapping comparison about conceptualizations of the
algorithm animation. They reflect issues of capturing the
abstract functionality of an algorithm, the grain of
analysis, perceptual salience, and intuitions about cultural
expectations, including metaphor.

ENTITIES and their ATTRIBUTES

Human Participants Algorithm
Pseudocode

LENS

Number Pair Color Pair Football Pair

Square Square Stick Figure Sorting Element Rectangle

Number symbol Color Color (as weight) Magnitude of
Element

Height or Width of
Rectangle

Contiguous row of
squares

Non-contiguous row
of squares

Contiguous row of
figures

Array of Elements Non-contiguous row
of rectangles

-- -- -- Subscript of Array --

-- -- -- Counter --

-- -- -- Temporary Storage --

Columns of rows
(History)

Columns of rows
(History)

Columns of rows
(History)

-- --

-- Legend of Triangles
with Color Spectrum

Legend of Color to
Weight Codes

-- --

TABLE 1: Mappings from algorithm pseudocode entities and attributes to human visualizations and LENS animations

6

Abstract Functionality
All pairs of participants developed animations which
illustrate the overall functionality of the bubble sort in an
abstract way. This naturally follows from the instructions
given the participants that they “explain” how the sort
works. If they had been given instructions to debug the
code using a visualization, a very different result might
have occurred.

The name “bubble” sort illustrates the abstract notion that
sorting occurs by moving larger elements to the “top”.
This is the essence of the algorithm. All of the
visualizations, including the LENS implementation,
capture that notion. Observers can see the elements
moving into position. It is interesting to note that the
visualizations all move elements from left to right, not
bottom to top as real bubbles would move. The success of
these visualizations in capturing the essence of bubble sort
is in the high level of abstraction which they use, ignoring
many details of the actual algorithm. The primary focus of
sorting algorithms is in establishing an ordered
relationship between the elements. Thus the visualizations
all directly represent the elements to be sorted, their
relative magnitude, and their relationship in terms of
ordering. Three of the visualizations picked geometric
objects (squares, rectangles) and one picked stick figures
as elements to be sorted. Magnitude was represented
directly only in the LENS visualization. The human
visualizations all used indirect codingeither color or

numbers. Ordering relationships were represented
spatially by the position of the elements.

All of the human visualizations used a direct mapping to
the notion of a data structure array as it is usually
represented in textbooks. For a one dimensional array,
these textbook pictures show a row of contiguous cells
containing values, usually numbers or letters. This
contrasts with the LENS representation that used
rectangles of different spatial extents.

Abstract functionality in the bubble sort is also captured
by two abstract transformations that operate upon the
elements being sorted: compare and exchange. All of the
visualizations, including LENS, focus on these two
transformations.

During comparison, all the visualizations referenced the
compared elements using graphical features (color, the
location of the football, flashing). However, only one
visualization, that of the Football Pair, attempted to model

the conditional results (equal, greater than, less than) of
the comparison. This was done indirectly through the
rules of “tackling and fumbling.” Exchanging elements
was done directly by animation, ignoring the details of
temporary storage while compared elements were moved.

None of the visualizations modeled the looping construct
directly. Only indirectly through the overall animation
does one see the notion of repetition. The interesting

TRANSFORMATIONS

Human Participants Algorithm
Pseudocode

LENS

Number Pair Color Pair Football Pair

Color squares red -- -- Initialize magnitudes
and counter

(read data)

--

Color both pink

--

Location of football

Repeat

a) Reference elements
to be compared

Flash elements,
change fill or color

-- -- Rules of fumble,
tackle

b) Compare elements

 same, <, >

--

Exchange numbers Exchange colors Change location of
player or football

c) Exchange elements

(swap values using
temporary storage)

Exchange rectangles

Square in correct
order turns green

-- -- d) Terminate pass --

Ordering of natural
numbers, all squares

green

Color squares match
legend

Players ordered by
weight

Terminate Sorting Rectangles ordered by
increasing height or

width

TABLE 2: Mappings from algorithm pseudocode transformations to human visualizations and LENS animations

7

events paradigm as implemented in LENS allows the
specification of both compare and exchange. This
contributes greatly to its success at modeling the bubble
sort. Termination conditions were modeled directly by
only one pair, the Number Pair, who used a change in
color to highlight that elements were in their final state.
All other visualizations used the observer’s sense of
natural ordering (LENS) or a legend (Color Pair, Football
Pair) to specify the correct order of an element.

Grain of Analysis
Grain of analysis was critical for maintaining a high level
of abstraction. Consequently, when looking in detail at
the actual code for the algorithm, many entities and
transformations were ignored by the AV designers. The
housekeeping details of looping, comparing and
exchanging elements were not represented. Thus, we see
in Tables 1 and 2 that initialization of values, i.e. reading
in data, incrementing subscripts, the counter as a
representation of the size of the array, and the use of
temporary storage were absent from human visualizations.

Perceptual Salience
The primary purpose of an algorithm animation as studied
in this paper is in communication. We observed that
human participants used two strategies to aid in their
explanation: focus of attention and perceptual economy.

Focus attention of the human observer is created by the
use of a significant difference in perceptual features such
as motion, loudness, size, color, etc. of an object against a
relatively unchanging background. Participants intuitively
understood that. The Number Pair used colors to focus
attention on the difference between sorted and unsorted
elements and to identify the two elements being compared.
The LENS visualization flashed compared objects. Its
semantics also provide change color or fill. The position
and motion of objects was the primary focus of attention
for all visualizations during the exchange event. Size was
used in the LENS animation to provided a direct
recognition of sorted order of the rectangles.

Perceptual economy was demonstrated in the use of very
simple geometric and stick figures, few colors, and few
objects (4-5), and large differences in magnitude. This
economy also helped to focus attention on the salient
aspects of the algorithm.

Intuitions about Cultural Expectations
All of the AV designs use the observer’s knowledge of
culture to make sense of the animations. Metaphor is one
of those aspects. The most striking thing about the human
visualizations is the one invented by the Football Pair.
This animation uses the metaphor of football play to
cleverly communicate functional details of the algorithm,
including decisions which come about as a result of the
comparison. The location of the football shows the
current state of the algorithm. The notion of the weight of
the players, “tackling and fumbling” map to decisions
about exchange. The Color Pair also uses metaphor with
the concept of a spectrum to naturally order the elements
by magnitude.

In addition to metaphor, cultural concepts of ordering are
used such as the sequence of natural numbers (Number
Pair) and ordering by spatial extent (LENS). Cultural
notions of spatiality are also used heavily in the direction
of motion. All animations moved from left to right, top to
bottom, just as one reads English. It is the authors’
experience that Chinese students expect the direction of
motion in an animation to be from right to left. And
finally, as noted above, the human visualizations all
created spatial structures similar to those used in data
structures texts to represent arrays.

CONCLUSIONS
Have we learned anything about (a) How people
conceptualize algorithm animations in the first place; and
(b) To what extent do such conceptualize accord with AV
software. Clearly, both of these questions rely intimately
on the extent to which our participants’ homemade
animations were indicative of how they actually
conceptualized the algorithm. However, even if our study
“loaded the dice” by asking users to explain the
algorithm not just to think about itand by providing
users with a specific kind of material (construction paper)
that lent itself well to a specific kind of conceptualization
(graphical), we maintain that the insights gained from this
study are very useful in understanding the usability of AV
software. Moreover, in the process of using the more
flexible resource (the art supplies), the users came up with
vastly different animations in all cases.

We have shown through a detailed analysis of the mapping
of algorithm abstractions to both LENS and the human
visualizations that:

• The human visualizations and LENS share a
similar semantics for a high level of abstract
functionality and maintain the same grain of
analysis;

• Both human visualizations and LENS have a
semantics for representing perceptual salience,
although many of those found in the participants’
visualizations are not available in LENS.

• LENS could not begin to equal the variety of
representations that capture cultural expectations.
These are manifested primarily in the use of
metaphor which was revealed in the human
visualizations.

LENS could not support the kinds of animations our
participants created in their construction paper sessions.
Although users were easily able to understand the LENS
AV language and successfully implement the bubble sort,
caution about generalization to usability for other
algorithms must be observed here since bubble sort is an
extremely simple algorithm.

LENS was used as a prototypical example of a new
approach to using AV in instruction—in which the learner
actively constructs the animation as opposed to viewing
one constructed by the teacher. Our research suggests that
visualizations aim at a very high level of functionality and
thus do not provide the detailed procedural information of

8

algorithm pseudocode. This might account for the prior
findings of Stasko et al. [4] that AV provides no advantage
over text-only teaching material. Our research also
deomonstrates that human visualization of algorithms can
be quite creative and can vary significantly from one
group to another. An interactive AV system by necessity
has to predefine the underlying semantics and graphic
building blocks of the animation language. This type of
software design begs for a close match between what
humans conceptualize and what the AV language
provides. We wonder if negative empirical findings
regarding the utility of AV reflect a mismatch between
human conceptualization and AV representation. We
recommend more detailed studies on how humans
conceptualize, visualize and implement algorithms to
develop true usability of AV systems.

ACKNOWLEDGMENTS
We gratefully acknowledge John Stasko and his
colleagues for allowing us to use a prototype version of
LENS, and for graciously and patiently accepting our
criticisms regarding its usability.

REFERENCES
1. Mukherjea, S., & Stasko, J.T. Applying algorithm
animation techniques for program tracing, debugging, and
understanding. Proc. 15th IEEE International Conference
on Software Engineering (Baltimore, MD, 1993), pp. 456–
465.

2. Van Dam, A. The electronic classroom: Workstations
for teaching. International Journal of Man-Machine
Studies 21 , 4 (1984), 353–363.

3. Brown, M. Algorithm Animation . Cambridge, MA:
The MIT Press, 1987.

4. Stasko, J., Badre, A., & Lewis, C. Do algorithm
animations assist learning? An empirical study and
analysis. Proceedings of the INTERCHI ‘93 Conference on
Human Factors in Computing Systems (Amsterdam, The
Netherlands, 1993), pp. 61–66.

5. Stasko, J.T. Tango: A framework and system for
algorithm animation. IEEE Computer (September 1990),
pp. 27-39.

6. Douglas, S.A. and Liu, Z-Y. Qualitative simulation and
causal explanation in an intelligent tutor. Proceedings of
the International Conference on Artificial Intelligence,
(Detroit, MI, August, 1989).

7. Baecker, R.M, & Sherman, R.M. Sorting out sorting.
16mm color sound film shown at SIGGRAPH ‘81 (Dallas,
TX, 1981).

8. Paivio, A. Mental representations: A dual coding
approach. New York: Oxford University Press, 1990.

9. Miyake, N. Constructive interaction and the iterative
process of understanding. Cognitive Science 10, (1986),
151–177.

10. Suchman, L. Plans and situated actions: The problem
of human–machine communication. Cambridge:
Cambridge University Press, 1987.

11. Douglas, S.A. Conversational analysis and human-
computer interaction design. P.Thomas (Ed.) The Social
and Interactional Dimensions of Human-Computer
Interfaces Cambridge University Press, (in press).

12. Naps, T.L, & Hundhausen, C.D. The evolution of an
algorithm visualization system. Proc. 24th Annual Small
college Computing Symposium (Morris, MN, 1991), pp.
259-263.

