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Abstract

We present a comprehensive methodology for realistically
animating liquid phenomena� Physically accurate �D mo�
tion is achieved by performing a two�stage calculation over
an arbitrary environment of static obstacles surrounded
by �uid� A �nite di�erence approximation to the Navier�
Stokes equations is �rst applied to a low resolution� vox�
elized representation of the scene� The resulting velocity
and pressure �elds describe the gross transport of liquid�
including e�ects such as splashing� vorticity and overturn�
ing� Local �uid velocity is then used to drive a height �eld
equation or to convect massless marker particles� The po�
sition of any free surface can thus be determined to a sig�
ni�cantly higher resolution than that of the Navier�Stokes
calculation� In addition� the pressure �eld� together with
the Lagrange equations of motion� is used to simulate dy�
namic buoyant objects� Typical disadvantages to volumet�
ric methods such as poor scalability and lack of control are
addressed by assuming that stationary obstacles align with
grid cells during the �nite di�erence discretization� and by
appending driving functions to the Navier�Stokes equa�
tions� The output from our system is suitable for many of
the water rendering algorithms presented by researchers
in recent years�

Keywords� Fluid Simulations� Navier�Stokes Equations�
Physics�Based Modeling� Free�Surface Flow�

�� Introduction

Some of the most breathtaking animations in recent years
have been generated by modeling the interaction between
light and water� E�ects such as caustic shading� re�ection�
refraction� and internal scattering have been addressed in
some detail� with realistic results ��� ��� ��� One charac�
teristic of this work however� has been that the motion
of the water surface is approximated by a non physics�
based function� Suggested methods have included para�
metric functions � and sinusoidal phase functions �� ���
Two exceptions to this are the papers by Kass and Miller�
and Chen and Lobo� Kass and Miller use a fast approxi�
mation to the two�dimensional shallow water equations to
simulate surface waves in water of varying depth �� Their
model allows for the re�ection and refraction of waves� and
takes account of mass transport� but it does not address
the full range of three�dimensional motion found in a liq�
uid� Such motion includes rotational and pressure based
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e�ects responsible for the much of a �uid	s characteris�
tic behavior� They also cannot easily incorporate dynamic
objects or buoyant e�ects into the model� because the ve�
locity of the �uid is known only on the surface� and in�
ternal pressure is not calculated at all� Chen and Lobo
go further towards a physics�based �uid methodology by
solving a simpli�ed form of the Navier�Stokes equations
in two dimensions �� However� they assume that the �uid
has zero depth� and calculate the elevation of the surface
solely from the instantaneous pressure� This allows them
to perform some interaction between moving objects and
the �ow �eld� but restricts the class of problems that can
be solved using the method� Notably� obstacle geometry
must be two�dimensional� and although the surface height
is varied for animation� they treat the �uid as being com�
pletely �at during the calculation� Therefore� convective
wave e�ects� mass transport� and submerged obstacles are
not covered by their technique�

Comprehensive models of �uid motion do exist� and
there are a variety of tools for solving them in the �eld
of Computational Fluid Dynamics 
CFD�� These methods
generally involve direct simulation techniques to get accu�
rate �uid motion� Unfortunately� in any direct simulation
technique the temporal resolution is strongly coupled to
the spatial resolution� Thus� if the spatial resolution dou�
bles� the temporal resolution must also be doubled so that
the solution does not move more than one spatial sample
per time step� This gives running times proportional to
the fourth power of the resolution� so most of these tech�
niques will scale poorly� Furthermore� an animator needs
a fairly clear understanding of the system of equations be�
ing solved so that he or she can set initial and boundary
conditions to get the desired results� An ideal �uid sim�
ulator for graphics applications would apply the correct
conditions automatically based on the underlying geome�
try� CFD methods also resist external control� making it
di�cult to force a particular motion from a �uid� unless it
is a natural consequence of the system� These restrictions
are an inherent part of the �uid modeling problem� The
question arises whether it is possible to accurately model
realistic �uid motion while keeping within acceptable e��
ciency bounds for Computer Graphics�

In this paper we present a solution to the Navier�
Stokes equations for modeling liquid motion� that satis�es
many of an animator	s needs� Realism is provided through
a �nite di�erence approximation to the incompressible
Navier�Stokes equations� This gives rise to a complete
pressure and velocity pro�le of the simulated environment�
This pro�le is then used to determine the behavior of free
surfaces� and is loosely coupled to the Lagrange equations
of motion to include buoyant rigid objects into a scene�
The range of behaviors accounted for include wave e�ects
such as refraction� re�ection and di�raction� together with



rotational motion such as eddies and vorticity� Further�
more� velocity and pressure are strongly coupled within
the model� This means that even the simplest animation
exhibits subtle realistic behavior not available using pre�
vious computer�graphics �uid models�

Usability has also been a strong motivation for this pa�
per� The Navier�Stokes equations are solved over a coarse�
rectangular mesh containing an arbitrary distribution of
submerged or semi�submerged obstacles� Boundary con�
ditions for the mesh are generated automatically by con�
straining the free variables at an obstacle��uid or air��uid
boundary� This low resolution calculation together with
homogeneous boundary conditions leads to a relatively ef�
�cient determination of �uid velocity and internal pres�
sure� Detail is achieved by using the velocity �eld to con�
centrate attention on regions of interest� i�e�� the �uid sur�
face� The surface is represented as either a chain of mass�
less marker particles� or a height �eld� The markers are
carried around the mesh by convection� and can have ar�
bitrary connectivity� accounting for multiple colliding sur�
faces in a scene�

Consideration is also given to controlling the overall be�
havior of the �uid� Liquid sources or sinks 
known as in�
�ow and out�ow boundaries� can be included anywhere in
the environment� They allow liquid to �ow 
or be forced�
into a scene� or �ow out at a natural rate� A time depen�
dent pressure �eld may also be applied to the �uid surface�
Thus� the e�ects of a strong wind can be simulated and
initial waves be driven realistically� The output from the
system is a polygonal surface or height �eld� both of which
can be rendered using many of the techniques presented
by researchers in recent years �� �� ��� ��� ���

This paper is organized as follows
 We begin by de�
scribing the Navier�Stokes equations� and show how these
equations can be solved to give the complete pressure
and velocity pro�le of a �ow� If care is taken during dis�
cretization of the scene� this can be done e�ciently and
automatically for an arbitrary environment� Section � de�
scribes how the dynamic position of multiple free surfaces
can be delineated without restriction by the convection
of massless particles� For the special but common case
of a �ow without overturning� a height �eld equation is
derived� that couples velocity and surface elevation to the
Navier�Stokes equations� This generate a mesh suitable for
spline�based rendering� A method for loosely coupling the
Lagrange equations of motion to the �ow pressure pro�le
is described in Section �� This method is used to include
buoyant rigid objects into a scene� The complete algorithm
for our technique is given in Section �� Section � describes
two methods for controlling the �uid motion by constrain�
ing velocity and pressure boundary conditions� Examples
are given to simulate di�erent speeds of �ow and wind
driven waves� The paper concludes with a description of
several example animations that have been made using
this system� together with a discussion of the procedure
followed in each case�

�� Navier�Stokes Equations

The motion of a �uid at any point within a �ow is com�
pletely described by a set of non�linear equations known
as the momentum or Navier�Stokes equations� In three di�
mensions� for an incompressible �uid such as water� these

equations can be written as
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where u� v� w are velocities in the x� y� z directions re�
spectively� p is the local pressure� g� gravity� and � is the
kinematic viscosity of the �uid� Although they may seem
daunting at �rst sight� these equations have very hum�
ble origins� They are derived from Newton	s Second Law
which states that momentum is always conserved� The
Navier�Stokes equations simply account for all momentum
exchange possibilities within a �uid� Speci�cally� the terms
on the left hand side of the equations account for changes
in velocity due to local �uid acceleration and convection�
The right hand terms take account of acceleration due
to the force of gravity 
or any body force g�� acceleration
due to the local pressure gradient� rp� and drag due to the
kinematic viscosity� �� or thickness of the �uid� Together
with appropriate boundary conditions and the constraint
that not only momentum� but also mass should be con�
served 
see Section ���� � the Navier�Stokes equations can
be used to accurately simulate �uid phenomena�

�� Solving the Navier�Stokes equations

Despite the complexity of a system of di�erential equa�
tions such as 
��� it is possible to solve it in an intuitive
way� using standard analysis tools �� The �rst step is to
discretize both the equations and the environment that we
want to model� There are a number of ways to do this� but
it is important to keep four things in mind


� In a typical graphics application involving liquids� there
are likely to be numerous boundaries between the liquid
and other objects� and between the liquid and the sur�
rounding medium� Computation cost can be minimized
if such interfaces are homogeneously incorporated into
the model instead of being treated as special cases�

� Generality is everything� Users of the system need to
be able to specify environment geometry quickly� and
without referring to the underlying equations for the
correct boundary conditions�

� It must be possible to apply some external control to
the system so that the animator can accurately specify
how the liquid will behave�

� The range of motion that can be animated using the
technique should include the set of e�ects available with
existing computer�graphics methods� and extend it by
adding new� interesting� and useful behavior�

With some thought� a good discretization that provides
a solution to the �rst of these constraints also provides
solutions to the other three� In the following sections we
present a numerical solution to the Navier�Stokes equa�
tions� The technique combines a low resolution �D calcu�
lation to determine velocity and pressure �elds within the
liquid� with a height �eld equation that is used to precisely
track the position of a free surface� At all times during the
computation� boundary conditions due to solid obstacles
and the �uid surface are homogeneous� and their applica�
tion is transparent to the user�
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Figure �� Location of staggered velocity components on a
typical cell 
i� j� k��

���� Discretization

We solve 
�� across the entire environment� Solid obstacles
and the atmosphere are treated as �uid� but with special
properties that remain constrained throughout the calcu�
lation� The computation domain is �rst divided into a �xed
rectangular grid aligned with a Cartesian coordinate sys�
tem� The u� v� and w velocities are de�ned at the centers
of each face of a cell and referenced locally 
see Figure ��
while pressure� p � is de�ned in the center of each cell� Note
from the �gure that vi�j�����k � vi�
j��������k � At the start
of the calculation the contents of each cell are determined�
A cell may either contain a solid obstacle� be Full of �uid�
be a Surface cell on the boundary between the liquid and
surrounding medium� or be Empty� In all four cases� the
velocity and pressure �elds are de�ned everywhere�

This discretization leads to an explicit �nite di�erence
approximation of 
�� in the form �

�ui�����j�k � ui�����j�k � �tf����x���ui�j�k�
� � �ui���j�k�

��

�����y���uv�i�����j�����k � �uv�i�����j�����k �

�����z���uw�i�����j�k���� � �uw�i�����j�k���� � � gx

�����x��pi�j�k � pi���j�k� � ����x���ui�����j�k

��ui�����j�k � ui�����j�k� � ����y���ui�����j���k

��ui�����j�k � ui�����j���k � � ����z���ui�����j�k��

��ui�����j�k � ui�����j�k���g� ���

for each velocity component u�v� and w of cell i� j� k�
Although this system of equations is complex� the so�
lution process is straightforward� To move the solution
ahead in time� velocities and pressures from the previ�
ous iteration are taken directly from individual cells and
plugged into 
�� to give the new velocities for the cur�
rent iteration 
�u��v� �w�� In some cases� velocities are re�
quired that do not lie on cell faces� in which case they
are averaged over the nearest available values� e�g�� ui�j�k �
�
� 
ui�����j�k �ui�����j�k�� and the square of a quantity� e�g��

u� at 
i� j� k�� is the square of the average� 
ui�j�k���

The new velocities are labeled with a tilde because
the direct application of 
�� does not ensure that 
�� is
satis�ed� Due to the discretization of the environment�
each individual cell may not explicitly satisfy the criteria

that mass be conserved and that the �uid is incompress�
ible� Also� the new pressure �eld needs to be determined�
These constraints are satis�ed simultaneously by solving
the mass conservation� or continuity equation ��

�u

�x
�

�v

�y
�

�w

�z
� �� ���

which essentially says that the net �uid �ow into or out of
a cell is zero�

Consider a cell i� j� k� The divergence of �uid within the
cell� or �missing mass�� is given by ��

Di�j�k � ������x��ui�����j�k � ui�����j�k�

� ����y��vi�j�����k � vi�j�����k � ���

� ����z��wi�j�k���� � wi�j�k�������

Notice that this is a �nite di�erence approximation to the
continuity equation� A positive D therefore� represents an
in�ux of �uid� and in the real world would correspond
to an increase in cell pressure and subsequent increase in
�uid out�ow from the cell� Similarly� a negative D lowers
internal pressure and increases in�ow from neighboring
cells� Thus if the change in cell pressure is scaled according
to the divergence in the cell� and the face cell velocities are
adjusted according to the change in pressure� the cell can
be made to satisfy 
��� The change in pressure for a cell is

�p � �D� ���

where � is given by ��
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���t�
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and �
 is a relaxation coe�cient within the range ������
The cell face velocities are then updated according to �p
such that

ui�����j�k � ui�����j�k � ��t��x��p�

ui�����j�k � ui�����j�k � ��t��x��p�

vi�j�����k � vi�j�����k � ��t��y��p�

vi�j�����k � vi�j�����k � ��t��y��p�

wi�j�k���� � wi�j�k���� � ��t��z��p�

wi�j�k���� � wi�j�k���� � ��t��z��p� ���

and the cell pressure is updated according to

�pi�j�k � pi�j�k � �p� ���

Use of the above equations satis�es 
�� for a single cell�
but neighboring cells may now have a non�zero divergence
��� In order for the whole mesh to simultaneously satisfy

��� the pressure and velocities are �rst adjusted using

��� � �
�� for every cell in the grid� This procedure is then
repeated until all cells in the �ow �eld have a divergence
less than some prescribed small �� With a �
 of ��� and
� of ������� the examples shown in this paper converged
in ��� sweeps on average� Once convergence is achieved�
the �uid is considered to be locally incompressible and
the velocity and pressure �elds are complete for buoyant
object inclusion and the start of the next cycle�

���� Boundary Conditions

The boundary conditions for our model are set automati�
cally once the contents of each cell in the mesh have been
determined� They are also homogeneous� That means that
once they have been set� the Navier�Stokes equations can
be applied blindly without determining exactly where sur�
faces or obstacles lie� This makes for cheap computation
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Figure �� Setting boundary conditions on the free surface
and across obstacle boundaries�

because boundary conditions need only be checked once
at the beginning of an iteration� rather than for the ve�
locity component calculation of each cell� A boundary is
an interface between the �uid and a solid obstacle� or be�
tween the �uid and atmosphere� or a point at which �uid
�ows into or out of the system� In all cases� generalizing
assumptions about the shape of static obstacles� and the
position of free surfaces can greatly reduce the amount of
work that we have to do� without compromising accuracy
or realism�

������ Stationary Obstacles

Consider Figure �� which shows an obstacle and a free
surface� We assume that the walls of an obstacle are al�
ways co�incident with the face of a computational cell� It
then becomes a trivial process to set correct solid obsta�
cle boundary conditions� That is� velocity and pressure
for use in the �nite di�erence expressions� For example�
the component of �uid velocity normal to the face of a
non�permeable obstacle is zero� Because obstacle and cell
faces are coincident� the normal velocities are set directly

u
 � � in the �gure�� In the case of a non�slip obsta�
cle which exerts a drag on the �uid� the tangential veloc�
ity at the boundary is also zero� This is set indirectly by
making the tangential cell face velocity inside the bound�
ary cell equal and opposite to that outside in the �uid

w
 � �w��� Finally� the pressure in the boundary cell�
which is also needed for the �nite di�erence calculation�
is set equal to the pressure in the adjacent �uid cell� pre�
venting any acceleration across the boundary�

Another useful type of obstacle is a free�slip boundary�
The treatment of pressure and velocity is the same as for
a non�slip boundary except that the inner tangential ve�
locity is set equal to that outside in the �uid 
w
 � w���
A free�slip boundary can be thought of as a plane of sym�
metry for motion tangential to it� thus it provides a con�
venient way to bound a �ow �eld�

������ In�ow and Out�ow

Fluid can easily �ow into or out of the system by virtue
of in�ow or out�ow boundary cells� For in�ow� the re�
quired input velocity is set on the cell faces and held
�xed throughout the calculation� In the case of an out�ow
boundary� velocities are initially set equal to the tentative
velocity �eld in adjacent �uid cells and then allowed to re�
lax without constraint during the pressure iteration step�

This ensures that �uid can �ow freely out of the system
without causing any upstream artifacts�

������ Free Surface

Boundary conditions also need to be set on the free sur�
face� When 
�� is applied to a surface cell� velocities and
pressures are needed from adjacent empty cells� We as�
sume that for most applications� if the wavelength of any
disturbance is longer than a few inches� forces due to sur�
face tension will be negligible� We then relax the constraint
that we need to know exactly where in a cell the surface
lies� Thus� if any part of a free surface passes through a
cell� that cell is labeled as a Surface cell� and the equation
of continuity 
�� is used to set boundary velocities� Con�
sider a two dimensional surface cell which is surrounded
on three sides by cells containing �uid� The velocity on
the remaining surface side is set so that the divergence D
of the �uid in the cell is zero� So referring to Figure ��

wi�j�k���� 	 wi�j�k���� � 
�z��x�
ui�����j�k � ui�����j�k �� 
��

If the cell had two sides which face an empty cell� we re�
quire that �u	�x and �w	�z both vanish separately� that
is that each open side velocity equals the velocity of the
side of the cell opposite it� This also satis�es 
��� Finally�
for the case in which three sides are open� the side oppo�
site the �uid carries the velocity of that side� while the
remaining two sides follow freely the e�ects of the body
force and do not otherwise change� A three dimensional
surface cell has velocity components set in an analogous
fashion� leading to �� distinct Empty�Fluid con�gurations�
The pressure in a surface cell is set to the applied atmo�
spheric pressure or forcing pressure function 
see Section
�����

	� Tracking �uid position

We have described a method for solving the full Navier�
Stokes equations over a �nite di�erence mesh� From the
mesh we want to generate a smooth and accurate repre�
sentation of the actual �uid surface position� We also want
to track the motion of such a surface over time� so that
we can adjust the contents of the mesh accordingly 
i�e��
Full� Surface� or Empty�� Finally� to avoid aliasing� the
resolution of the surface should not be restricted by the
coarse resolution of the mesh� With these goals in mind
three methods of surface identi�cation have been devel�
oped� each of which is useful for a particular class of liquid
phenomena�

	��� Marker Particles

The simplest and most functional way to track �uid po�
sition in �D is to convect massless marker particles with
local �uid velocity� In this way particles are continuously
introduced at in�ow boundaries and removed if they cross
an out�ow boundary� and can splash and �ow freely� A
particle	s new position is found using an area weighting
interpolation over the four nearest cell velocities 
See Fig�
ure �� and multiplying the resultant velocity by the cur�
rent timestep� The �nite di�erence mesh is then labeled
as follows


� A cell containing no particles is Empty�
� A cell containing at least one particle that is adjacent

to an Empty cell is a Surface cell�
� A cell containing at least one particle that is not a Sur�
face cell is a Full cell�
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Figure �� Area weighting interpolation scheme for deter�
mining local �uid velocity for a marker k�

The use of marker particles can highlight the full range of
internal �uid motion such as rotation and splashing at a
greater resolution than the �nite di�erence mesh� It is im�
portant to note that the particles do not represent a mass
of �uid� They are used to de�ne the position of the sur�
face only� and have no e�ect on the calculation� Frames
from two dimensional animations using marker particles
are shown in Figure �� Figure �
a� shows that an initial
pulse of water has struck the sides of a concrete tank and
has been projected up into the air� This jet eventually
overturns and crashes back down into the growing pool�
Marker particles are ideal for animating violent phenom�
ena such as overturning waves because they de�ne the po�
sition of the �uid exactly� regardless of how complex the
surface has become� Figure � is discussed in more detail
in Section ��

	��� Free Surface Particles

Marker particles can also be used to precisely delineate any
free�surfaces in a scene� Instead of appearing within every
cell containing �uid� a grid of markers is placed along the
boundaries between �uid and obstacles or air� This grid
is convected with local velocity as before� However� the
number� distribution� and connectivity of particles are al�
lowed to change dynamically as the position of the surface
changes� The rules for removing and adding particles are
simple� If two particles become too close together� delete
both of them and connect their neighbors� If two particles
become too far apart� insert a new particle on the link
between them� This ensures that the surface always re�
mains continuous and that colliding surfaces are smoothly
connected� In two dimensions this method is particularly
useful because it is fast and can easily account for multiple
surfaces�

	��� Height Field

Liquid in the real world often has a surface that is single
valued� Examples of this are puddles� rivers� or the ocean

as long as there are no overturning waves�� For such cases
the position of the surface can be calculated without using
marker particles because we no longer need to track the
complex geometry caused by overturning� We de�ne the
surface height along the y axis� at the center of each ver�
tical column of cells in the three�dimensional mesh� The
change in local surface elevation at each timestep is deter�
mined by the local �uid velocity� that is� by the vertical
component of the �uid motion plus the horizontal convec�

tion of the surface elevation from adjacent cell columns�

�h

�t
� w � u�

�h

�x
�� v�

�h

�y
�� ����

where h is the surface height� This equation can be ap�
proximated by a �nite di�erence expression ��

ht��t
i�j � hti�j � �tf �wt��t

i�j�k

�
�hti���j � hti���j �

��x
�ut��t

i�����j�k
� ut��t

i�����j�k
� ����

�
�hti�j�� � hti�j���

��y
�vt��t

i�j�����k
� vt��t

i�j�����k
�g�

This expression is used to update the position of the height
�eld once the velocity and pressure �elds have been calcu�
lated� It is important to note that despite super�cial sim�
ilarities to the method used by Kass et al� in �� the height
�eld equation is very di�erent� Here� surface elevation is
driven by the underlying �uid velocity� Therefore� veloc�
ity or pressure disturbances anywhere in the �uid volume
can a�ect the surface 
see Examples�� Cell con�guration
for the height �eld approach is trivial� Cells crossed by
the height �eld are Surface cells while those above it are
Empty� and those below it are Full�

For dramatic e�ects such as crashing waves or splashing�
the height �eld can be combined with the marker particles�
Whenever the vertical velocity of the surface is greater
than some positive threshold� a set of particles are intro�
duced just below the surface and the local �uid velocity
is used to set their initial velocity� The particles are then
removed from the Navier�Stokes calculation and a�ected
only by gravity� wind� and air resistance� There is inter�
esting discussion of topics related to the use of particle
systems for �uid animation in �� �� �
�


� Buoyancy

Rigid dynamic objects can be included in a scene using the
velocities and pressures calculated using the Navier�Stokes
equations� Speci�cally� we assume that each rigid object
is discretized and consists of a set of nodes ni� For each
model surface node ni which is within the �uid� the force
acting on this node is calculated based on the following
formula

fni � �rpidVi � mig� 
���

where dVi is a volume associated with the submerged node
of the object and rpi is the gradient vector of the pressure�
Each component of rpi is computed in discrete form as


rpi�xj �
pni � pni�xj

�xj
� j � �� �� � � 
���

where pni is the pressure in the cell containing ni� and
pni�xj is the pressure in the previous cell in the xj direc�
tion� Also� g is the gravitational acceleration� and mi is
the nodal mass assuming lumped masses� The total force
on the object due to the �uid motion and gravity is given
in discrete form by

ffluid �
X
i

fni � 
���

Based on the total force acting on each node� we compute
the generalized external forces fq 
total force and torque




a� 
b� 
c� 
d�


g� 
h� 
e� 
f�

Figure 	� Frames from two dimensional animations making use of marker particles� A jet of water splashes into a
concrete tank �a�d�� A drop of water splashes into a shallow pool �e�h��

acting on the object� as demonstrated in � and we compute
its motion based on the Lagrange equations of motion

M�q �D  q � fq � gq� 
���

where M and D are the object	s generalized mass and
damping matrices� q are the model translational and ro�
tational degrees of freedom� and gq are the generalized
coriolis and centrifugal forces� The mass matrix� M� is de�
rived directly from the object in question �� and is unaf�
fected by the �uid model� The damping matrix� D� also has
the same form as in �� but with the damping coe�cients
adjusted proportional to the relative velocity between a
node� ni� and the local �uid�

In order to handle collisions of the �oating objects with
static obstacles� we also apply the techniques developed in
� for collision detection and collision force computation�

The �oating objects that we used in the examples are
small compared to the mesh size and therefore it is possi�
ble to make the simplifying assumption that they do not
e�ect the water �ow� Thus� they act like large marker par�
ticles moving and rotating according to local forces� For
the objects to in�uence the motion of the �uid� more so�
phisticated techniques need to be employed�

�� Summary of the Navier�Stokes Algorithm

The complete algorithm for solving the Navier�Stokes
equations and tracking the �uid surface can be summa�
rized in the following steps�

�� De�ne obstacles and starting �uid con�guration� and
place dynamic objects�

�� Set initial pressure and velocity conditions�
�� Determine cell contents depending on the method used

to track the surface�
�� Set up boundary conditions for the free surface and

obstacle cells�
�� Compute �u� �v� �w for all Full cells�
�� Perform the pressure iteration for all Full cells�
�� Re�calculate boundary velocities for Surface cells�
�� Update the position of the surface and objects�
!� Go to step ��

�� Control

An important part of the animation process is specifying
how objects in a scene will move� Doing this for a �uid
surface is di�cult because the governing equations 
�� are
strongly coupled and non�linear� Large scale behavior of
the system can be controlled by altering various constants
such as gravity and viscosity� but it is di�cult to specify a
motion then solve backwards to �nd the correct boundary
conditions to cause it� However� there are two places in
our algorithm where coercion can be applied to the �uid�
These can easily be exploited to yield e�ective methods
for controlling the �uid surface�

���� In�ow and out�ow velocities

A time dependent function can be used to determine the
rate at which �uid is pumped into a scene or the rate at
which it is allowed to exit� producing a variety of e�ects�
For example� a broken dam initially generates a high input
rate� but tails o� exponentially as the water level drops�
Also� for animating a river scene� a varying in�ow and
out�ow rate will simulate di�erent classes 
speed� turbu�
lence� of water �ow without requiring any changes to the
environment model�

���� Surface pressure history

Perhaps the most natural way to specify surface behavior
is to model nature� As wind blows across a liquid surface�
small� low pressure vortices induce a local change in sur�
face elevation� This in turn� disturbs the air�ow over the
surface� changing the pressure� Gravity then provides a
restoration force for the initial perturbation which results
in oscillation� Over time� this process is ampli�ed and a
wind driven wave is born� A similar e�ect can be achieved
in a shorter time by applying a forcing pressure history
to the free surface during the Navier�Stokes computation�
This may be constant� time dependent� or depend on the
present height of the surface� For example� in two dimen�
sions� interesting waves can be developed using the forcing
function

papplied�z� �
A �Bcos�Cz � 	t�

�t
� ����
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Figure 
� Deriving constants for an applied pressure func�
tion�

y

Figure �� Starting con	guration for 
D marble soup an�
imation�

where papplied is the pressure within a Surface cell� A	�t
is the mean pressure� and B and C are constants derived
from the desired wave motion� From Figure �� if �L is the
wavelength of the oscillation and D is the mean depth of
the �uid� then�

B � a

r
�
gD

C
� ����

and

C �



L
� ����

where a is the wave amplitude� and g is gravity� Such a
function is used to set the applied pressure boundary con�
dition on the free surface 
See section �������


� Examples

We present a number of examples to show di�erent aspects
of the system described in this paper� Running times are
given for a Silicon Graphics Crimson R����� They do not
vary linearly with the size of each problem because other
factors� such as the total number of Full cells present� or
the speed of the �ow� make a larger contribution to the
amount of CPU time required�

The �rst example 
Figure �
a�d��� is a two dimensional
animation of a water jet splashing into a concrete tank�
The water motion was calculated over a ��x�� grid of cells�
and marker particles were used to delineate �uid position�
Two input rates were speci�ed� water in�ow and particle
in�ow� The jet had a velocity of ��� ms�� and new par�
ticles were introduced at the in�ow boundary at a rate of
��� particles per second� It is important to note that the
only overhead associated with the marker particles is the
cost of moving and displaying them� A relatively sparse
distribution of particles was used in this case to clearly
show that the model can account for colliding surfaces�
overturning waves� and arbitrary splashing� A later frame

from the animation shows that after the jet is turned o�
the vortices in the tank slow down and the surface starts to
settle 
Figure �
d��� This animation ran for ���� iterations
in just over sixteen minutes� The same grid size 
��x���
was used again to animate a splashing drop 
Figure �
e�
h��� Figures �
e� and 
f� show the starting con�guration
of the drop and its initial impact with the surface� The
waves caused by the collision travel out to the sides of
the pool 
Figure � 
g��� and are re�ected back to give the
characteristic �uid rebound at the epicenter of the splash�
Particle density was set at �� per cell� This animation ran
for ���� iterations in twelve minutes� slightly slower than
the water jet example above because the average number
of Full cells per iteration was higher�

If the scene geometry is rotationally symmetric� compu�
tationally cheap two dimensional calculations can be made
using linked chains of markers� Figure � shows two frames
from an animation of a rigid marble dropping into a bowl
of thick soup� The actual calculation was performed in
two dimensions by setting the z axis resolution to �� The
curved side of the bowl was approximated as a series of
steps� and a semicircular drop of liquid was aligned along
the y axis 
see Figure �� to represent the marble� The drop
was given an initial velocity of ���� ms��� and the viscos�
ity of the soup was set relatively high 
������� Two chains
of particles were used to represent the free surfaces in the
scene� �� for the drop and ��� for the soup� The calcula�
tion was run for two thousand iterations at a resolution of
��x��x� taking twelve minutes� The scene was rendered
directly from the positions of the markers� Each chain was
used to de�ne the pro�le of a surface of revolution� which
was smoothed using a series of bicubic splines� Finally�
the marble and other objects were added� and the whole
scene rendered using Pixar	s PhotoRealistic RenderMan
��� The liquid surface was colored using a straightforward
environment map� taking account of Fresnels	s law � to
calculate the fraction of light re�ected toward the camera�
or transmitted to the bottom of the bowl�

The soup example clearly shows some of the advantages
of our model� The liquid drop for the calculation is the
same size as the marble object� so after impact the mean
surface level has risen correctly� Also� the coupling between
pressure and velocity develops as a non�linear oscillation
which continues long after the wave due to the collision has
subsided� Previous computer graphics �uid models would
have accounted for the surface wave� but not for the ac�
companying pressure wave which is responsible for most
of the �nal motion�

The �rst full �D example is an animation titled Moon�
light Cove 
Figure !�� A ��x��x�� mesh was used to �nely
resolve the e�ect of two large ocean waves crashing into a
shallow cove� Submerged rocks� and an irregular sea bot�
tom� focus the waves into the center of the cove� causing a
number of interesting features on the water surface� The
wave becomes steeper as the water depth decreases� and
eddies and pressure waves appear to the left of� and behind
the initial obstacle 
Figure !
b���

Setting up the scene was straightforward and proceeded
in two stages� First� a voxel based editor was used to de�ne
the initial distribution of rocks and water 
Figure ��� The
last plane of cells opposite the cove were then designated
as in�ow cells� with in�ow velocity de�ned as

u � u� a	�cos	t� ����



Figure �� Calculation environment for the Moonlight
Cove�

where a was the desired wave amplitude and 
 the desired
wave frequency� The calculation was run for �	
 seconds�
then the in�ow cells were changed to out�ow and water
allowed to leave the system at its natural rate� This ap�
proach resulted in two full waves while allowing the added
water volume to �ow back out of the scene once the waves
had been re�ected� The animation took two and a half
hours to complete and ran for ������ iterations�

RenderMan was also used to render this example� Two
spline meshes were used� one generated from the surface
height �eld� and another from the distribution of bound�
ary cells� The water surface was rendered as a glass�like
object with small disturbances generated using the long
crested wave model suggested in ��� Detail in the rocks
was provided using a displacement map and suitable noise
function on the spline surface�

The frames in Figure �� show screen shots from an
animation involving buoyant objects� Water �ows into a
closed container carrying soda cans along with it� When
the �ow is turned o�� the cans gather at the far corner of
the container because the walls in this example were set as
non�slip so the tangential �uid velocity is zero� This sim�
ulates the e�ect that objects tend to gather in stagnant
parts of a �ow� The water motion was precomputed in
thirty minutes over a ��x��x�� grid� The soda cans were
added later using an interactive editor which takes a pre�
computed velocity and pressure �eld� and calculates the
forces on an object within the mesh� In this way� many
di�erent shapes and sizes of object can be experimented
with� without having to re�do the �uid calculation�

�� Conclusions

We have presented a comprehensive method for animating
liquid phenomena� A direct simulation technique is used
to solve the Navier�Stokes equations in two or three di�
mensions yielding a range of behavior unavailable with
previous computer graphics �uids models� The method
does come with a computational cost� which� like other
volumetric techniques� scales proportional to the fourth
power of the spatial resolution� However� by careful dis�
cretization of the environment� the most expensive part
of the computation can be made at a low resolution� De�
tail generation is then achieved by directly calculating the
position of a height �eld representing the �uid surface� or
tracking the changing connectivity of surface marker par�

ticles convected with local �uid velocity� The model allows
for some novel control techniques that can be used to gen�
erate a variety of interesting e�ects� and is suitable as a
front end to many of the more inspiring water rendering
algorithms available�
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a� 
b�

Figure 
� A marble dropping into a bowl of thick soup� Initial collision �a�� Oscillation due to coupling between pressure
and velocity �b��


a� 
b�

Figure �� Moonlight Cove� Two ocean waves crash into a shallow cove� Pressure and velocity e�ects throughout the
water volume manifest themselves at the surface �a�b��


a� 
b�

Figure ��� Dynamic objects� Soda cans are carried along with the incoming water� colliding with obstacles �a�� and
getting caught in local eddies �b��


