An Adaptable Software Architecture
for Rapidly Creating Information Visualizations

Rick Kazman
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
rnkazman@cgl.uwaterloo.ca

Abstract

While data visualization is an increasingly important
analysis tool, both in research and commercial commu-
nities, the process of creating these visualizations is still
quite complex. Visualizations tend to be hand-crafted,
each one different from the previous. This paper presents
VANISH, a system created to ease the rapid creation of
arbitrary data visualizations. VANISH simplifies the
creation of visualizations in two ways: by providing a
special-purpose visual language, called VaPL, which
maps semantic domains to visual domains; and by easing
the integration of new semantic and visual domains. The
software structure of VANISH emphasizes separation of
concerns: we follow the Arch/Slinky metamodel of user
interface software by not only separating the underlying
semantic domain to be visualized from the dialog and
presentation components, but by providing virtual se-
mantic domain and presentation layers. In this way, it is
simple to port from one visualization domain to another,
and from one presentation component to another. We
demonstrate that it is simple to create abitrary visualiza-
tions by implementing several well-known visualization
styles such as cone-trees, tree-maps, fisheye views.

Keywords: information visualization, software tools, vi-
sual programming languages

1 Introduction

Over the past decade or so there has been a growing
emphasis the use of visualization techniques in a wide
variety of information technology applications. Visual-
ization is used whenever the data to be understood and
managed is large and complex. For example, there has
been substantial activity in the areas of software visual-
ization [1], financial data visualization, scientific data
visualization [6] and database visualization [7]. The
majority of research in visualization has been on devel-
oping better presentation techniques. The way in which
these visualizations are implemented has received rela-
tively little attention. In particular, few special-purpose
tools exist to ease the burden of creating complex visu-
alizations. Such visualizations are typically hand-crafted

Jeromy Carriere
Nortel
Ottawa, Ontario, Canada
jayc@bnr.ca

using a general-purpose high level programming lan-
guage, typically Fortran, C, or C++.

This paper presents the VANISH (Visualizing And Nav-
igating Information Structured Hierarchically) system
and architecture. VANISH is a data visualization pro-
gramming environment designed to support the creation
of arbitrary visualizations over arbitrary semantic
domains. VANISH, unlike most visualization tools, con-
tains a general-purpose visual programming language
call VaPL (VaNISH’s Programming Language). VaPL is
just one layer—the dialog layer—of a system designed
with one dominant software engineering concern in
mind: integrability. VANISH is structured to simplify
the integration of many different semantic domains and
presentation toolkits. In addition, although VaPL con-
tains all of the functionality of a general-purpose pro-
gramming language, it provides additional functionality
specifically aimed at easing the creation of visualiza-
tions. These two considerations —the special features of
VaPL which simplify the creation of visualization, and
the software structure of VANISH, which eases the inte-
gration of new semantic domains and presentation tool-
kits—are the main contributions of this paper.

2 The Software Structure of VANISH

This section will discuss the software organization and
structure of VANISH. VANISH is an instantiation of the
Arch model of user interface software [12] (a refinement
of the Seeheim model [2]). The Arch model divides all
user interface software into the following functional cat-
egories:

* Functional Core: This is the underlying function-
ality that the system exists to expose (it is often
called the application, or domain-specific compo-
nent). In the case of visualization systems, the func-
tional core is whatever semantic domain is to be
visualized.

¢ Functional Core Adapter: The functional core
adapter mediates between the dialogue and func-
tional core by providing a unified, generic view of
the functional core to the dialogue. For example,

Dialogue

Logical Interaction

Presentation

Functional Core Adapter

Functional Core

Figure 1: The Arch Model of Interactive Software

when accessing a federated database, a user should
not be concerned with the details of the database —
whether it is hierarchical, relational, or object-ori-
ented, or with what form of SQL the query engine
(which resides in the functional core) uses. The
functional core adapter provides a unified view of
multiple functional cores. Results from the domain-
specific component are passed through to the dia-
logue and onward for presentation to the user.

¢ Dialogue: This function mediates between domain
specific and presentation specific functions. It
ensures consistency (possibly among multiple
views of data), controls task sequencing and con-
text management.

* Logical Interaction: This function mediates
between the presentation and the dialogue. It pro-
vides a set of logical interaction objects (sometimes
called virtual objects) to the dialogue. For example,
several commercial virtual toolkits, such as XVT
[9] and Galaxy, provide a common set of presenta-
tion objects that are mapped to specific toolkit
objects, depending on the target platform for the
application.

¢ Presentation: This function implements the physi-
cal interaction between the user and the computer.
Presentation deals with input and output devices
and is typically realized as a user-interface toolkit
and/or a proprietary interface library.

The name Arch is based upon a visual metaphor of the
software organization: the presentation and functional
core are the foundations of the arch. The dialogue is the
keystone. Each of these three components existed in the
Seeheim model. The Arch model adds two “virtual” lay-
ers to a Seeheim software structure:,1 in order to increase

1. There are other differences between the two models,
but these are beyond this scope of this paper.

the separate modifiability of the components, and to
ease porting a system between presentation toolkits and
application domains. The model is depicted in Figure 1.

Clearly the separation of concerns promoted by the
Arch model has important implications for the visual-
ization domain, because visualization faces the same
software problems as other interactive systems: the
desire to reuse as much software as possible, the desire
to minimize the effort of porting, the desire to minimize
the difficulty of system modification and maintenance,
and to localize the effects of a change.

Given these objectives, we need to precisely determine
how the Arch model maps to VANISH in order to
understand the ways in which VANISH supports the cre-
ation, modification, and portability of visualizations. We
will first describe the mapping in broad brush, and then
describe each function in more detail.

VANISH's presentation layer (a user interface toolkit or
rendering package) displays the data visualization to the
user. The logical interaction layer, called LPresentation
provides a toolkit-independent set of abstractions for
visualizing data. VaPL provides the dialog layer—a way
to specify the representation of the visualization, inde-
pendent of the particular domain being visualized and
the toolkit or rendering engine being used. The func-
tional core adapter, called BaseNode, provides generic
access mechanisms to the individual nodes of the
domain and their attributes. The functional core is the
domain to be visualized. The details of the implementa-
tions of these layers in VANISH will now be described
in more detail.

3 Functional Core

One of the objectives of VANISH was to be completely
independent of the semantic domains being visualized.
We wanted VANISH to be a general-purpose visualiza-
tion tool, and so our restrictions on the nature of the
domain to be visualized had to be minimal.

In order to visualize some domain, the following condi-
tions must be met. The information must be represent-
able as a set of nodes, each of which:

1. can be identified uniquely,
2. has a set of attributes,
3. has a computable relationship with other nodes.

These requirements are sufficiently unconstrained to
permit the visualization of most data. We have already
created visualizations of a Unix file system, an RCS
repository, and the World-Wide Web. Each of these will
be discussed in the Results section.

VANISH treats all information as though it were struc-
tured hierarchically (as do Mukherjea et al [7]). A root
is defined for the hierarchy and relationships between
nodes are treated as parent-child relationships. If the
structure to be visualized is actually a network rather
than a tree then cycles are automatically broken in order
to “treeify" the network. If the structure to be visualized
does not have an inherent tree structure, it can still be
visualized using VANISH by associating some comput-
able aspect of a node’s relationship with other nodes as
the “link”, or parent-child relationship, between nodes.
We demonstrate this point in Figure 6.

4 Functional Core Adapter

The computational mechanism that provides general-
ized access to information structures is a set of C++
classes, each of which is derived from the BaseNode
class. The BaseNode class serves the role of the Func-
tional Core Adapter in the Arch model. It provides a
uniform interface to abstract functionality that is com-
mon across all information structures, in the same way
that a virtual toolkit provides a set of common interac-
tion abstractions, irrespective of the underlying graphics
software and hardware. In particular, this class imple-
ments parent-child relationships, along with the facili-
ties to manipulate structures of this form. BaseNode
also provides global naming of nodes within the seman-
tic domain, and a mechanism for defining and maintain-
ing a list of attributes for each of the nodes.

An attribute in a VANISH hierarchy is a (name, value)
pair. Values are currently defined to be of integer, float-
ing point, boolean, or string types. Five node attributes
are created by the BaseNode class constructor for all
nodes, irrespective of the type of hierarchy. Two of these
are integer attributes: the number of links between the
node and the root of the tree (i.e. the node's depth in the
hierarchy) and the number of children of the node. The
three remaining attributes are boolean: whether the node
is the root of the tree, whether it is a leaf, and whether it

is the current focus node. The focus indicates the user’s
current position within the hierarchy (for example, the
current working directory in a Unix file system).
Changes in the focus can trigger changes in the presen-
tation, as will be discussed in Section 5.2.

For VANISH to visualize a new variety of hierarchical
information (a new domain), a new functional core for
this domain must be integrated with the functional core
adapter. To accomplish this integration all that is
required is to create a new subclass of BaseNode. This
subclass, once created, can be reused for any visualiza-
tion of this semantic domain, and so the integration
effort, minimal though it is, can be amortized over many
uses of the domain. We give several examples of this
process in Section 8.2.

This new subclass must provide an implementation of a
function called MakeNode, that defines how nodes are
related in the structure, what additional attributes the
nodes contain, and how those nodes are named. If the
information domain to be visualized has no inherent
topology (for example, if one wanted to visualize an
unstructured database of images), then the implementor
of a BaseNode subclass must define at least one rela-
tionship such that links between nodes may be com-
puted (to determine if two nodes are related, and how
strongly). In the example of the image database, two
nodes might be considered to be linked if they exceeded
some threshold of similarity using a measure such as
RMS distance.

When the MakeNode function is called for a given node
within the hierarchy, it will:

1. add the node's additional attributes (those specific to
this subclass) to the list that has been created by the
BaseNode constructor;

2. register the node's unique name by calling a member
function in the BaseNode class;

3. construct any children of the node, calling the appro-
priate BaseNode member functions to associate, or
link, the children with the node.

The notion of “children" is clearly used in an abstract
way. The children of a particular node are those nodes
whose relationship with that node has been defined for
the semantic domain through the BaseNode member
function. A node's attributes are arbitrary: they can rep-
resent any salient aspect of a node's content or structure.
A node’s attributes will not, however, refer to its appear-
ance. That is the separate domain of the presentation,
which actually represents the nodes, and the dialog,
which maps semantic attributes to visual attributes.

5 Dialogue

When attempting to visualize a large information struc-
ture, the most appropriate technique is seldom obvious.
Designers must be able to quickly experiment with a
variety of presentation mechanisms. Novel mechanisms
for presenting specifically hierarchical structures have
been developed by, among others: Robertson et al [8]
and Koike [5], while methods for effectively navigating
information structures have been presented by Schaffer
et al [11], and Mukherjea et al [7]. This is the function
of the dialogue layer in an interactive system: to mediate
the linkage between the functional core and the presen-
tation.

In previous systems, some effort has been devoted to
allowing flexible association of visual attributes with
information attributes. For example [7] allows a set of
pre-determined semantic attributes to be associated with
a pre-determined set of visual attributes, via a form-fill-
ing interface. Some commercial visualization packages,
such as AVS, provide a set of pre-packaged filters and a
data-flow language that allows a user to connect filters
together. These data-flow languages can only connect
filters together; they provide no facilities of general-pur-
pose programming languages.

VANISH allows arbitrary visual and semantic attributes
to be defined and related in an algorithmic manner,
through a high-level, interpreted, visual data-flow lan-
guage. VaPL (VaNISH's Programming Language) code
is implemented in, and interpreted by, the VANISH
environment. Being interpreted, VaPL encourages rapid
prototyping. This point is uncontroversial. Using a
visual language to specify the dialogue layer is more
controversial. Our experience has been that VaPL sim-
plifies the process of creating data visualizations
because it permits only syntactically well-formed data
connections to be made, because the language contains
functionality specifically tailored to information visual-
ization, and because it keeps individual code chunks—
called mappings—small (by simply limiting the amount
of screen space available to describe a mapping).

Prima facie, it seems strange to call the restriction on
screen space for mappings an advantage. However, this
is just the enforcement of a sound software engineering
principle for controlling the complexity of code: mini-
mizing the size of individual pieces of code, and requir-
ing that complex functionality be broken up into
smaller, simpler pieces, each of which has a well-
defined interface with the rest of the world. In standard
procedural languages the same effect is achieved via
guidelines on the maximum size, in lines of code, for a
single procedure.

5.1 Structure

VaPL provides a general-purpose programming lan-
guage. A VaPL program is a set of mappings. A map-
ping is a function: it has a well-defined interface, it
accepts inputs, performs processing, and produces out-
puts. Mappings are named and may call other mappings
by name. Sets of related mappings are collected into
mapping libraries, which can be loaded and saved by
the VANISH programming environment. Mappings typ-
ically manifest themselves as mappings from node
semantics to presentation attributes, however this is not
strictly necessary, as will be shown next.

A VaPL mapping comprises a set of operations, which
are displayed with inputs at the top and outputs at the
bottom. A set of arcs connects output terminals to input
terminals, specifying a direction of data flow. A node in
the graph performs a specific operation on its inputs and
sets a value at its output. This data flow model has been
used in many visual languages, such as Prograph [1].

VaPL organizes mappings into cases. Each mapping is
actually a set of cases, arranged in a fixed enumeration.
The execution of a mapping begins at the first case and
progresses until either a case completes successfully or
until no operation can execute in the current case. If a
particular case can not complete successfully and more
cases exist, then control is transferred to the next case in
the enumeration. An example of a multi-case method is
shown in Figure 2.

This left-hand side of Figure 2 shows how one would
implement the computation of the nth Fibonacci number
using VaPL. The first case fetches the mapping's input
(n), and tests for inequality with zero. If the test suc-
ceeds, execution continues in the next case—indicated
by the disc at the right of the inequality operation. If the
test fails, execution continues in the first case and the
output is set to zero. The thick dashed line connecting
the logical operation to the SetOutput operation is a
synchronization primitive—it indicates that the former
must occur before the latter. The second case is similar
to the first. The third case is most interesting: after fetch-
ing the input value it subtracts one and calls the map-
ping (named “fib") recursively. One is subtracted from
the result of the previous subtraction and the mapping is
called again. The outputs from the two recursive calls
are added to compute the final result. The right-hand
side of Figure 2 shows the VaPL code for Quicksort
(omitting the second case, which only deals with an
empty list).

These simple examples show that VaPL is a general-
purpose programming language: it includes input, out-

fib

quicksort

1/3 (normal) 2¢3 (normal)

3/3 (normal}

1/2 (normal)

Figure 2: VaPL implementations of the Fibonacci computation and Quicksort

put, assignment, mathematical, boolean and list opera-
tions, an adequate (although not rich) set of built-in data
types, conditionals, and iteration (not shown in this
example). VaPL also has the ability to package function-
ality together in procedure-like packages (the map-
pings), and invoke these mappings recursively. Data
types are determined dynamically: all data is passed as
strings and typed by VaPL only when necessary. Type
compatibility is checked by the language at run time.
For example, adding a boolean to an integer results in a
run-time error.

As stated earlier, mappings provide the means of
decomposing a VaPL program into procedural chunks.
The RunMapping and CallMapping operations pro-
vide the mechanism by which mappings can call other
mappings. RunMapping takes as its only argument the
name of the mapping to execute, while CallMapping
takes a mapping name and an arbitrary number of addi-
tional parameters. Further differences between these
two operations will be discussed below. Two other oper-
ations, GetInput and SetOutput, provide the mecha-
nisms for retrieving input parameters and setting result
values, respectively, as demonstrated in Figure 2.

However, VaPL is not just another visual programming
language, and is not just another general-purpose pro-
gramming language. VaPL includes special functional-
ity and primitives for visualization. It provides a
powerful environment for the rapid creation of arbi-

trarily complex visualization code which we will
describe next.

5.2 Visualization Using VaPL

VaPL contains functionality which makes it particularly
suited to visualization: it provides generalized visualiza-
tion capability by executing mappings in the context of
hierarchy nodes. Any mapping can execute with respect
to a particular hierarchy node and while doing so, it has
direct read and write access to the attributes of that
node. The mapping code utilizes the node’s attributes to
compute visual attributes on which rendering is based
(as will be described in more detail below).

VaPL contains a rich set of built in node operations,
such as GetChildren, GetRoot, and GetParent, for
navigating a hierarchy. These operations retrieve the
children of a node, or the root of the hierarchy, or the
siblings or parent of the current focus, and so forth. In
addition, VaPL defines a number of attribute operations
such as NodeAttr and SetNdAttr, to get and set arbi-
trary attributes of nodes. Because a node’s attributes are
defined by the semantic domain (or, more precisely, by
the particular subclass of BaseNode being utilized as
the semantic domain), the VaPL language can refer to
any attribute of any semantic domain without modifica-
tion.

A visualization is thus created by writing VaPL code
which is executed for each “relevant” node in the hierar-

compute_radii

do_vertical _node

1/3 (normal) 2/3 (normal}

3/ (normal)

1/2 (normal)

Figure 3: VaPL code to compute cone tree and tree-map layouts

chy. The mapping itself can determine what nodes are
relevant. For example, one might only want to visualize
nodes within some constant distance from the user’s
current focus, or only those nodes which pass some
semantic restriction.

To give an example: often circumstances arise under
which one wishes to compute some visual attribute for a
given node based on the attributes of other nodes. For
example, one might want to change a node's size based
upon its depth in the hierarchy, or its number of chil-
dren, or the “value" or its children (where value is some
dynamically derived measure). By automatically
extending the language to include exported attributes
from a new semantic domain, a VaPL programmer can
simply refer to those attributes and associated them with
visual channels.

Some visual attributes can only be built in a bottom-up
fashion. For example, the diameter of a cone tree rooted
at a node N is dependent upon the number and size of
N’s children, which are themselves determined by their
own set of children, and so forth. When it encounters an
undefined attribute, the NodeAttr operation provides
three courses of action:

1. cause arun-time error and halt execution of the map-
ping;

2. switch to the next case;

3. recursively call the current mapping in the context
of the node being queried, in an attempt to compute
the desired attribute.

This third option is precisely what is required to allow a
programmer to implement “bottom-up" computations in
hierarchical structures. Figure 3 shows two VaPL map-
pings specific to visualization: the left hand mapping
computes the radii of the cones for a cone tree layout
[8]. The mapping on the right-hand side of Figure 3
computes the layout for a tree-map visualization [3].

Recall that these mappings will be run for every node in
the hierarchy. Consider the cone tree mappings, on the
left of Figure 3. The first case retrieves the children of
the current node and compares the resulting list to the
empty list “()”. If the comparison succeeds, execution
moves to the next case; otherwise, the node's radius
attribute defaults to 2.0. The second case calls GetNd-
Children on the list returned by GetChildren, thus pro-
ducing a list of lists which contain the identifiers of the
node's grandchildren. This case, and the next, actually
compute the radius of non-terminal nodes in the cone
tree. The disc at the left of the GetNdAttr operation in
the third case indicates that the mapping should be exe-
cuted recursively for the queried node if its radius
attribute is not defined.

VANISH and VaPL also provide the functionality for
marking a node in the hierarchy as the focus. The SetFo-

cus operation sets the current node to be the focus and
the GetFocus retrieves the identifier of the current
focus. When a node is set as the focus, VANISH, for
each node, computes the distance from the node to the
focus and sets an attribute named distance_to_focus.
This is useful in allowing the user to navigate around the
hierarchy.

For example, in a large hierarchy such as is created
when visualizing the World-Wide Web, it is imperative
to limit the visualization. In our Web visualization, we
only visualize nodes which are less than 5 nodes from
the current focus—this is specified via a VaPL mapping.
By changing the focus (selecting a node), the user can
“navigate" around the Web. Also, given that any node
attribute can be queried by VANISH, we have the ability
to selectively cull the Web visualization. As a simple
example we might only display those nodes which con-
tain keywords of interest to the user, or which are
smaller than 20,000 bytes, or which contain embedded
gif files.

6 Logical Interaction

One of the goals of VANISH was to ease the integration
of both new semantic domains and new presentation
toolkits. In order to support portability at the presenta-
tion level, an environment-independent graphics layer is
a necessity. In VANISH, this mechanism is implemented
as a C++ class, called LPresentation. This class is an
abstract description of the functionality provided by the
presentation layer. For each supported windowing envi-
ronment a distinct subclass of LPresentation is created.
The interface to the LPresentation class provides facili-
ties for drawing lines, polygons, circles and text, as well
as for controlling graphical attributes such as colour,
line width and fill pattern. LPresentation provides two-
dimensional output and all coordinates are specified as
normalized device coordinates. It is a simple matter to
support a three-dimensional logical presentation class as
well. We have not done so because, at present, this
would limit both the performance and the portability of
VANISH.

Currently LPresentation subclasses exist for both Motif
and OpenLook toolkits, under X windows. In addition
to insulating VaPL and the rest of VANISH from the
output primitives of the toolkit, the LPresentation layer
provides a set of input event handling primitives, so that
none of the other classes require any knowledge of the
details of handling events. Because the dialogue layer,
VaPL, is insulated from changes in the underlying pre-
sentation toolkits, changing between toolkits is trivial.

Porting from Motif to OpenLook took 3 hours of pro-
grammer effort, and that time included porting VaPL’s
programming interface (so that one could not only dis-
play in either Motif or OpenLook, but could also pro-
gram using the same interface under either toolkit).

7 Presentation

A very simple presentation layer provides all necessary
functionality for display of the information structure
being visualized. The presentation engine walks through
the hierarchy, displaying nodes as specified by their
visual attributes, which have been computed by the exe-
cution of one or more VaPL mappings. Because presen-
tation primitives have been kept simple, VANISH can
be ported to a wide variety of 2D or 3D graphical envi-
ronments.

7.1 Visual Attributes

The visual attributes, or channels, that specify how an
information structure will be displayed are identical
(from a VaPL perspective) to attributes specified by the
functional core. Thus, defining the presentation of a
hierarchy is simply a matter of determining which
attributes are to be represented in the visualization and
then mapping these attributes to the available visual
channels. VANISH currently provides the following
visual channels (but adding more channels, or changing
the definition of an existing channel is a trivial matter):
Position, Colour (as R, G, and B values), Node size,
Node shape (currently one of triangle, rectangle, or cir-
cle), Line style, Line width, Name.

7.2 Interaction

VANISH provides the ability to tailor user interaction in
the form of a callback that is automatically associated
with each node, and is called when a mouse button is
pressed over a node. VaPL defines a SetCallback opera-
tion, which takes as its only argument the name of a
mapping that should be called when an event occurs.
After a hierarchy has been rendered, a button press
causes the registered callback mapping to be executed,
receiving as input a list which indicates which button
was pressed, and the (x,y) position of the mouse pointer
when the event occurred.

8 Results

In this section we will discuss the uses that we have put
VANISH to, concentrating on what changes were
required to the system to accommodate the various uses,
and how much effort these changes required. These

results demonstrate that VANISH addresses important
software engineering concerns in the creation of visual-
izations.

8.1 Integration Time

As a means of demonstrating the generality, portability,
and usefulness of the separation of concerns in VAN-
ISH, we have applied it to visualizations in four distinct
semantic domains: a (Unix) file-system, a revision con-
trol system (RCS), a C++ class browser, and the World-
Wide Web. In order to apply VANISH to each of these
domains the only changes to VANISH were the creation
of new BaseNode subclasses: FileNode, RCSNode,
ClassNode, and WWWNode.

The FileNode subclass uses Unix inodes as its unique
identifiers and defines several domain specific attributes
for its nodes: the user and group identifiers of the file's
owner, the access, change and modify times of the file
and the file's size.

The RCSNode subclass allows RCS log files (produced
with the rlog command) to be loaded for visualization
by VANISH. A user can visualize a large RCS project
database, seeing file revision history, version branches,
and so forth. These log files describe the version history
of files maintained using RCS. Attributes specific to the
RCS hierarchy include the per-version RCS-defined
date, author, and state.

The WWWNode and ClassNode subclasses use URLs
and C++ class names, respectively, as unique identifiers.
Currently, these domains are visualized only structur-
ally, as no semantic attributes have been defined for
these classes.

The important fact to note about the inclusion of these
semantic domains is that their integration with VANISH
was extremely quick. The integration of the three sub-
classes of BaseNode took about 1 hour of programming
time each.

Because the BaseNode class acts as a functional core
adapter in VANISH, no other changes to the system
were necessary to begin writing VaPL programs to visu-
alize each of the new domains. The inclusion of
attributes from the semantic domains as resources in
VaPL is automatic. This means that VANISH can not
only visualize static data (such as a database of RCS
information), but can act as an interactive front end for
any system where visualizing the results of user interac-
tion is of value (such as a Web browser).

8.2 Re-implementing “Standard”
Visualization Techniques

As mentioned above, many techniques exist for visual-
izing hierarchical information. With VANISH, changing
the visualization technique is a matter of creating or
loading a new set of mappings. One way of proving
VANISH’s generality as a visualization system is to
show that it is sufficiently powerful to re-implement the
kinds of visualizations reported in the current research
literature. VANISH has been used to implement several
well-known visualization algorithms: a simple 2D tree
layout, two varieties of cone trees [8], “spiral" trees, and
two varieties of tree-maps [3]. Each of these has been
created in 30 to 90 minutes of coding time.

The technique employed to visualize structural informa-
tion is orthogonal to the underlying domain being visu-
alized. That is, one could visualize the structure of any
semantic domain using any set of visualization map-
pings. If one wants to visualized domain-specific
semantics then special-purpose mappings must be writ-
ten.

To perform visualization based on hierarchy-specific
semantic attributes, small changes are made to the VaPL
code to bind these attributes. For example, we might
want to relate a node’s size in the visualization to the
corresponding file’s size in a file-system hierarchy (as
determined by information from the FileNode subclass).
Figure 4 shows a visualization of a small file-system
hierarchy (approximately 350 nodes), visualized as a
cone tree, where file size is mapped to node size and
where colour is mapped to file age. Because VANISH’s
current presentation classes are all 2D, a top-down
orthogonal view of a cone tree was implemented,
adjusted so that no node completely obscures any other.
VaPL mappings are used to compute the radii of the
cones, to compute the angles of the arcs, and to compute
the (x,y) positions of the nodes.

After implementing this visualization, the technique of
graphical fish-eye views [10] was added to the cone tree
layout in the following way: after the cone tree layout
was computed, a callback was set which marks the
selected node as the focus node. Each time the focus
node changes new node positions are computed based
on the fish-eye technique. The code required to compute
the fish-eye node positions was minimal (19 VaPL
nodes).

We have also implemented two versions of tree-maps
[3] in VANISH, and used this technique to visualize a
file-system. Tree-maps are a space-filling approach to
visualization. A semantic attribute—in this case the size

of the hierarchy rooted at this node—is mapped to each
rectangle in the tree-map. If the rectangle has children,
their sizes are proportional to their relative size with
respect to their parent. The example shown on the left
side of Figure 5 is a file system with approximately 300
nodes. File size is also represented (redundantly) using
the colour of the node.

In the other version of tree-maps which we’ve imple-
mented (shown on the right side of Figure 5) we mim-
icked the output of the Unix utility xdu, which shows a
hierarchy by drawing a series of fixed-width rectangles
from left to right, with the root on the left. A given node
is drawn to the right of its parent and its height varies
with its size relative to its parent.

The implementation of these two forms of tree-maps
took a total of 3 hours of programming time.

8.3 Non-hierarchical Data

Although all of the preceding examples of VANISH’s
use have been on semantic domains which are inher-
ently hierarchical, this is not a requirement of the sys-
tem. For example, in Figure 6 we have visualized a set
of source files, completely disregarding any hierarchical
relationship they may have within the file system hierar-
chy.

The visualization is a scatterplot which maps each file
on the basis of the number of lines of code in the file, the
number of functions in the file, and the number of times
that the file has been checked into an RCS code reposi-
tory. Lines of code is mapped to the y axis, number of
functions is mapped to the x axis, and shading indicates
the number of times that the code has been checked in.
In addition, node shape is used to redundantly encode
RCS information. Colours indicate the source subdirec-
tory. In this example there are four subdirectories, and
they have been assigned the colours red, green, blue,
and grey. The shade of each of these colours is varied
according to the number of times that the file has been
checked in: darker colours indicate larger numbers of
checkins. As the number of checkins goes to 1, the node
colour tends toward white. In addition, node shape is
used to redundantly encode RCS information. Circles
indicate the bottom third of nodes that have been
checked in (in terms of frequency), squares indicate the
middle third, and triangles indicate the top third of the
frequency distribution.

We can draw the following conclusions by examining
Figure 6:

® there is a gradual increase in the number of check-
ins as we move from the upper left-hand corner of

the visualization to the lower right. This is expected
because files in the upper left-hand corner have few
lines and few functions, and are arguably the least
complex in the system. Files toward the lower
right-hand corner have many functions and many
lines, and so we would expect them to be modified,
and therefore checked in, more frequently. This
information is indicated in two ways: the colours at
the upper left-hand corner are light, and tend to get
darker toward the bottom right. This information is
also apparent from the shapes found: circles pre-
dominate in the upper left-hand corner, whereas tri-
angles predominate toward the lower right.

® files which are more complex are checked in more
frequently. This can be seen by considering an
imaginary line running from the upper left-hand
corner to the lower right-hand corner. Files below
this diagonal have relatively longer functions than
files above the diagonal, and so we would expect
these functions to be more complex. This is corrob-
orated by the checkin information presented:
squares and triangles predominate in the region
below the diagonal. Circles predominate above the
diagonal.

There is, however, one apparently anomalous point in
the scatter-plot. There is one point which is substantially
below the diagonal, but which is a circle. Upon examin-
ing this point, it turns out that it represents a file gener-
ated by Lex. The generated code is quite complex,
consisting of few functions with many lines. However,
the Lex source file is quite simple, and seldom changes.
Thus the generated code file is seldom checked in.

A final note: in each of the above example visualization
techniques, the implementation was relatively simple,
and the interactive nature of VaPL made the prototyping
of different visual alternatives for presenting informa-
tion simple, and greatly eased the debugging of the
VaPL code.

9 Conclusions/Future Work

The VANISH environment supports the creation of arbi-
trary visualizations over arbitrary domains. Our evi-
dence for this claim comes from the fact that we have
been able to create visualizations of object hierarchies,
file systems, RCS databases, and World-Wide Web sites,
in two different presentation toolkits: Motif and Open-
Look.

The ease with which we can integrate new semantic
domains and visual domains derives entirely from the
underlying software architecture, based upon the Arch
model. This architecture promotes appropriate separa-

tion of concerns. In particular, the creation of virtual
presentation and semantic layers (called Logical Inter-
action and Functional Core Adapter) eases the task of
integrating new presentations and functional cores with
VANISH. Our proof of the efficacy of this software
structure is that we are able to quickly integrate new
presentation and semantic domains. Each integration
task has taken around 1 hour.

The VaPL language also supports software engineering
considerations that are important for visualization:
being interpreted and dynamically typed, it encourages
rapid prototyping. Being a visual data-flow language, it
has no global variables, it keeps individual mappings
small, and all control structures are immediately visible.

Our future work with VANISH is to extend the LPresen-
tation class to include 3D structures and to create a
LPresentation subclass for OpenGL. Finally, we expect
to continue to apply VANISH to new semantic domains
and to experiment with novel visualizations.

10 References

[1] P. Cox, F. Giles, T. Pietrzykowski, “Prograph: A
Step Towards Liberating Programming from Tex-
tual Conditioning”, IEEE Workshop on Visual
Languages, 1989, 150-155.

[2] M. Green, “Report on Dialogue Specification
Tools”, in G. Pfaff (ed.). User Interface Manage-
ment Systems. New York: Springer-Verlag, 1985,
9-20.

[3] B. Johnson, B. Schneiderman, “Tree-Maps: A
Space-Filling Approach to the Visualization of
Hierarchical Structures”, Proceedings of IEEE
Visualization, 1991, 284-291.

[4] G. Karsai, “A Configurable Visual Programming
Environment”, IEEE Computer, March, 1995, 36-
44.

[51 H. Koike, H. Yoshihara, “Fractal Approaches for
Visualizing Huge Hierarchies”, Proceedings of
1993 IEEE/CS Symposium on Visual Languages,
1993, 55-60.

[6] B.McCormick, T. DeFanti, M. Brown, “Visualiza-
tion in Scientific Computing”, IEEE Computer
Graphics and Applications, 7(4), 1987, 61-70.

[7] S. Mukherjea, J. Foley, S. Hudson, “Visualizing
Complex Hypermedia Networks through Multiple
Hierarchical Views”, Proceedings of CHI'9S5,
1995, 331-337.

[8] G.Robertson, S. Card, J. Mackinlay, “Cone Trees:
Animated 3D Visualizations of Hierarchical Infor-

[9]

[10]

(1]

[12]

mation”, Proceedings of CHI'91, 1991, 189-194.

M. Rochkind, “An Extensible Virtual Toolkit
(XVT) for Portable GUI Applications”, Digest of
Papers, COMPCON Spring, 1992, 485-494.

M. Sarkar, M. Brown, “Graphical Fisheye Views”,
Communications of the ACM,37(12), 1994, 73-84.

D. Schaffer, S. Zuo, L. Bartram, J. Dill, S. Dubs, S.
Greenberg, M. Roseman, “Comparing Fisheye and
Full-Zoom Techniques for Navigation of Hierarchi-
cally Clustered Networks”, Proceedings of
Graphics Interface '93, 1993, 87-96.

UIMS Tool Developers Workshop, “A Metamodel
for the Runtime Architecture of an Interactive Sys-
tem”, SIGCHI Bulletin, 24(1), 1991, 32-37.

u
(]
[
. &
&
7
&
8
Figure 4: A Cone Tree File System Visualization Figure 6: A Scatterplot Layout of a Code Repository

Figure 5: Tree-Map and xdu Visualizations of a File System

