
View Synthesis from Unregistered 2-D Images

Parag Havaldar, Mi-Suen Lee, and Gérard Medioni
Institute for Robotics and Intelligent Systems

Department of Computer Science
University of Southern California

Los Angeles, CA 90089-0273
U.S.A.

Phone: 213-740-6428 Fax: 213-740-7877
e-mail: havaldar, misuen, medioni@iris.usc.edu

Abstract
Synthesizing the image of a 3-D scene as it would be

captured by a camera from an arbitrary viewpoint is a
central problem in Computer Graphics. Given a com­
plete 3-D model, it is possible to render the scene from
any viewpoint. The construction of models is a tedious
task. Here, we propose to bypass the model construction
phase altogether, and to generate images of a 3-D scene
from any novel viewpoint from prestored images. Unlike
methods presented so far, we propose to completely
avoid inferring and reasoning in 3-D by using projective
invariants. These invariants are derived from corre­
sponding points in the prestored images. The correspon­
dences between features are established off-line in a
semi-automated way. It is then possible to generate wire­
frame animation in real time on a standard computing
platform. Well understood texture mapping methods can
be applied to the wireframes to realistically render new
images from the prestored ones. The method proposed
here should allow the integration of computer generated
and real imagery for applications such as walkthroughs
in realistic virtual environments. We illustrate our ap­
proach on synthetic and real indoor and outdoor images.

Keywords: ¡mage based rendering, projective invariants,
epipolar geometry.

1 Introduction
The generation of photo-realistic images of a 3-D

scene from varying viewpoints is a central problem in
Computer Graphics. The traditional approach to this
problem consists of constructing a 3-D geometric model
of the scene, and then rendering it from any arbitrary
viewpoint. These two steps are both very expensive:
• 3-D model construction is a tedious off-line operation.
For a completely synthetic environment, one needs to
specify all the objects in terms of facets and their rela­

tionships to each other. Methods for constructing models
automatically from images are not yet mature. Data ob­
tained from range finder has to be segmented and merged
before it can be used [6]. In the case of intensity images,
the difficult “structure from motion” problem
[1],[17],[13] has to reliably be solved.
• Rendering realistic images is a computationally ex­
pensive process, with a complexity depending on the
number of objects in the scene. Rendering for real time
applications requires specialized hardware.

This complexity of rendering can be reduced by
computing a few views and interpolating between them.
Chen and Williams [4] have proposed a method for inter­
polating a computer generated scene from closely spaced
viewpoints. Using a dense depth map of the scene and
the positions of the cameras, they are able to generate
pixel correspondences. With these correspondences,
they map texture from an array of prestored images onto
the new image. Greene [9] has developed a method to
generate an image from the so-called environment maps,
which are Z-buffered images rendered from a set of dis­
crete viewpoints in 3D space. These methods assume full
3-D data is always available, which may not be so. far
example when dealing with real world images. The re­
quirement of 3-D models is a serious limitation.

Some researchers have tried to infer 3-D informa­
tion directly from images. Various methods have been
developed for recovering both the shape of an object and
the motion relative to the camera from a sequence of im­
ages [1], [17]. These approaches essentially track feature
points throughout the sequence of images and obtain 3-
D information by solving the basic imaging equations.
Limitation of these methods relate to the large number of
close views required, and to high numerical instability
due to nonlinear nature of the imaging equations.

Another approach is to perform image based render­
ing, in which case, no explicit 3-D model of object and

mailto:medioni@iris.usc.edu

environment is required. Researchers have approached
this by storing an array of 2D images of a scene in the
form of a mosaic [18][19]. Recently, panoramic views
and cylindrical projections of scenes have been obtained
[5], [14], These approaches offer limited navigation ca­
pabilities.

In this paper, we show that it is possible to sidestep
the 3-D model construction phase. Using just two images
of a scene, without knowing their camera positions, we
can synthesize any novel viewpoint of the scene. To gen­
erate such new viewpoints, we use p ro jec tive invariants
which require correspondences of feature points between
two initial images. These points are grouped to form pla­
nar surfaces for the purpose of rendering. The generation
of wireframes is extremely fast and can be animated in
real time on standard computing platforms. The appear­
ance of the face is obtained by texture mapping one of
the existing views of the face in a prestored image onto
the new one. In this paper, we demonstrate results on
polyhedral objects. Dealing with objects with curved
surfaces will require obtaining fine point correspondenc­
es, which we currently do not address.

We make the following assumptions:
• Scenes are static. So, the transformation between the
input images is only a camera displacement.
• Illumination is diffuse. Any specular components, if
present, would be incorrectly mapped by the texture
mapping process.
• The imaging process is well approximated by a pin­
hole camera model.

2 Geometric Invariants - a Brief Summary
The novelty of our approach lies in the use of projec­

tive geometry and invariant theory, namely the use of
cross ra tios. Invariant theory has been established for
many years, but applications of invariants to other areas
such as computer vision and graphics have been demon­
strated rally recently [15] [16].

An invariant, defined with respect to a transforma­
tion T, is a property which remains unchanged under this
transformation. If T is a rotation of two lines in 2-D. as
shown in figure 1, the angle between the lines remains
unchanged, and hence is an invariant. Under orthograph­
ic projection, parallel lines always map to parallel lines.
Here, parallelism is an invariant. Under orthographic
projection, the ratio of points on a line also remains un­
changed as illustrated in figure 1.

Under perspective, the ratio of the ratio of points on
a line, known as the cro ss ra tio , is preserved. It is pre­
cisely this cross ratio which is used in our method. In
figure 2, the line L / is shown with four points on it. Lj

>

angle in 2-D

orthographic projection

parallel lines in 3-D parallel lines in 2-D

B orthographic projection

ACIAB = A’C’IA'B’

figure 1 Examples of invariants under orthographic
transformations

maps to L2 under a projective transformation. Although
the relative positions of the points on the 2 lines change,
the cross ratio, as defined below, remains constant. The
proof and other properties of this projective invariant
may be found in [15] or other books on projective geom­
etry. Given four points on a line, the cross ratio is unique­
ly determined. Conversely, given a cross ratio and three
points, the location of the fourth point can be uniquely
computed. The choice of these points and the computa­
tion of the cross ratio is described in section 4.4.

figure 2 The cross ratio is a projective invariant

3 Overview of the approach
The overview of our system is shown in figure 3. We

first extract a set of “interesting” features in existing
views. In case of polyhedral objects, such features should
correspond to vertices and faces. The extraction of these
features is performed off-line, semi-interactively using
computer vision techniques and is explained in section

image 1 image 2IX I image n

r r i i-r r r iÀ iiiM iM

Cornersrs and r ite :
Corners c nd faces

rners and faces

1

u

2n
<

Corresponding Features

Cross Ratio Computation I

Cross Ratio for each point

View Transfer

Wire-frame image

Texture Mapping

I New Image'

U

2
<

figure 3 Description of our approach

4.1. For each point and face, correspondences are gener­
ated in the other image. This stage, which is described in
section 4.2, again uses well understood computer vision
constraints, namely the epipolar constraint. User interac­
tion is sometimes required to edit wrong correspondenc­
es.

The correspondences established enable computa­
tion of the cross ratio for every point, as explained in sec­
tion 4.4. In section 4.5, we show how the cross ratio can
be used to generate the image positions of these points in
a novel view. Once the position of each face is known in
the new scene, texture information can be mapped from
the corresponding faces in the initial images. This is ex­
plained in section 4.7.

Finally, in section 5, we show experimental results
of our approach. We first apply our technique to synthetic
images, which enables us to quantitatively compare the
predicted view to the accurately rendered view. We then
show our approach on real indoor and outdoor images. In
section 7 we discuss the limitations and extensions of our
approach and the possible application scenarios.

4 Description of our system
We start with 2-D images of a scene. No 3-D infor­

mation of the scene is directly available, nor do we have
any information about the relative positions of the cam­
eras. Using just two images, we are able to generate im­
ages of the scene from different viewpoints. The sections

figure 4 Edge image of one view showing one detected face
and vertices (above). Edge image of second view
showing corresponding epipolar lines and
matched vertices (below)

below give a detailed description of our approach for
handling polyhedral objects.

4.1 Extracting points and faces
For polyhedral objects, the “interesting” points for

which correspondences need to be established are the
vertices of polygons in the image. We first start by detect­
ing edges on the scene images [2], The edges are then ap­
proximated by linear segments [10], These linear
approximations are used to extract vertices. Faces are de­
tected by finding closed chain of vertices.

In theory, the process of extracting points, lines and
detecting faces and vertices is straightforward. In prac­
tice, when dealing with real images, imperfect edges are
obtained because of noise, image quantization effects,
shadows and poor scene illumination. Two typical edge
images are shown in figure 4. These images were ob­
tained by applying the Canny edge detector [2] on the
images shown in figure 10(a). Many of the edges shown
here do not correspond to physical edges of the objects.
Consequently, some of the relevant vertices and faces
might not be detected. Therefore, we have developed a
simple user interface which allows the user to edit these
imperfections. The user can add and correct the vertices
and faces that are not detected.

We now have vertices and faces in both images.
Next, we compute correspondences for these features.
Note that this step is also performed off-line.

Graphics Interface ’96

42 Searching for correspondences
To establish correspondences, we need to search for

the matching feature of the first image in the second im­
age. This 2-D search problem can be simplified into a 1-
D search problem through the use of the epipolar geom­
etry [7], [8], This is explained in the illustration of
figure 5. Two cameras with centers 0 1 and 0 2 are shown
with their respective image planes. Let P and Q be any
two points in 3-D space. Their projections are pj. qi in
the first image and p2, q2 in the second image. P, Oj and
0 2 form a plane known as the epipolar plane. This plane
intersects the two image planes in lines /y and l2 respec­
tively. These lines are known as epipolar lines. As seen
from the geometry of the scene, p / and p2 are constrained
to lie on lines /y and l2 respectively. Thus, if p t is given
and its corresponding point p2 is to be determined, we
need to search for it only along epipolar line l2 in the sec­
ond image. The same reasoning applies for finding the
correspondence of qt in the other image. This epipolar
geometry is captured in a transformation matrix called
the fundamental matrix which maps one image plane
onto the other. Algorithms exist in the computer vision
literature to compute this fundamental matrix from eight
initial correspondences [8] or even five initial correspon­
dences. although more stable results are obtained with
more points [7]. Since this step is performed off line be­
tween existing views, the initial correspondences to set
up the fundamental matrix may be given interactively.

One can also see from the figure that the projection
of 0 2 in the first image plane lies on the intersection of
the two epipolar line /y and m, , which are the projections
of lines P 0 2 and Q 02 respectively. This point Oy is
known as the one of the two epipoles and will be used for
the computation of the cross ratio in section 4.4. The oth­
er epipole o2. the projection of Oy in the second image
plane, is obtained similarly. Once the fundamental ma­
trix is computed between two initial images, we can as­

sociate for every point in the first image, an epipolar line
in the other image. The corresponding point in the other
image should lie on this line.

While searching for correspondences along the epi­
polar lines, exactly one, more than one, or no correspon­
dences may be found. If exactly one vertex lies on the
epipolar line, then we have found the corresponding
point. If more than one vertex lies on the line, then we
need local correlation to disambiguate the matches. If no
vertex lies on the line, the face might have undergone a
partial occlusion. The next section deals with such situa­
tions. It should be noted that, although theoretically
straightforward, incorrect or no matches may be found in
practice when working with real images. Therefore, in
our current implementation, we have also developed an
interface which allows the user to interactively correct an
erroneous match if it occurs.

4.3 Dealing with occlusion
Occlusion of a vertex in one of the images may cre­

ate a wrong match, or no match situation. Wrong match­
es are corrected interactively. In addition, for cases
where there is no match found, we have developed a
methodology to automatically handle occlusion as ex­
plained below with an example.

From figure 6, one can see that the darker face in
view-1 gets occluded in view-2. Here the edge A’B' is
occluded in view-2 and shows up as A'C’. For point B in
view-1, the epipolar line in view-2 intersects the corre­
sponding edge A'C’ at B \ Since the corresponding point
of B in view-2 lies on edge A’C’ and the epipolar line, its
position can be easily computed.

View-1 View-2
figure 6 Occlusion

4.4 Computing the cross ratio
Given any corresponding points in two images, we

would like to predict where this point would appear in a
new image from a different viewpoint. This can be ac­
complished with the cross ratio, since it is a projective in­
variant. For any point P. the cross ratio requires three
other points collinear with P. We generate them using
ideas similar to the one described in [16].

For simplicity of explanation, let us first assume that
we have four non-coplanar points A, B. C and D in the 3-

Graphics Interface ’96

D world, as shown in figure 7. To associate a cross ratio
to a point P, we use the line defined by the center of the
first camera O t and P. This line intersects the planes de­
fined by A, B, C (plane IT) and BC-D (plane A). Let us
call these points of intersection P l and PA respectively.
These two points are different only if A, B, C, D are non-
coplanar. From the four collinear points Ot , PA, and
P, we can compute the cross ratio otp.

In practice, however, we do not have access to these
3-D points A .B .C .D and P, but only to their projections
in the two images. We show below how these can be used
to compute projections of and PA in the two initial
images, and the cross ratio otp.

In image 1. the points O r , PA P project to p h
while in image 2 they project to o2, p2 , P2A■ and Pi re­
spectively. The points A, B ,C and D project to a b h Cj
and B[in image 1, and a2, b2, c2 and d2 in image 2 respec­
tively. o! and o2 are the epipoles and can be computed as
mentioned in section 4.1.

Given the corresponding projections of A, B, C, and
D in the two images, we need to obtain the positions of
p2n and / v \ which can be computed as follows: The
plane corresponding to image 1 can be projectively
mapped to IT through a projective transformation. Simi­
larly, n can be projectively mapped onto image 2. Since
projective transformations are transitive and invertible,
there exists a projective transformation which maps the
projection of points of IT on image 1 to the projection of
points of IT on image 2. Therefore, if we can compute
this projective transformation, we can obtain p2n by ap­
plying this transformation to p 2. Computing a projective
transformation requires four corresponding points in
each image plane. Since we have to compute p2n, we
have to use correspondences of four points which are

projections of points in the plane IT The projections of
A, B, C in the two images give three such points. To ac­
quire a fourth point we make use of the following obser­
vation. IT intersects the line 0 ¡02 at a point, say 0 ’. O'
thus lies on IT and projects onto ol and o2 in the two im­
age planes respectively. Hence the projections alt bj,Cj,
0) and a2, b2, c2, o2 can be used to compute this projec­
tive transform. Similarly using the projections of points
bj, Cj, dj, oi and b2, c2, d2, o2, which are projection of
points on A, a projective transformation can be comput­
ed which gives p2A when applied topj.

This explanation may appear confusing the first
(few) time(s), as it involves intricate geometric construc­
tion, but is very straightforward to implement in practice.
The central result is that, for any point P, we can com­
pute the cross ratio ap, given the projection of the
four points A, B, C, D in two images. The issues related
to the choice of these four points are discussed in
section 7.

4.5 How to specify a new viewpoint
We want to use the results obtained in section 4.4 to

generate a new view. As explained there, we need to use
the projections of the four basis points A, B, C, and D to
generate the new view. Although this is theoretically
equivalent to another means of expressing a projective
transformation, this specification is not intuitive at all. A
more natural way to specify a new viewpoint would be to
give the position and orientation of the image plane and
the focal length. This, unfortunately, is not directly us­
able as we have no knowledge of the Euclidean 3-D
transformation between the input views. To compute it
would require a priori knowledge of the camera parame­
ters. Furthermore, even with this information, its compu­
tation is difficult and unstable

The solution we propose is to generate an equivalent
of the true depth of the four base points from the initial
images, so that their projections can be computed given
the intuitive representation of the new view. This is ac­
complished by computing the disparity of the four base
points from their projections in the two initial images.
Disparity is defined as the difference in image coordi­
nates along the epipolar lines between matching points in
these images, such as dp and dq in figure 8. As illustrated
in the figure, disparity is inversely proportional to the ac­
tual depth [12] of the point relative to the camera.

In summary, we compute disparity for the four basis
points A, B,C. and D from their projections in the two
initial images. We specify any new viewpoint in a natural
fashion, and infer the projection of the four basis points
in this new viewpoint.

Graphics Interface ’96

figure 8 Disparity and depth

4.6 Generating wireframe drawings
For a new camera position, we now have the projec­

tions of the four basis points in the new image. Cross ra­
tios for all the other points in the scene have been
computed from the two initial images using these four
points basis points. For every point whose cross ratio is
known, we thus can compute the location of the point in
the new image using the method explained in section 4.4.
The points are then linked to form wireframes. This pro­
cess of generating wireframes for each new camera posi­
tion require very few operations and hence wireframes
can be generated at frame rate on a standard workstation.

4.7 Texture mapping
We have now generated the boundaries of faces in

the new scene. Since we know which faces they corre­
spond to in the two initial images, texture from these im­
ages can be mapped onto the new faces. We compute the
areas of the faces in the two initial images. This help us
in selecting the face with more texture information to
map onto the face in the new image. Before mapping tex­
ture, the faces have to be ordered in a sequence corre­
sponding to the way they occlude one another. Section
4.3 explained how to detected whether a face has become
occluded. Texture mapping is first performed for faces
which have become more occluded and then for the rest.

We first compute a projective transform which maps
a face in one of the initial images to a face in the new im­
age. This face is then broken down into triangles. Back
projection using the computed projective transform, with
bilinear interpolation is used to texture map each triangle
of the face in the new image. Otter efficient texture map­
ping techniques [3],[11] which are capable of creating
more realistic and accurate results can also be used.

5 Experimental results
We first show results on a set of synthetic images.

This sequence was chosen in order to make a quantitative
comparison and demonstrate the accuracy of our ap­
proach. A sequence of two hundred images were gener­
ated using 3-D models. We wanted to recreate the entire
sequence using oily a few views of the rendered se­
quence. We chose six views showing different view­
points of the scene, as shown in figure 9 (a). In this case,
we had the exact locations of all the points in the ren­
dered images and their correspondences. We used these
correspondences in the six chosen views to compute the
cross ratios of all the points as described in section 4.4.
In figure 9(b) left, we show three rendered images from
different viewpoints obtained from 3-D models. In figure
9(b) right we show the same views synthesized by using
our method. For the first pair, the predicted wire frame
superimposed on the rendered image is shown in figure
9(c). This shows that the view transfers are accurate.
This was expected because the exact feature locations
and correspondences were used. Figure 9(c) also shows
an enhanced difference image for the first pair. This im­
age was enhanced so the differences, which were below
20, could be visibly printed. Although the geometry is
accurate, small differences exist because of artifacts in
the bilinear interpolation.

In figure 10 we show our results on a real scene. Fig­
ure 10(a) gives the 2-D unregistered views used as input.
Edge detection and feature extraction was performed on
these images. 103 features points were automatically de­
tected, amongst which 62 were manually rejected. Most
of the discarded points consisted of texture features
whose geometry can be captured or approximated by
other points in the scene. Correspondences for 37 points
were automatically obtained as described in section 4.1.
We kept 32 correspondences to generate the viewpoints.
Two more correspondences were interactively added for
the completeness of the scene. Figure 10(b) shows three
synthesized viewpoints generated using the above corre­
spondences. Occlusion is handled well here as shown by
the bode on the table. To test the correctness of our ap­
proach for real images, a new image from a different
viewpoint was captured. Figure 10(c) shows the predict­
ed wireframe overlaid on the new image. Unlike the syn­
thetic scenes, the positions of some of the predicted
points are two or three pixels off because of localization
errors in feature points. The right comers of the table and
the PC, which are more erroneous are the ones which
were manually added for completeness.

We applied our approach to a complex outdoor
scene and were able to synthesize novel viewpoints for
selected objects in the scene. In Figure 11(a) two such

Graphics Interface ’96

outdoor views of a building are shown. One was taken
from the roof of an adjacent parking structure, the other
from ground level. Figure 11(b) shows synthesized im­
ages of the building from different viewpoints. Thus, us­
ing our approach, one can select objects from real images
and put them into virtual environments to enhance real­
ism.

6 Complexity Analysis
The first two stages, namely establishing correspon­

dences between detected features in the two images and
the computation of the cross ratio for each feature point,
need to be performed only once, and are done off-line.
Once the cross ratios are computed, the wireframe of any
new image can be computed in real time. The complexity
of this process is linearly proportional to the number of
feature points. We can therefore generate an animated se­
quence of wireframes in real-time on a standard comput­
ing platform.

In our experiments, most of the burden for generat­
ing new images falls on the texture mapping stage, where
triangles needed to be scanned. The choice of proper
graphics hardware can overcome this burden.

7 Discussions and Applications
In this section, we discuss the limitations of our

method and the possible enhancements that may improve
performance of our implementation. We also highlight
potential applications of our approach.

The method has the following limitations:
• The choice of the four non-coplanar points plays a role
in the accuracy of the generated image. Different choices
of points will give slightly different results. But once a
set of points which approximate the cross ratios well is
determined, the predictions remain accurate over a broad
set of variations.
• The locations of the epipoles o1 and o2 (see figure 7)
also affect the accuracy of the generated image. If the
epipoles are far away, the cross ratio becomes prone to
error and consequently the generated viewpoints are in­
accurate. This happens when the image planes of the two
initial images are coplanar.
• We perform texture mapping on the new image. Since
we have no information of the location of viewpoint and
the 3D geometry of the scene, specular reflections cannot
be dealt with.

The accuracy of the image generated by using our
method relies on the precision of the image feature loca­
tion and the correctness of feature correspondences.
Three images may be used to increase the reliability of
finding correspondences. Given three images, as shown

figure 9 Using three images
in figure 9, we can compute the fundamental matrix for
each set of two images. If p 2 'm image 2 and p 3 in image 3
are the hypothesized correspondences of p j in image 1,
then p 3 in image 3 lies at the intersection of epipolar lines
l3 and 1’3 in image 3. This constraint can be used to verify
the correspondences p t and p 2.

Also of interest are recent results, where a stable
computation of bilinear tensors to establish correspon­
dences is given for cases where three images are avail­
able [20].

Our method can be used in applications where 3-D
models are impractical or impossible to obtain, such as
complex real interior environments, or remote or danger­
ous environments where it is impossible to obtain models
for. If a few views can be obtained, our approach could
provide smooth animations.

Our method can also be used to quickly synthesize
images of complex modelled environments. Virtual real­
ity walkthroughs can be done using a small number of
precomputed high quality images with radiosity lighting
For models with many polygons, our approach can offer
a performance advantage.

8 Conclusion
We have developed an approach to generate new im­

ages without going through the tedious steps of obtaining
3-D models and camera positions. This work is based on
firm mathematical principles and uses mature Computer
Vision techniques. Even though the whole process is not
fully automated, human intervention is required to aug­
ment and correct automatic steps, namely point out hard
to detect features and refine correspondences. These
steps are performed off line and only for a sparse set of
existing views. It is then possible to generate wireframes

in real time and to texture map the new scene for an ac­
curate and realistic look.

Acknowledgment
We thank Dr. Ulrich Neumann for stimulating dis­

cussions on this work and his help in oiganizing this pa­
per. We also thank Ms. Yolanda W.H. Chen for her effort
in implementing some of the ideas.

References
[1] Ali J. Azarbayejani, Alex Pentland - Recursive Estimation

for CAD Model Recovery. Proceedings of the second
IEEE CAD based Vision Workshop., 1994. pages 90-97.

[2] J. Canny, A Computational Approach to Edge Detection,
IEEE Transactions on Pattern Analysis and Machine Intel­
ligence, Vol. 8,1986, pages 679-698.

[3] E. Catmull. A Subdivision Algorithm for Computer Dis­
play of Curved Surfaces (Ph. D. Thesis), Department of
Computer Science, University of Utah, Tech. Report
UTEC-CSc-74-133, December 1974.

[4] S. Eric Chen and Lance Williams - View Interpolation for
Image Synthesis. SIGGRAPH 93 Proceedings, pages 279
-288.

[5] S. Eric Chen. QuickTime VR - An Image-Based Ap­
proach to Virtual Environment Navigation. SIGGRAPH
95 Proceedings.

16] Y. Chen and G. Medioni, Object modelling by registration
of multiple range images. Image and Vision Computing,
10,1992, pages 145-155.

[7] R.Deriche, Z. Zhang, Q.T. Luong, O. Faugeras. Robust re­
covery of the epipolar geometry for an uncalibrated stereo
ng.European Conference on Computer Vision, vol I, pag­
es 567-576,1994.

[8] 0. Faugeras, N. Ayache, and B. Faverjon. Building visual
maps by combining noisy stereo measurements. In Pro­
ceedings of IEEE Conference on Robotics and Automa­
tion, Apr 1986.

[9] N. Greene. Environment Mapping and other Other Appli­
cations of World Projections. IEEE CG & A, Vol 6, No. 11,
November 1986.

[10] P. Havaldar, G. Medioni and F. Stein. Extraction of groups
for recognition. Proceedings of the European Conference
on Computer Vision, volume I, pages 251-261,
Stolkholm, 1994.

[11] P.S Heckbert. Fundamentals of Texture Mapping and Im­
age Warping, Masters Thesis, Dept, of EECS, UCB, Tech­
nical Report No. UCB/CSD 89/516, June 1989.

[12] B.K.P. Horn, Robot Vision, MIT Press, 1986.
[13] M.S. Lee and G. Medioni, Structure and Motion from a

Sparse Set of Views, Proc. of IEEE International Sympo­
sium on Computer Vision, pages 73-78, Coral Gables,
Florida, Nov 95.

[14] L. McMillan and G. Bishop. Plenoptic Modeling: An Im­
age-Based Rendering System. SIGGRAPH 95 Proceed­
ings.

[15] J. Mundy and A. Zisserman. Appendix - Projective Geom­
etry for Machine Vision. In J. Mundy and A. Zissserman,
editors, Geometric Invariance in Computer Vision. MIT
Press, Cambridge, 1992

[16] A. Shashua. Projective Depth: A Geometric Invariant for
3D Reconstruction From Two Perspective Orthographic
Views and for Visual Recognition. Proceedings of the In­
ternational Conference on Computer Vision, pages 583-
590, Berlin, Germany, May 1993.

[17] Tomasi and Kanade. Shape and motion from image
streams under orthography: a factorization method. Inter­
national Journal of Computer Vision, vol. 9, no. 2, pages
137-154, November 1992.

[18] L. Teodosio and W. Bender. Salient Video Stills: Content
and Context Preserved. Proceedings of First ACM Inter­
national Conference on Multimedia, pages 39-46, Ana­
heim, California, Aug 93.

[19] L. Teodosia and M. Mills. Panoramic Overviews For
Navigating Real-World Scenes. Proceedings of First ACM
International Conference on Multimedia, pages 359-364,
Anaheim, California, Aug 93.

[20] M. Werman and A. Shashua. Trilinearity of Three Per­
spective Views and its Associated Tensor. Proceeding of
the International Conference on Computer Vision, pages
920-925, Boston 1995.

Graphics Interface ’96

(a) The six model views

fbl Rendered from 3-D model (left),
Synthesized from model views (right)

(c) Predicted wireframe superimposed on rendered view t/eftl,
Difference image of first pair l right).

(a) Tivo views of an indoor scene.

tb) Synthesized views of the indoor scene.

(cl Predicted wireframe superimposed on a new view.

Figure 10 Indoor Scene.

(a) Tivo views of an outdoor scene.

(b) Synthesized views of the building.

Figure 9 Synthetic Scene. Fieure 11 Outdoor Scene.

