
View Synthesis from Unregistered 2-D Images

Parag Havaldar, Mi-Suen Lee, and Gérard Medioni 
Institute for Robotics and Intelligent Systems 

Department of Computer Science 
University of Southern California 

Los Angeles, CA 90089-0273 
U.S.A.

Phone: 213-740-6428 Fax: 213-740-7877 
e-mail: havaldar, misuen, medioni@iris.usc.edu

Abstract
Synthesizing the image of a 3-D scene as it would be 

captured by a camera from an arbitrary viewpoint is a 
central problem in Computer Graphics. Given a com­
plete 3-D model, it is possible to render the scene from 
any viewpoint. The construction of models is a tedious 
task. Here, we propose to bypass the model construction 
phase altogether, and to generate images of a 3-D scene 
from any novel viewpoint from prestored images. Unlike 
methods presented so far, we propose to completely 
avoid inferring and reasoning in 3-D by using projective 
invariants. These invariants are derived from corre­
sponding points in the prestored images. The correspon­
dences between features are established off-line in a 
semi-automated way. It is then possible to generate wire­
frame animation in real time on a standard computing 
platform. Well understood texture mapping methods can 
be applied to the wireframes to realistically render new 
images from the prestored ones. The method proposed 
here should allow the integration of computer generated 
and real imagery for applications such as walkthroughs 
in realistic virtual environments. We illustrate our ap­
proach on synthetic and real indoor and outdoor images.

Keywords: ¡mage based rendering, projective invariants, 
epipolar geometry.

1 Introduction
The generation of photo-realistic images of a 3-D 

scene from varying viewpoints is a central problem in 
Computer Graphics. The traditional approach to this 
problem consists of constructing a 3-D geometric model 
of the scene, and then rendering it from any arbitrary 
viewpoint. These two steps are both very expensive:
• 3-D model construction is a tedious off-line operation. 
For a completely synthetic environment, one needs to 
specify all the objects in terms of facets and their rela­

tionships to each other. Methods for constructing models 
automatically from images are not yet mature. Data ob­
tained from range finder has to be segmented and merged 
before it can be used [6]. In the case of intensity images, 
the difficult “structure from motion” problem
[1],[17],[13] has to reliably be solved.
• Rendering realistic images is a computationally ex­
pensive process, with a complexity depending on the 
number of objects in the scene. Rendering for real time 
applications requires specialized hardware.

This complexity of rendering can be reduced by 
computing a few views and interpolating between them. 
Chen and Williams [4] have proposed a method for inter­
polating a computer generated scene from closely spaced 
viewpoints. Using a dense depth map of the scene and 
the positions of the cameras, they are able to generate 
pixel correspondences. With these correspondences, 
they map texture from an array of prestored images onto 
the new image. Greene [9] has developed a method to 
generate an image from the so-called environment maps, 
which are Z-buffered images rendered from a set of dis­
crete viewpoints in 3D space. These methods assume full 
3-D data is always available, which may not be so. far 
example when dealing with real world images. The re­
quirement of 3-D models is a serious limitation.

Some researchers have tried to infer 3-D informa­
tion directly from images. Various methods have been 
developed for recovering both the shape of an object and 
the motion relative to the camera from a sequence of im­
ages [1], [17]. These approaches essentially track feature 
points throughout the sequence of images and obtain 3- 
D information by solving the basic imaging equations. 
Limitation of these methods relate to the large number of 
close views required, and to high numerical instability 
due to nonlinear nature of the imaging equations.

Another approach is to perform image based render­
ing, in which case, no explicit 3-D model of object and
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environment is required. Researchers have approached 
this by storing an array of 2D images of a scene in the 
form of a mosaic [18][19]. Recently, panoramic views 
and cylindrical projections of scenes have been obtained
[5], [14], These approaches offer limited navigation ca­
pabilities.

In this paper, we show that it is possible to sidestep 
the 3-D model construction phase. Using just two images 
of a scene, without knowing their camera positions, we 
can synthesize any novel viewpoint of the scene. To gen­
erate such new viewpoints, we use p ro jec tive  invariants 
which require correspondences of feature points between 
two initial images. These points are grouped to form pla­
nar surfaces for the purpose of rendering. The generation 
of wireframes is extremely fast and can be animated in 
real time on standard computing platforms. The appear­
ance of the face is obtained by texture mapping one of 
the existing views of the face in a prestored image onto 
the new one. In this paper, we demonstrate results on 
polyhedral objects. Dealing with objects with curved 
surfaces will require obtaining fine point correspondenc­
es, which we currently do not address.

We make the following assumptions:
• Scenes are static. So, the transformation between the 
input images is only a camera displacement.
• Illumination is diffuse. Any specular components, if 
present, would be incorrectly mapped by the texture 
mapping process.
• The imaging process is well approximated by a pin­
hole camera model.

2 Geometric Invariants - a Brief Summary
The novelty of our approach lies in the use of projec­

tive geometry and invariant theory, namely the use of 
cross ra tios. Invariant theory has been established for 
many years, but applications of invariants to other areas 
such as computer vision and graphics have been demon­
strated rally recently [15] [16].

An invariant, defined with respect to a transforma­
tion T, is a property which remains unchanged under this 
transformation. If T  is a rotation of two lines in 2-D. as 
shown in figure 1, the angle between the lines remains 
unchanged, and hence is an invariant. Under orthograph­
ic projection, parallel lines always map to parallel lines. 
Here, parallelism is an invariant. Under orthographic 
projection, the ratio of points on a line also remains un­
changed as illustrated in figure 1.

Under perspective, the ratio of the ratio of points on 
a line, known as the cro ss  ra tio , is preserved. It is pre­
cisely this cross ratio which is used in our method. In 
figure 2, the line L / is shown with four points on it. Lj

>

angle in 2-D

orthographic projection

parallel lines in 3-D parallel lines in 2-D

B orthographic projection

ACIAB = A’C’IA'B’

figure 1 Examples of invariants under orthographic 
transformations

maps to L2 under a projective transformation. Although 
the relative positions of the points on the 2 lines change, 
the cross ratio, as defined below, remains constant. The 
proof and other properties of this projective invariant 
may be found in [15] or other books on projective geom­
etry. Given four points on a line, the cross ratio is unique­
ly determined. Conversely, given a cross ratio and three 
points, the location of the fourth point can be uniquely 
computed. The choice of these points and the computa­
tion of the cross ratio is described in section 4.4.

figure 2 The cross ratio is a projective invariant

3 Overview of the approach
The overview of our system is shown in figure 3. We 

first extract a set of “interesting” features in existing 
views. In case of polyhedral objects, such features should 
correspond to vertices and faces. The extraction of these 
features is performed off-line, semi-interactively using 
computer vision techniques and is explained in section
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figure 3 Description of our approach

4.1. For each point and face, correspondences are gener­
ated in the other image. This stage, which is described in 
section 4.2, again uses well understood computer vision 
constraints, namely the epipolar constraint. User interac­
tion is sometimes required to edit wrong correspondenc­
es.

The correspondences established enable computa­
tion of the cross ratio for every point, as explained in sec­
tion 4.4. In section 4.5, we show how the cross ratio can 
be used to generate the image positions of these points in 
a novel view. Once the position of each face is known in 
the new scene, texture information can be mapped from 
the corresponding faces in the initial images. This is ex­
plained in section 4.7.

Finally, in section 5, we show experimental results 
of our approach. We first apply our technique to synthetic 
images, which enables us to quantitatively compare the 
predicted view to the accurately rendered view. We then 
show our approach on real indoor and outdoor images. In 
section 7 we discuss the limitations and extensions of our 
approach and the possible application scenarios.

4 Description of our system
We start with 2-D images of a scene. No 3-D infor­

mation of the scene is directly available, nor do we have 
any information about the relative positions of the cam­
eras. Using just two images, we are able to generate im­
ages of the scene from different viewpoints. The sections

figure 4 Edge image of one view showing one detected face 
and vertices (above). Edge image of second view 
showing corresponding epipolar lines and 
matched vertices (below)

below give a detailed description of our approach for 
handling polyhedral objects.

4.1 Extracting points and faces
For polyhedral objects, the “interesting” points for 

which correspondences need to be established are the 
vertices of polygons in the image. We first start by detect­
ing edges on the scene images [2], The edges are then ap­
proximated by linear segments [10], These linear 
approximations are used to extract vertices. Faces are de­
tected by finding closed chain of vertices.

In theory, the process of extracting points, lines and 
detecting faces and vertices is straightforward. In prac­
tice, when dealing with real images, imperfect edges are 
obtained because of noise, image quantization effects, 
shadows and poor scene illumination. Two typical edge 
images are shown in figure 4. These images were ob­
tained by applying the Canny edge detector [2] on the 
images shown in figure 10(a). Many of the edges shown 
here do not correspond to physical edges of the objects. 
Consequently, some of the relevant vertices and faces 
might not be detected. Therefore, we have developed a 
simple user interface which allows the user to edit these 
imperfections. The user can add and correct the vertices 
and faces that are not detected.

We now have vertices and faces in both images. 
Next, we compute correspondences for these features. 
Note that this step is also performed off-line.
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42  Searching for correspondences
To establish correspondences, we need to search for 

the matching feature of the first image in the second im­
age. This 2-D search problem can be simplified into a 1- 
D search problem through the use of the epipolar geom­
etry [7], [8], This is explained in the illustration of 
figure 5. Two cameras with centers 0 1 and 0 2 are shown 
with their respective image planes. Let P and Q be any 
two points in 3-D space. Their projections are pj. qi in 
the first image and p2, q2 in the second image. P, Oj and 
0 2 form a plane known as the epipolar plane. This plane 
intersects the two image planes in lines /y and l2 respec­
tively. These lines are known as epipolar lines. As seen 
from the geometry of the scene, p / and p2 are constrained 
to lie on lines /y and l2 respectively. Thus, if p t is given 
and its corresponding point p2 is to be determined, we 
need to search for it only along epipolar line l2 in the sec­
ond image. The same reasoning applies for finding the 
correspondence of qt in the other image. This epipolar 
geometry is captured in a transformation matrix called 
the fundamental matrix which maps one image plane 
onto the other. Algorithms exist in the computer vision 
literature to compute this fundamental matrix from eight 
initial correspondences [8] or even five initial correspon­
dences. although more stable results are obtained with 
more points [7]. Since this step is performed off line be­
tween existing views, the initial correspondences to set 
up the fundamental matrix may be given interactively.

One can also see from the figure that the projection 
of 0 2 in the first image plane lies on the intersection of 
the two epipolar line /y and m, ,  which are the projections 
of lines P 0 2 and Q 02 respectively. This point Oy is 
known as the one of the two epipoles and will be used for 
the computation of the cross ratio in section 4.4. The oth­
er epipole o2. the projection of Oy in the second image 
plane, is obtained similarly. Once the fundamental ma­
trix is computed between two initial images, we can as­

sociate for every point in the first image, an epipolar line 
in the other image. The corresponding point in the other 
image should lie on this line.

While searching for correspondences along the epi­
polar lines, exactly one, more than one, or no correspon­
dences may be found. If exactly one vertex lies on the 
epipolar line, then we have found the corresponding 
point. If more than one vertex lies on the line, then we 
need local correlation to disambiguate the matches. If no 
vertex lies on the line, the face might have undergone a 
partial occlusion. The next section deals with such situa­
tions. It should be noted that, although theoretically 
straightforward, incorrect or no matches may be found in 
practice when working with real images. Therefore, in 
our current implementation, we have also developed an 
interface which allows the user to interactively correct an 
erroneous match if it occurs.

4.3 Dealing with occlusion
Occlusion of a vertex in one of the images may cre­

ate a wrong match, or no match situation. Wrong match­
es are corrected interactively. In addition, for cases 
where there is no match found, we have developed a 
methodology to automatically handle occlusion as ex­
plained below with an example.

From figure 6, one can see that the darker face in 
view-1 gets occluded in view-2. Here the edge A’B' is 
occluded in view-2 and shows up as A'C’. For point B in 
view-1, the epipolar line in view-2 intersects the corre­
sponding edge A'C’ at B \  Since the corresponding point 
of B in view-2 lies on edge A’C’ and the epipolar line, its 
position can be easily computed.

View-1 View-2
figure 6 Occlusion

4.4 Computing the cross ratio
Given any corresponding points in two images, we 

would like to predict where this point would appear in a 
new image from a different viewpoint. This can be ac­
complished with the cross ratio, since it is a projective in­
variant. For any point P. the cross ratio requires three 
other points collinear with P. We generate them using 
ideas similar to the one described in [16].

For simplicity of explanation, let us first assume that 
we have four non-coplanar points A, B. C and D in the 3-
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D world, as shown in figure 7. To associate a cross ratio 
to a point P, we use the line defined by the center of the 
first camera O t and P. This line intersects the planes de­
fined by A, B, C (plane IT) and BC-D (plane A). Let us 
call these points of intersection P l and PA respectively. 
These two points are different only if A, B, C, D are non- 
coplanar. From the four collinear points Ot , PA, and 
P, we can compute the cross ratio otp.

In practice, however, we do not have access to these 
3-D points A .B .C .D  and P, but only to their projections 
in the two images. We show below how these can be used 
to compute projections of and PA in the two initial 
images, and the cross ratio otp.

In image 1. the points O r  , PA P project to p h 
while in image 2 they project to o2, p2 , P2A■ and Pi re­
spectively. The points A, B ,C  and D project to a b h Cj 
and B[ in image 1, and a2, b2, c2 and d2 in image 2 respec­
tively. o! and o2 are the epipoles and can be computed as 
mentioned in section 4.1.

Given the corresponding projections of A, B, C, and 
D in the two images, we need to obtain the positions of 
p2n and / v \  which can be computed as follows: The 
plane corresponding to image 1 can be projectively 
mapped to IT through a projective transformation. Simi­
larly, n  can be projectively mapped onto image 2. Since 
projective transformations are transitive and invertible, 
there exists a projective transformation which maps the 
projection of points of IT on image 1 to the projection of 
points of IT on image 2. Therefore, if we can compute 
this projective transformation, we can obtain p2n by ap­
plying this transformation to p 2. Computing a projective 
transformation requires four corresponding points in 
each image plane. Since we have to compute p2n, we 
have to use correspondences of four points which are

projections of points in the plane IT The projections of 
A, B, C in the two images give three such points. To ac­
quire a fourth point we make use of the following obser­
vation. IT intersects the line 0 ¡02 at a point, say 0 ’. O' 
thus lies on IT and projects onto ol and o2 in the two im­
age planes respectively. Hence the projections alt bj,Cj, 
0) and a2, b2, c2, o2 can be used to compute this projec­
tive transform. Similarly using the projections of points 
bj, Cj, dj, oi and b2, c2, d2, o2, which are projection of 
points on A, a projective transformation can be comput­
ed which gives p2A when applied topj.

This explanation may appear confusing the first 
(few) time(s), as it involves intricate geometric construc­
tion, but is very straightforward to implement in practice. 
The central result is that, for any point P, we can com­
pute the cross ratio ap, given the projection of the 
four points A, B, C, D in two images. The issues related 
to the choice of these four points are discussed in 
section 7.

4.5 How to specify a new viewpoint
We want to use the results obtained in section 4.4 to 

generate a new view. As explained there, we need to use 
the projections of the four basis points A, B, C, and D to 
generate the new view. Although this is theoretically 
equivalent to another means of expressing a projective 
transformation, this specification is not intuitive at all. A 
more natural way to specify a new viewpoint would be to 
give the position and orientation of the image plane and 
the focal length. This, unfortunately, is not directly us­
able as we have no knowledge of the Euclidean 3-D 
transformation between the input views. To compute it 
would require a priori knowledge of the camera parame­
ters. Furthermore, even with this information, its compu­
tation is difficult and unstable

The solution we propose is to generate an equivalent 
of the true depth of the four base points from the initial 
images, so that their projections can be computed given 
the intuitive representation of the new view. This is ac­
complished by computing the disparity of the four base 
points from their projections in the two initial images. 
Disparity is defined as the difference in image coordi­
nates along the epipolar lines between matching points in 
these images, such as dp and dq in figure 8. As illustrated 
in the figure, disparity is inversely proportional to the ac­
tual depth [12] of the point relative to the camera.

In summary, we compute disparity for the four basis 
points A, B,C.  and D from their projections in the two 
initial images. We specify any new viewpoint in a natural 
fashion, and infer the projection of the four basis points 
in this new viewpoint.
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figure 8 Disparity and depth

4.6 Generating wireframe drawings
For a new camera position, we now have the projec­

tions of the four basis points in the new image. Cross ra­
tios for all the other points in the scene have been 
computed from the two initial images using these four 
points basis points. For every point whose cross ratio is 
known, we thus can compute the location of the point in 
the new image using the method explained in section 4.4. 
The points are then linked to form wireframes. This pro­
cess of generating wireframes for each new camera posi­
tion require very few operations and hence wireframes 
can be generated at frame rate on a standard workstation.

4.7 Texture mapping
We have now generated the boundaries of faces in 

the new scene. Since we know which faces they corre­
spond to in the two initial images, texture from these im­
ages can be mapped onto the new faces. We compute the 
areas of the faces in the two initial images. This help us 
in selecting the face with more texture information to 
map onto the face in the new image. Before mapping tex­
ture, the faces have to be ordered in a sequence corre­
sponding to the way they occlude one another. Section
4.3 explained how to detected whether a face has become 
occluded. Texture mapping is first performed for faces 
which have become more occluded and then for the rest.

We first compute a projective transform which maps 
a face in one of the initial images to a face in the new im­
age. This face is then broken down into triangles. Back 
projection using the computed projective transform, with 
bilinear interpolation is used to texture map each triangle 
of the face in the new image. Otter efficient texture map­
ping techniques [3],[11] which are capable of creating 
more realistic and accurate results can also be used.

5 Experimental results
We first show results on a set of synthetic images. 

This sequence was chosen in order to make a quantitative 
comparison and demonstrate the accuracy of our ap­
proach. A sequence of two hundred images were gener­
ated using 3-D models. We wanted to recreate the entire 
sequence using oily a few views of the rendered se­
quence. We chose six views showing different view­
points of the scene, as shown in figure 9 (a). In this case, 
we had the exact locations of all the points in the ren­
dered images and their correspondences. We used these 
correspondences in the six chosen views to compute the 
cross ratios of all the points as described in section 4.4. 
In figure 9(b) left, we show three rendered images from 
different viewpoints obtained from 3-D models. In figure 
9(b) right we show the same views synthesized by using 
our method. For the first pair, the predicted wire frame 
superimposed on the rendered image is shown in figure 
9(c). This shows that the view transfers are accurate. 
This was expected because the exact feature locations 
and correspondences were used. Figure 9(c) also shows 
an enhanced difference image for the first pair. This im­
age was enhanced so the differences, which were below 
20, could be visibly printed. Although the geometry is 
accurate, small differences exist because of artifacts in 
the bilinear interpolation.

In figure 10 we show our results on a real scene. Fig­
ure 10(a) gives the 2-D unregistered views used as input. 
Edge detection and feature extraction was performed on 
these images. 103 features points were automatically de­
tected, amongst which 62 were manually rejected. Most 
of the discarded points consisted of texture features 
whose geometry can be captured or approximated by 
other points in the scene. Correspondences for 37 points 
were automatically obtained as described in section 4.1. 
We kept 32 correspondences to generate the viewpoints. 
Two more correspondences were interactively added for 
the completeness of the scene. Figure 10(b) shows three 
synthesized viewpoints generated using the above corre­
spondences. Occlusion is handled well here as shown by 
the bode on the table. To test the correctness of our ap­
proach for real images, a new image from a different 
viewpoint was captured. Figure 10(c) shows the predict­
ed wireframe overlaid on the new image. Unlike the syn­
thetic scenes, the positions of some of the predicted 
points are two or three pixels off because of localization 
errors in feature points. The right comers of the table and 
the PC, which are more erroneous are the ones which 
were manually added for completeness.

We applied our approach to a complex outdoor 
scene and were able to synthesize novel viewpoints for 
selected objects in the scene. In Figure 11(a) two such
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outdoor views of a building are shown. One was taken 
from the roof of an adjacent parking structure, the other 
from ground level. Figure 11(b) shows synthesized im­
ages of the building from different viewpoints. Thus, us­
ing our approach, one can select objects from real images 
and put them into virtual environments to enhance real­
ism.

6 Complexity Analysis
The first two stages, namely establishing correspon­

dences between detected features in the two images and 
the computation of the cross ratio for each feature point, 
need to be performed only once, and are done off-line. 
Once the cross ratios are computed, the wireframe of any 
new image can be computed in real time. The complexity 
of this process is linearly proportional to the number of 
feature points. We can therefore generate an animated se­
quence of wireframes in real-time on a standard comput­
ing platform.

In our experiments, most of the burden for generat­
ing new images falls on the texture mapping stage, where 
triangles needed to be scanned. The choice of proper 
graphics hardware can overcome this burden.

7 Discussions and Applications
In this section, we discuss the limitations of our 

method and the possible enhancements that may improve 
performance of our implementation. We also highlight 
potential applications of our approach.

The method has the following limitations:
• The choice of the four non-coplanar points plays a role 
in the accuracy of the generated image. Different choices 
of points will give slightly different results. But once a 
set of points which approximate the cross ratios well is 
determined, the predictions remain accurate over a broad 
set of variations.
• The locations of the epipoles o1 and o2 (see figure 7) 
also affect the accuracy of the generated image. If the 
epipoles are far away, the cross ratio becomes prone to 
error and consequently the generated viewpoints are in­
accurate. This happens when the image planes of the two 
initial images are coplanar.
• We perform texture mapping on the new image. Since 
we have no information of the location of viewpoint and 
the 3D geometry of the scene, specular reflections cannot 
be dealt with.

The accuracy of the image generated by using our 
method relies on the precision of the image feature loca­
tion and the correctness of feature correspondences. 
Three images may be used to increase the reliability of 
finding correspondences. Given three images, as shown

figure 9 Using three images
in figure 9, we can compute the fundamental matrix for 
each set of two images. If p 2 'm image 2 and p 3 in image 3 
are the hypothesized correspondences of p j  in image 1, 
then p 3 in image 3 lies at the intersection of epipolar lines 
l3 and 1’3 in image 3. This constraint can be used to verify 
the correspondences p t and p 2.

Also of interest are recent results, where a stable 
computation of bilinear tensors to establish correspon­
dences is given for cases where three images are avail­
able [20].

Our method can be used in applications where 3-D 
models are impractical or impossible to obtain, such as 
complex real interior environments, or remote or danger­
ous environments where it is impossible to obtain models 
for. If a few views can be obtained, our approach could 
provide smooth animations.

Our method can also be used to quickly synthesize 
images of complex modelled environments. Virtual real­
ity walkthroughs can be done using a small number of 
precomputed high quality images with radiosity lighting 
For models with many polygons, our approach can offer 
a performance advantage.

8 Conclusion
We have developed an approach to generate new im­

ages without going through the tedious steps of obtaining 
3-D models and camera positions. This work is based on 
firm mathematical principles and uses mature Computer 
Vision techniques. Even though the whole process is not 
fully automated, human intervention is required to aug­
ment and correct automatic steps, namely point out hard 
to detect features and refine correspondences. These 
steps are performed off line and only for a sparse set of 
existing views. It is then possible to generate wireframes



in real time and to texture map the new scene for an ac­
curate and realistic look.
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(a) The six model views

fbl Rendered from 3-D model (left),
Synthesized from model views (right)

(c) Predicted wireframe superimposed on rendered view t/eftl, 
Difference image of first pair l right).

(a) Tivo views of an indoor scene.

tb) Synthesized views of the indoor scene.

(cl Predicted wireframe superimposed on a new view. 

Figure 10 Indoor Scene.

(a) Tivo views of an outdoor scene.

(b) Synthesized views of the building.

Figure 9 Synthetic Scene. Fieure 11 Outdoor Scene.


