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Abstract

Paper, sheet metal, and many other materials are approx-
imately unstretchable. The surfaces obtained by bend-
ing these materials can be flattened onto a plane without
stretching or tearing. More precisely, there exists a trans-
formation that maps the surface onto the plane,after which
the length of any curve drawn on the surface remains the
same. Such surfaces, when sufficiently regular, are well
known to mathematicians as developable surfaces. While
developable surfaces have been widely used in engineer-
ing, design and manufacture, they have been less popular
in computer graphics, despite the fact that their isometric
properties make them ideal primitives for texture map-
ping, some kinds of surface modelling, and computer
animation. Unfortunately, their constrained isometric be-
haviour cuts across common surface formulations. We
formulate a new developable surface representation tech-
nique suitable for use in interactive computer graphics.
The feasibility of our model is demonstrated by applying
it to the modelling of a hanging scarf and ribbons and
bows. Possible extensions and interesting areas of further
research are discussed.

Keywords: computer-aided geometric design, surface
modelling, developable surface, surface
flattening

1 Introduction

The study and use of developable surfaces has a long
history [4]. Real developable surfaces have natural appli-
cations in many areas of engineering and manufacturing.
For instance, an aircraft designer uses them to design the
airplane wings, and a tinsmith uses them to connect two
tubes of different shapes with planar segments of metal

sheets. In computer graphics, we are interested in mod-
elling and animating objects seen in everyday life, and
many objects can be approximated by piecewise contin-
uous developable surfaces. Our aim is to work directly
with developable surfaces as first-class modelling primi-
tives for computer graphics. Our focus in this work is on
the application of the theory of developable surfaces to
the interactive creation of simple geometric models.

Developable surfaces may be deformable, but they have
strong isometric properties. Because they can be easily
parameterised so as to preserve arc lengths, they are ex-
cellent candidates for texture mapping [2][12]. However,
developable surfaces are a small subclass of the polyno-
mial or algebraic surfaces.

When manipulating surfaces defined using common
piecewise polynomial surface formulations, it is easy to
violate isometry properties. For instance, if we simulate
the tearing of a piece of paper using an elastic model,
the corresponding surface defined using a conventional
formulation would appear to stretch and shear unnaturally
during the tearing process. In general, it seems fruitful
to devise modelling systems that are able to represent
developable surfaces directly, and provide manipulation
techniques that preserve their isometric properties.

In Section 2, we define and introduce properties of
developable surfaces. In Section 3, we describe our new
developable surface modelling technique. In Section 4,
we present a hanging scarf and a bow modelled using
our new approach. In Section 5, we discuss possible
extensions to the system and areas of further research.

2 Developable Surface Modelling

Any surface whose (Gaussian) curvature vanishes at ev-
ery point can be constructed by bending a planar region.
These are developable surfaces. By their definition and
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their intrinsic properties, developable surfaces can be flat-
tened onto a plane without stretching or tearing. In theory,
the length of any curve drawn on such a surface remains
the same, and the area of the developable surface also
remains the same [6]. This is to say that curves on de-
velopable surfaces admit an easy arc-length parameter-
isation, and subregions of these surfaces have a direct
surface-area parameterisation.

2.1 Definitions

We take our definitions of ruled and developable surfaces
from [4]. Let I � �a� b� be a closed real domain. A
one-parameter family of lines f����t�� ����t� � t � Ig for a
differentiable space curve ����t� and a vector field ����t� is
a correspondence that assigns to each t � I a point on
����t� � R

� and a vector ����t� � R
� , ����t� �� 000. For each

t � I , the line Lt passing through ����t� that is parallel
to ����t� is called the line of the family at t. For a one-
parameter family of lines f����t�� ����t�g, the surface

XXX�t� v� � ����t� � v����t�� t � I� v � R�(1)

is the ruled surface generated by that family. The lines
Lt are the rulings, and the curve ��� is a directrix of the
surface XXX. A ruled surface is developable if

�
��� �

d���

dt
�
d���

dt

�
� ��(2)

This is to say that ���, d����dt and d����dt are coplanar for
all points on the surface. The notation � �� � � signi-
fies the inner product operator. The simplest examples of
developable surfaces are cylinders and cones, and the sim-
plest non-developable surface is a sphere. A generalized
cone is a ruled surface generated by a family f����t�� ����t�g,
t � I , where����I� is contained in a planeP and the rulings
Lt all pass through a point p �� P .

Every surface enveloped by a one-parameter family of
planes is a developable surface. Each plane in this family
is tangent to such a surface along a line that is obtained as
the limiting position of the line in which two neighbouring
planes intersect. Since the totality of these straight lines
covers the entire surface, as shown in Figure 1, these
straight lines are called the generators of the surface. In
some cases, the generators envelop a space curve at which
the developable surface has a sharp edge called the edge
of regression or cuspidal edge, as shown in Figure 2.

2.2 Previous Work

Engineers, mathematicians and computer scientists are
interested in developable surface modelling from different

a generator

Figure 1: Generators of a developable surface.

Figure 2: An edge of regression of a developable surface.

perspectives. The modelling problems can be formulated
in different ways.

Given two distinct space curves, the classic problem of
constructing a continuous developable surface connecting
the two space curves has been extensively studied [5, 15].
A way is described to reconstruct a smooth developable
surface from a given set of data points, where the data
points are the spherical images of corresponding points
of a geodesic of the original developable surface [11].
Redont approximates the spherical image of the geodesic,
and builds a family of circular cones, each with a geodesic
segment that corresponds to one segment of the original
geodesic. Then Redont forms the desired developable
surface using patches of the circular cones.

In [1], Aumann discusses a different developable sur-
face modelling problem: given two distinct line segments
x�y� and x�y� in R� and a number of constraints, how do
we determine a developable surface whose four bound-
aries are x�y�, x�y�, a Bézier curve with end points x�
and x�, and another Bézier curve with end points y� and
y�, provided that the constraints are satisfied. Aumann
derives a number of theorems concerning the properties of
developable surfaces under such constraints. Simulating
the bending of a developable surface is also an interesting
problem. In [8], Kergosien, Gotoga and Kunii studied
the bending of a developable surface under external and
internal forces.

In [3], Bodduluri and Ravani introduce a representa-
tion for developable surfaces in terms of plane geometry,
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using the concept of duality between points and planes in
3D projective space. The idea is to design a developable
surface using control planes with appropriate basis func-
tions. In [3], this approach is demonstrated using Bézier
and B-spline bases. Geometric construction techniques,
such as the de Casteljau and Farin-Boehm-type construc-
tion algorithms, are extended to the design of developable
surfaces. The conversion from the dual form to a point
representation is based on the line of regression.

In [10], Pottmann and Farin present an approach to
constructing Bézier and B-spline surfaces, based also on
the dual representation in the sense of projective geometry.
They transferred projective algorithms for NURBS curves
to constructions for developable NURBS surfaces in dual
rational B-spline form, using control planes, frame planes
and two reference planes. The two reference planes are
chosen dependent on the application. In [10], a new
method for converting a dual NURBS surface to the usual
NURBS tensor product form is discussed. This method
takes advantage of fact that the planar intersection curve
of a developable NURBS surface is a NURBS curve.

In this paper, we are primarily concerned with geo-
metric considerations for modelling with developable sur-
faces, although we hope to generalise our work to physical
models. Our new technique is inspired by the formulation
of the classic problem and some ideas related to Redont’s
work.

3 A New Modelling Primitive
Our new developable surface modelling technique reduces
the geometric concept of a developable surface to a rel-
atively simple visual specification. We use generalized
cones to outline the shapes of segments of a developable
surface. We divide the surface into several patches based
on the geometry of the surface, as shown in Figure 3(a).
In this paper, we restrict ourselves to G� continuous de-
velopable surfaces without cuspidal edges. Currently our
modelling tool is set up to deal with sequential devel-
opable surface patches only, and it handles sheets with
polygonal boundaries. We can easily extend the imple-
mentation to handle flattened sheets of arbitrary shape,
but the underlying principle is clearer in the polygonal
case. We approximate each patch by a generalized cone
as shown in Figure 3(b). To define a generalized cone,
we specify a cross section and the position of the apex in
relation to this cross section as shown in Figure 3(c).

The specification of a piecewise G� developable sur-
face is done at four levels of detail, as shown in Figure 4.
From level 4 to level 1, the main task of constructing a
developable surface is broken into more elementary sub-
tasks. At level 4, a developable surface is desired. At

control
points

cross 

curve

(a) Divide the surface into a number of pieces.

A developable surface 

surface piece number

(b) Define the shape of each surface piece
by a generalized cone.

section

4

5

generalized cones

cross section editor

3

(c) Use piecewise continuous Bezier curves
to define a cross section of a generalized cone.

1
2

4

5

3
1

2

Figure 3: Dividing a developable surface into patches and
defining each surface patch by a generalized cone.

level 3, the developable surface is divided into n surface
patches. At level 2, each patch is associated with a gen-
eralized cone. The shape of a patch can be determined
by the shape of the corresponding cone and the cut the
curve makes through the cone. Several patches can be
associated with the same generalized cone, possibly with
different initial conditions. At level 1, each cone is speci-
fied by a cross section of the cone and the relative position
of the apex and the cross section.

3.1 Implementation

Using the data flow diagram shown in Figure 4, we can
construct a developable surface in three steps.
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surface piece

level-3

cone

level-2

resulting surface

level-4

1
2 3 4

5

level-1

cone cross section

Figure 4: Flow of specification. The user specifies curve
segments drawn from cross-sections of cones. The sub-
sequent patches are inferred by the implementation.

surface pieces in 2D
boundary

Figure 5: A 2D partitioning of a surface.

3.1.1 Surface Subdivision and Cone Constructions

First, the user observes the developable surface properties
of the object to be modelled. Then the user has to decide
on the subdivision of the surface. To specify the subdivi-
sion, the user needs to flatten the surface and inputs the
coordinates of a sequence of points along the boundary
of the surface in 2D. Then he/she can use these points to
specify the partition of patches. An example is shown in
Figure 5. When the surface is subdivided into n patches,
we would use the shapes of generalized cones to outline
the shapes of patches. For each patch, the user can define
a cone by specifying a cross section and the position of
the apex in relation to an interactively specified cross sec-
tion as shown in Figure 3(c). The initial conditions will
determine the region that needs to be trimmed from the
generalized cone to obtain the patch, as we shall see in
step 2. Up to this point, each cone is defined in its own
3D local coordinate system.

A

A
B

O

O

C

C

B

A general cone in 3D

Surface Piece in 2D

flatten out the cone

represents the generator

IN 2D

of the developable surface

Figure 6: 2D map between a cone and a surface patch.

3.1.2 2DMappingBetweenCones andSurfacePieces

In this step, our task is to flatten out the user defined cones
and determine the relationship between a patch and the
corresponding flattened cone in 2D.

First, we want to flatten a user defined cone. As shown
in Figure 6, when a cone is flattened out, for a given point
on the surface patch, we can easily locate the genera-
tor passing through it. Clearly, when the cone is flattened
out, the user-specified cross section corresponds to a plane
curve. When dealing with a generalized cone, it is difficult
to write down a closed form formula for this plane curve.
However, we may use a system of differential equations
and solve the problem numerically using a procedure de-
scribed in [9]. Assume the curve is parametrized in terms
of t. We can determine the profile of this plane curve
using the system of differential equations

�
�

	��t�
	x�t�
	y�t�

�
� �

�
� 	s�t�	�t�

	s�t� cos��t�
	s�t� sin��t�

�
�

along with the initial values � ���� x��� y��� �T �
� �� x� y� �T , where s�t� is the arc length of the
plane curve, ��t� is the angle subtended by the tangent
of the plane curve on the x-axis as shown in Figure 7
[9]. Note that 	�t� is the curvature at point p�t� of the
cross section of the cone in 3D, and the curvature at point
p�t� of a curve on the developed surface is equal to the
curvature of the projection of the original curve onto the
tangent plane of the surface at p�t� [5].

Next, we determine the relationship between a patch
and the corresponding flattened cone in 2D as shown in
Figure 6. Without loss of generality, our system requires
each patch to be defined as a convex polygon consisting of
four vertices v�, v�, v� and v�, where the line v�v� is the
first generator and the line v�v� is the last generator of the
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Figure 7: Define a 2D curve using s and �.

patch. Note that two of the four vertices might coincide.
With the current version of our modelling system, the
shape of each patch is outlined by one generalized cone.
Surface patches are treated differently depending on their
shapes, as given by their generators. Four general cases
are considered:

CASE I:

v

1v

3

CASE I

v
0

v 2

2v

1vv0

v3

3D2D

Figure 8: Surface patch type: Case I.

As shown in Figure 8, v�v� is parallel to v�v� in
the plane embedding the flattened surface. In this
case, the shape of the developable surface in 3D
cannot be defined by a generalized cone, because
after development we would still have v�v�jjv�v�
in 3D. The shape of the developable surface in 3D
can be defined by a generalized cylinder instead. In
our system, this case is not currently implemented.
To incorporate generalized cylinder into the model
is easy, and it follows similar principles as those of
generalized cones, i.e., flattening the cylinder out in
2D, finding the correspondence between points on

a patch and points on the cylinder, and constructing
the patch in 3D using this information.

CASE II: As shown in Figure 9, v�v� and v�v� inter-
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2v1vv

CASE II
P

generator
first

3
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first generator of the cone
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t g
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e

special generator 

v0

generator
last

O

where t is in [0,a].
can be parametrized in terms of t,
Note:  The cross section of the cone

Figure 9: Surface patch type: Case II.

sect at a point p. In this case, the apex O of the
corresponding cone has to coincide with the point p.
This is because there is a one-to-one correspondence
between generators of the patch and generators of
the associated cone patch. Since the last generator
v�v� and the first generator v�v� corresponds to two
distinct generators of the cone, and two generators
of a cone must intersect at the apex O of the cone,
clearly, the apex O should coincide with the point
p. The user can specify a special generator of the
cone which corresponds to either v�v� or v�v� as one
of the initial conditions mentioned in step 1. Then
the relation between the cone and the patch can be
determined as shown in the figure below.

CASE III: As shown in Figure 10, v�, v� and v� are
distinct vertices, and v� coincides with v�. Since
v�v� is a generator, the apex of the cone has to be
on the line defined by v�v�. Again, this is due to the
correspondence between generators of the patch and
generators of the corresponding cone. In this case,
the user must specify a special generator of the cone
corresponding to v�v�. When the user provides the
distance from the apex to one of the vertices of the
patch as one of the initial conditions mentioned in
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Figure 10: Surface patch type: Case III.

step 1, the relation between the patch and the cone
can be determined as shown in Figure 10.

CASE IV: The case where v�, v� and v� are distinct
vertices, and v� coincides with v� is symmetric to
case III.

3.1.3 Constructing a 3D Developable Surface

Using the 2D mapping shown in Figure 6, we can find,
for each point on the surface patch, its counterpart on the
cone. Since each cone is defined in its own 3D coordinate
system, we can also represent the ribbon patch in this 3D
local coordinate system.

Next, we position the surface patch in the 3D world
coordinate system. Since currently the system is set up to
deal with sequential developable surface patches, let the
developable surface patch be numbered �� 
� �� 


� n� 
,
and let the last surface generator of the ith surface patch
be the first surface generator of the �i�
�st surface patch.

To properly connect the two adjacent patches, we want
the shared surface generator to be correctly aligned and
the surface normals of each patch at that boundary to be
parallel. A unique linear transformation matrix can be
determined using these constraints.

Assume that surface patch � is already in its proper
position. Our algorithm connects the ith patch to the
�i�
�st surface in the ith iteration for i � 
� �� 


� n�
,
i.e., by the end of the ith iteration, patches � through i
are in their proper positions in the 3D world coordinate
system. At the beginning of the ith iteration, we consider
patches i and i� 
. We need some notation. In the world
coordinate system, let AB be the final generator of patch
i� 
, the unit direction vector of AB is ggg � �gx� gy� gz�,
the unit surface normal of patch i� 
 alongAB is nnn, and
the position of A is �ax� ay� az�.

Similarly, in the local coordinate system of patch i, we
label the first generator of patch i as A�B�, the unit direc-
tion vector of A�B� is g’g’g’ � �g�

x� g
�

y� g
�

z�, the unit surface
normal of patch i along A�B� is n’n’n’, and the position of
A� is �a�

x� a
�

y� a
�

z�.
To make the common generator AB align with A�B�

and make the unit surface normal along this shared gen-
erator equal, we can use the matrix M to transform patch
i from its local coordinate system to its proper position in
the world coordinate system, where

M � M�M�M�M��

M� �

�
���


 � � ax
� 
 � ay
� � 
 az
� � � 


�
��� �

M� �

�
���
gx nx gx � nx �
gy ny gy � ny �
gz nz gz � nz �
� � � 


�
��� �

M� �

�
���
g�

x n�

x g�

x � n�

x �
g�

y n�

y g�

y � n�

y �
g�

z n�

z g�

z � n�

z �
� � � 


�
��� �

M� �

�
���


 � � �a�

x

� 
 � �a�

y

� � 
 �a�

z

� � � 


�
��� 


The output of this step is the resulting developable surface
as a whole in 3D. This step is requires no user intervention.
The resulting developable surface is G� continuous.

3.2 Shape Control

To modify or refine the shape of a patch, it is not gener-
ally necessary to subdivide it. The user can adjust and
add control points of the cross section curve of the cone
associated to the patch (cf. Figure 3). Since users can in-
teractively change the piecewise continuous cross section
curve of the generalized cone defining the shape of associ-
ated patch, users have control over the local shape of each
patch. However, developable surfaces are not stretchable,
and thus the adjustment of the shape of a patch might
affect the relative orientation of this patch and its adjacent
patch in object space.

Further control over the patches can be achieved by
adjusting control points of cross section curves. For in-
stance, suppose we have two adjacent patchesA andB as
shown in Figure 11(a). To control the relative orientation
of patches A and B, we can change the orientation of
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Figure 11: Adjusting one control point of a cross section
curve to change the relative orientation of two patches A
and B.

the tangent plane at their common generator. That can
be done by adjusting a few Bézier control points of the
user-defined cross section curve of coneA, where coneA
is associated to patch A.

An example of a local adjustment and its overall effect
is shown in Figure 11(b). The boundary curve VA of
A and the boundary curve VB of B join each other at
point J . The cross section of cone A is shown in the
left column of Figure 11(b). Point K is the intersection
point of generator JOA and the cross section of cone A.
Recall that the cross section curve is defined by piecewise
cubic Bézier curves in our modelling system. Assume
that point K is on the cubic Bézier defined by control
points p�, p�, p� and p�. When p� is adjusted, the tangent
direction of the cross section curve atK might be changed
as shown in the figure. As a consequence, the orientation
of the tangent plane along the common generator OAOB

is changed, as shown in the right column of Figure 11(b).

Therefore, the relative orientation of patchesA andB are
changed, as one can tell from the profile of the boundary
curves VA and VB at the neighbourhood of point J .

Note that the global shape of all surfaces is not largely
affected by this adjustment. Since the cross section curve
of cone A is defined using piecewise continuous Bézier
curve segments, moving control point p� affects the shape
of only the last segment of the cross section curve. A user
can choose to make this segment relatively small so that
it can be used for more global control, and he/she can
still have local control over the shape of the resulting
developable surface.

4 Applications of the Model

To demonstrate the feasibility of our approach, we will
use our developable surface representation technique to
model a hanging scarf and a looping ribbon structure.

4.1 Modelling a Hanging Scarf

Imagine lifting a silky scarf by a single corner, leaving the
scarf hanging naturally in the air. Such a hanging scarf
is approximately a developable surface. Given a point on
the scarf’s surface, one can easily approximate where the
generator lies. We can imagine an “invisible” generalized
cone of a similar shape suspended in the air by its apex and
the cross section of the cone as is shown in Figure 12(a).
The corner by which the scarf is suspended is close to the
apex of the cone, and the scarf itself follows the contour
of the cone.

The folds produced by the cross section, as shown in
Figure 12(a), are expected to be very close to one another.
In order to give the reader a better idea what the folds
look like we will use the cross section in Figure 12(b)
to demonstrate the design and modelling process in the
following sections.

4.1.1 Approximating a Single Cross Section

By inspection, we can obtain some intuition for the folding
of the hanging scarf. The point of departure for our system
is an estimate what the horizontal cross section of the
scarf looks like. The user designs the cross section in
an interactive Cross Section Editor using cubic Bézier
curves. The user may add or move Bézier control points.
A neighbouring point can be adjusted automatically by the
system, to make sure that the resulting piecewise curve is
C� continuous.

The approximated horizontal cross section of the scarf
is used as the cross section of the “invisible” cone. The
apex position of the cone in 3D is specified in a script file.
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Figure 12: Two possible cross section designs (Hanging
Scarf).

4.1.2 Defining Surface Patches in 2D

has vertices
surface piece 2

4
3

1

2

1

3

4, 3, 3, 2

1, 4, 2, 1
has vertices
surface piece 1

Figure 13: Surface patch partition (Hanging Scarf).

Given the four vertices, the scarf is divided into two
patches, as shown in Figure 13. The situations described
in case III and case IV in section 3.1.2 occur in our hang-
ing scarf example. The same generalized cone is used for
both patches.

4.1.3 Constructing Two Surface Pieces in 3D

Figure 14: A hanging scarf: (a) top view; (b) front view;
(c) view from an angle.

We have discussed the method of constructing the devel-
opable surface in 3D in section 3. The resulting surface
is as shown in Figure 14. The configurations are: (a) the
top view of the scarf, (b) the front view of it, (c) the view
from an angle.

4.2 Modelling a Looping Structure

A
0A 1

2D

3A
2A

1
A0ANote that is parallel to 3A2A

Figure 15: A long ribbon.

The looping structure example used in this section is a
bow which resembles the type of bow used to decorate a
gift box. We will “fold” a long ribbon into a bow, and the
ribbon used here is as shown in Figure 15.

There is a pattern in the structure of a bow. If we use
an ellipse of roughly the same size to replace a loop in a
bow, the pattern becomes more obvious. Some example
patterns are shown in Figure 16. It seems sensible to
define the shape of each loop using a generalized cone,
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Figure 16: Example bow patterns.

and to introduce an intermediate patch to connect two
adjacent loops if necessary.

4.2.1 Approximating the Cross Section

top of a gift box

Figure 17: A cone used to define a loop.

To define a loop, one might use a cone which looks like
the one shown in Figure 17. Here, we make the portion
which is flattened as it touches the top of a gift box flatly,
so that the resulting loop looks more realistic. We have

Figure 18: The cross section of the cone used for a loop.

constructed a cone cross section accordingly as shown in
Figure 18. The intermediate patches are triangular in 3D
in this example, so the cone that defines their shape uses
a straight line as its cross section.

4.2.2 Constructing the 2D Layout

In this example, we will create three small loops and three
big loops in our bow. We take a long ribbon, divide it into
ten segments – six loop segments and four intermediate
connecting segments. We draw the ribbon in the 2D
layout window, rotate the 2D mapping of a cone to match
its corresponding ribbon patch. Figure 19(b) is an overall
picture of the ribbon patches and the associated cones
in 2D. Figure 19(a) shows some details of the 2D layout.
The step by step construction of the 2D layout is as shown
in Figure 20.

Figure 19: The 2D layout of the bow.
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Figure 20: Step by step construction of the 2D layout of
the looping structure.

4.2.3 Constructing the 3D Layout

We have discussed the method of constructing the devel-
opable surface in 3D in the section 3 . Figure 21 shows
the development of a surface in 3D.

5 Conclusions

Developable surfaces are a small subclass of the para-
metric surfaces, but it is important to explore how far
they can be taken as full-fledged modelling primitives. In
this paper, we have considered a relatively simple case of
creating sequences of piecewise continuous developable
surface patches. Immediate extensions to more general
grids of patches are required. Developable surfaces de-
fined over triangular domains also warrant exploration, al-
though this may require some reformulation of our work.
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Figure 21: The development of the bow in 3D.

It is becoming common to superimpose a physical in-
terpretation over a geometric formulation. It would be of
great interest, for example, to allow our hanging scarf to
respond accurately to physical forces while still maintain-
ing a developability constraint.
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