
To increase drawing speed, the number of polygons
drawn per frame needed to be reduced without introduc-
ing severe visual artifacts.

Transparent renderings of the volume data needed to
be overlaid on the terrain to provide location cues and to
give a better understanding of the effects of the terrain on
the simulation. Combining transparent and opaque ob-
jects presented difficulties. The volume data could po-
tentially intersect the terrain, so we could not just draw
the terrain and then draw the volume data.

There was no simple solution for the drawing order
of the volume data. Alpha blending is a non-commuta-
tive operation, so transparent objects must be drawn in
strictly back-to-front or front-to-back order. When vol-
ume data is organized in a single axis-aligned grid, a vis-
ible priority sort can be derived by correctly indexing the
data. Unfortunately our data was generated by several
simulations over different, overlapping grids. This elim-
inated most of the simple sorting options, and it present-
ed the potential for intersecting transparent polygons,
which are not handled correctly by sorting alone.

This paper describes the algorithms and data struc-
tures we developed in solving the problems described
above. Our results proved to be applicable beyond the
scope of our initial problem to more general visualization
systems. We handle multiple LOD representations along
with correct rendering of complex transparent polygon
sets without needing to explicitly sort the polygons for
each frame. Our solution may be used in conjunction
with a wide variety of LOD methods.

The remainder of this paper is organized as follows.
Section 2 reviews relevant prior work. Section 3 gives an
overview of our approach. In Section 4 we define the
Multiresolution BSP tree and show how to build it, and
in Section 5 we show how to use our new data structure
for rendering. In Section 6 we show how other LOD al-
gorithms may be used within our system. Section 7 pro-

Abstract

We present a system for incorporating multiple level
of detail (LOD) models of 3D objects within a single hi-
erarchical data structure. This system was designed for a
scientific visualization application involving terrain and
volume rendering. Our data structure is a modified Bina-
ry Space Partitioning (BSP) tree. We describe how our
tree construction and traversal routines may be used with
a variety of LOD methods. This is demonstrated with
two different LOD methods: a new method specialized
for terrain elevation height fields, and an existing method
for general objects. Images, timings, and storage data for
our implementation are provided.

Keywords: BSP trees, Virtual reality, Real-time
graphics, Multiple levels-of-detail.

1 Introduction

This research was motivated by a scientific visual-
ization project in which we were asked to produce an in-
teractive display combining renderings of terrain and
volume data. The volume data, derived from simulations
of radio frequency (RF) propagation, was to be rendered
as transparent color-coded slices, volume densities, and
isosurfaces. We were faced with two technical problems:
the number of polygonal scene primitives exceeded what
our hardware could draw at interactive rates, and we
needed to produce a correct rendering combining trans-
parent and opaque objects.

A typical area of interest in our application, one de-
gree of latitude by one degree of longitude, contains an
immense amount of elevation data. The commonly avail-
able United States Defense Mapping Agency data (nom-
inally 90 meter spacing of data samples at the equator)
for such a patch contains approximately 2.8 million tri-
angles. This is far too much data be rendered at the de-
sired interactive frame rate of 1/30 to 1/10 of a second.

Multiresolution BSP Trees Applied to Terrain, Transparency, and General
Objects

Charles Wiley
A.T. Campbell, III

Applied Research Laboratories, University of Texas at Austin, P.O.Box 8029, Austin, TX, 78713
Stephen Szygenda

School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
Donald Fussell

Department of Computer Science, University of Texas at Austin, Austin, TX, 78712
Fred Hudson

IBM Austin Division, 11400 Burnet Road, Austin, TX 78758



vides implementation details and test results, and in
Section 8 we present our conclusions and discuss direc-
tions for future work.

2 Previous Work

Algorithms for reducing the number of polygons
drawn may be broadly classified into visibility culling [7,
8] and level of detail (LOD) [9] methods. For our appli-
cation all views of interest are from the exterior, and the
majority of scene surfaces are visible at all times. Thus
visibility culling is not applicable. Among LOD algo-
rithms are techniques that construct a triangular mesh
that closely approximates a terrain surface while mini-
mizing the number of triangles [22, 26, 28], adaptive
subdivision to fit a set of polygons to a surface [5], and
decimation to remove vertices[7, 24]. Approaches that
decide when to use the simplified models include a meth-
od to maintain a minimum frame rate while providing the
best possible image [7], using distance from the view-
point as a decision metric [36], and using hybrid metric
functions [11, 13]. None of this work has addressed
transparent objects in the scene.

Most virtual world or simulation systems use a loca-
tion-based approach to segmenting the terrain model [11,
13, 20, 36, 37]. Typical data structures are grids and
quadtrees. The grid approach has a single level structure
based on a single resolution. The quadtree approach is
based on a recursive subdivision of space, wherein each
area is divided into four quadrants recursively until
reaching some minimum resolution. These approaches
work well for scenes containing only terrain, but do not
handle the addition of arbitrarily-oriented polygons.

Previous volume visualization systems rely on
methods that explicitly sort the primitives based on dis-
tance from the viewpoint [14, 15, 25, 33] or on ray-trac-
ing [10, 27] or splatting [32, 35, 12]. These are all fine for
producing individual images, but none is fast enough for
interaction.

Binary Space Partitioning (BSP) trees facilitate
quick back-to-front ordering of scene polygons. Devel-
oped for visible surface determination [6, 16, 17, 19, 30],
they have been used in several systems that use static
scenes [1, 2], and in several dynamic virtual environ-
ments[3, 4, 31]. Previous work has not addressed the use
of multiple LODs within the BSP tree.

3 Overview of Approach

Our approach is based on the BSP tree, which has
several advantages over a quadtree or grid. A quadtree
can be easily represented by a BSP tree structure, but the
converse is not true. While our terrain tree building

method could just as easily produce a quadtree, it would
limit the objects that could be inserted into it to also be in
a quadtree structure. BSP trees are more general. BSP
trees also have several properties that facilitate rendering
transparent polygonal objects correctly. The building
process automatically detects and splits intersecting
polygons. More importantly, a modified inorder travers-
al algorithm can quickly generate the back-to-front
drawing order needed to correctly render the transparent
polygons and the terrain.

Our algorithm proceeds as follows. We assume that
the terrain contains the majority of the potentially visible
polygons. First, several LOD models of the terrain are
generated. For this purpose we use a new method of our
own devising that takes advantage of the special geome-
try of digital terrain data, but any LOD method may be
used. A Multiresolution BSP tree (to be described in Sec-
tion 4) is then built from these terrain LOD models. The
remaining scene objects are merged into the tree. This
tree is traversed at run-time and the resolution for any
given sub-tree is selected based on a metric function to
maintain image quality and interactive frame rates.

4 Multiresolution Binary Space Partitioning Trees

During construction of a standard BSP tree [30], in-
dependent sub-spaces are created. Each of these sub-
spaces is represented as a sub-tree. All polygons con-
tained within a sub-space are included within the sub-
tree corresponding to that sub-space.

In a Multiresolution BSP Tree (MRBSP Tree), alter-
nate LOD representations of the objects within a sub-
space are generated. These representations, containing
different numbers of polygons, do not intersect any other
sub-space in the tree. Sub-trees are built for each differ-
ent representation, and pointers to all the alternative sub-
trees are maintained as illustrated in Figure 1. The sub-
tree to use for rendering is chosen at run-time using a
metric based on the projected size of the sub-space. The
LOD selected for one sub-tree need not be the same as
what is selected for another. A MRBSP tree may be built
for any 3D object that can be isolated from the other ob-
jects in a BSP tree and for which several alternative po-
lygonal models are available.

4.1 Building the MRBSP Tree for Terrain Elevation
Height Fields

The regular sampling structure of 2D field data
makes generating a set of LOD models much easier than
for a general object. Our implementation builds LODs
from the terrain elevation data that have twice as many
sample points in both the longitude and latitude direc-



tions between levels. Thus the number of polygons in-
creases by a factor of four between each representation
level in the tree. Polygons of each size or resolution are
grouped into polygon sets before the tree construction
process begins. The number of sets used is controllable
by the operator and the resolution of the terrain elevation
data available.

Splitting planes are chosen along lines of constant
longitude and latitude while trying to maintain “square”
regions in each sub-space within the tree. These lines are
chosen to lie on one of the grid sample lines used to make
the polygon sets for each LOD representation so that ter-
rain polygons are not split by these planes. These lines of
constant latitude or longitude are chosen from the lowest
resolution LOD polygon set currently available, since
these planes will also lie along polygon edges for higher
resolution LOD polygons. When a level is reached on
which the lowest resolution representation, polygon set
one, has two sub-child lists with a single rectangular grid
(two triangles), a low resolution LOD is created and the
remaining resolution polygon sets, sets two through n,
are used to create a high resolution LOD. These two
LODs are placed into the front and back LOD lists for
this splitting plane node. The LOD choosing function de-
termines which LOD to use to render each child region
at run-time. The high resolution LOD child is construct-

1 2

A

3 4 5 6 7 8 9 0

B

C D

E F G H

Figure 1: Alternate LOD Example.

representation 1 representation “n”

BSP Tree

low resolution representation

high resolution representation

ed in the same manner recursively until all the LOD
polygon sets have been used.

4.2 Merging Other Objects

Once the multiresolution tree representing the ter-
rain is constructed, other objects may be merged into the
structure to yield the final scene tree traversed during
rendering. Objects may be either polygons or other tradi-
tional BSP trees. Merging into the multiresolution tree is
the same as for a normal BSP tree [16] with the addition
that at nodes with multiple resolution children, a copy of
the clipped object must be merged into each resolution
sub-tree. The MRBSP tree must be reconstructed when-
ever any of the objects in the tree move or are modified
as does a normal BSP tree.

4.3 Sliding the Tree as the View Position Changes

Using the current terrain tree construction algo-
rithm, the resulting MRBSP tree can be quite large and
complex. To reduce the image rendering time, we would
like to traverse as small a tree as possible. In addition, we
would like to keep the tree small to reduce the physical
memory required to hold the terrain representation to a
minimum. But, we would still like to be able to use large
terrain areas within the targeted simulation environ-
ments. One way to accomplish this would be to limit the
resolution of the terrain tree, but this would seriously
compromise our desire for high image quality. Another
approach would be to build a high resolution representa-
tion of the terrain only in the area immediately around
the current view location. This will help maintain both
our goals: a minimum size terrain representation and
high resolution. Unfortunately, as the user moves about
in the simulation environment, he may run off the edge
of this terrain patch.

The current terrain tree building algorithm reduces
this problem because it produces a tree that may be “slid”
across a large terrain data grid in discrete steps to new
positions. Only the splitting plane equations of the nodes
and the indices to the data points used for the polygons
within the tree need to be updated (Figure 2). The rela-
tionship between which polygons are in each region is
independent of the terrain tree’s root location. The vertex
indices of each polygon will change in a predictable
manner, as will the splitting plane coefficients. The com-
plex LOD hierarchy and other structures need not be re-
generated. This method allows the user to quickly move
to a new view location, assuming the elevation data is
available. In addition, this type of tree can accommodate
changes to the terrain elevation data itself without need-
ing to completely reconstruct the tree.



Other objects need to be reinserted into the tree each
time the terrain tree is modified. However, if the portion
of the terrain over which the objects are located remains
in the portion of terrain covered by the updated terrain
tree, the object sub-trees may be simply moved over to
the new locations in the tree that represent that location
in the updated tree. If the object sub-tree moves off the
edge of the region represented by the terrain tree, it is
merged into the child representing the region off the ap-
propriate edge of the current terrain tree.

5 Rendering the MRBSP Tree

Culling the terrain tree with the viewing frustum
greatly reduces the number of polygons to be rendered
[17], but the remaining number of polygons still far ex-
ceeds the capabilities of current graphics accelerator ar-
chitectures. To cope with the large number of polygons
present in the remaining set, we must further simplify the
terrain model and render fewer polygons to represent the
terrain where possible. Therefore, the LOD choosing
function used by the rendering algorithm needs to bal-
ance reducing polygon counts with maintaining image
quality. In this implementation, the renderer uses the ap-
proximate projected size of the cell on the screen to de-
termine which LOD to use to represent that cell.

Once the tree is created, the LOD to use for each par-
titioned region within the tree is determined by this func-
tion at run-time. Thus, the portions of the tree and the
resolutions within each portion used to render each view
point image changes dynamically as the viewer moves
the camera location. At each visible node for which mul-
tiple LODs are available, the function is evaluated for the
given region’s bounding box and if the result exceeds a
threshold, a higher resolution LOD is used, otherwise the
low resolution representation is used to render that re-
gion.

Raw elevation data

MRBSP tree

Figure 2: Sliding a tree.

5.1 Approximate Screen Bounding Box Size Resolu-
tion

Our metric for determining which LOD to use is
based on the approximate screen coverage area of the
three dimensional bounding box of any region in the tree
projected to the screen, as shown in Figure 3. The bound-

ing box of a region is determined by the maximum and
minimum extents of all of the points from the polygons
contained within that region. These values are combined
to form an axis aligned bounding box for the region. The
bounding box is projected to the screen, and the approx-
imate number of pixels covered calculated. If this screen
coverage value exceeds a threshold value, the higher res-
olution LOD is selected, otherwise the low resolution
LOD is used for that region. Since LOD determination is
a recursive operation on each subregion within the BSP
tree, even higher resolution LODs may be selected for re-
gions for which the high level LOD is selected. Any
branch in the tree for which there is a choice of represen-
tation has this operation applied to it in order to deter-
mine which resolution branch to use in rendering the
scene for that particular frame. This function results in
lower resolution representations to be used for areas in
the scene further from the view point, as illustrated by
the overhead view of Figure 4. Figure 5 shows the pseu-
do code used to render the MRBSP tree.

6 Using Other Level of Detail Methods

The MRBSP tree may be used with any LOD meth-
od. Once a set of LOD models has been generated for a
particular object, a MRBSP tree structure can be built
from that set. Many methods of producing simplified po-
lygonal models have been reported in the literature. To
test our data structure on a general polygonal object, the
model generation technique described by Schaufler and
Sturzlinger [23] was used to generate multiple LOD rep-

Terrain Patch

View Window

Region Bounding Box

Projection to
the screen

Pixels covered
by the box
projection

Figure 3: LOD Management Function.



resentations for a Volkswagen Beetle. This method uses
hierachical clustering to remove vertices from the set
used to generate the polygonal representation of an ob-
ject. LODs generated by this method were used to con-
struct a MRBSP tree using the planes of the maximum
bounding volume of the model set to isolate the Volk-
swagen from any other objects that may also be in the
scene. Results from this test are reported in the next sec-
tion.

void draw(BSP *tree, vector3 viewPoint)
{

int side = evaluateSide(tree->splitPlane, viewPoint);
int fronLODRep = 0;
int backLODRep = 0;
if (tree->numFrontLODs > 1)

frontLODRep =
determineLOD(tree->frontLOD[0]);

if (tree->numBackLODs > 1)
backLODRep =

determineLOD(tree->backLOD[0]);
if (side > 0) {

draw(tree->backLOD[backLODRep],
viewPoint);

drawPrimitives(tree); /* draw the polygons in this node */
draw(tree->frontLOD[frontLODRep],

viewPoint);
}
else {

draw(tree->frontLOD[frontLODRep],
viewPoint);

drawPrimitives(tree); /* draw the polygons in this node */
draw(tree->backLOD[backLODRep],

viewPoint);
}

}
Figure 5: MRBSP drawing function.

7 Implementation and Results

We have implemented the new algorithms and data
structured described in this paper with C++, Inventor 1.0,
and GL. All the display objects derive from built-in In-

Viewpoint

Figure 4: Decreasing LOD resolution
with distance from viewer.

ventor objects and all data input and output uses func-
tionality provided by Inventor. We used standard
Inventor viewers, which give a “through the cockpit”
view of the 3D terrain environment. Viewing coordi-
nates may be manipulated by moving the mouse and by
using thumbwheels widgets. The system uses Portable
Graphics, Inc. ports of these libraries to run on HP PA-
Risc based J210 workstations with CRX 48Z graphics
adaptors. Texture mapping is done in software. Through
experimentation, it was determined that this combination
of hardware and software has an approximate limit of
50,000 polygons per second, regardless of rendered im-
age size. This is approximately 1/30 the rendering speed
of a SGI RealityEngine, which is the platform for other
published work [13].

7.1 Terrain

Figure 6 shows a wire frame view of a terrain patch
created with four LODs from digital elevation data for
the southern California coastal area. It illustrates the de-
creasing resolution LODs being used as the BSP tree re-
gions move further from the view point. Figure 7 shows
the same terrain patch rendered with a pseudo sun-angle
shading texture map applied. Figure 8 shows a more
complex isosurface with terrain and figure 9 shows this
same isosurface along with an isosurface from another
volume along with the terrain.

In comparison tests between full resolution render-
ing of a terrain patch and using an MRBSP tree to render
the same patch, we have seen a rendering speed improve-
ment of 1000 to 4000%. The full resolution implementa-
tion uses the triangle set from the highest resolution
representation in the multiresolution test. It was imple-
mented using C++ and Inventor, the same as the MRBSP
tree implementation, to help normalize the overhead be-
tween the two implementations. For the two degree by
two degree test patch there are approximately 260,000
polygons in the terrain database. For the full resolution
test, the terrain is rendered using z-buffer techniques.
The transparent objects are kept in a separate BSP tree
structure and are rendered with the z-buffer off after ren-
dering the terrain polygons. Timing data is shown in Ta-
ble 1. The difference would be greater if the transparent
polygons were kept in a simple list needing to be sorted
for each view point. Still, the terrain and other opaque
objects in the scene needed to be maintained separately
from the transparent objects. With the MRBSP tree im-
plementation, the scene database is all merged into a sin-
gle tree that is traversed to render the images. In testing
the terrain build times versus the time to slide an existing
tree structure, the time to build a MRBSP tree represen-



tation takes approximately 100 times as long as the slide
operation.

7.2 General Objects

Table 2 contains the number of vertices and poly-

gons present in each of the individual LOD models of the
Volkwagen. The multiresolution partitioning tree model
that combines all five of the individual LOD models has
a size of 113,517 bytes. The individual model files have
a combined size of 103,944 bytes. Thus, the overhead for
the multiresolution representation is quite small when
compared to the overall size of the data. It is roughly
10,000 bytes. This 10,000 byte overhead or increase in
the size of the data for the MRBSP tree divided by the
combined size of all the LOD models is approximately
9.6%. Table 3 shows the range of rendering rates record-
ed when the multiresolution model was viewed from
varying distances and spun in the Inventor viewer with
spin animation enabled. In each case, the model was
placed in a location where the LOD chosen would vary
as the Volkswagen spun. The higher frame rates resulted
when the LOD with fewer polygons was rendered and
the lower rates occurred while the higher resolution LOD
model was chosen. Figure 10 shows an individual VW

Table 1: Comparison of MRBSP Tree to Single
Resolution Polygon Implementation.

Texture
Mapped

Wire Frame

MRBSP Tree 0.33 - 0.43
frames/sec.

1.28 - 1.55 frames/
sec.

Full Resolu-
tion Polygons

0.0082 -
0.019 frames/

sec.

0.018 - 0.020 frames/
sec.

Table 2: Single Resolution VW Model Rendering
Results.

LOD
Model

number
vertices/
polygons

average
wire frame
rendering

rate

average
filled

polygon
rendering

rate

vw0 1147/1078 63.75 f/sec. 12.39 f/sec.

vw3 371/416 140.5 f/sec. 4.8 f/sec.

vw5 247/280 177.7 f/sec. 49.5 f/sec.

vw7 148/169 237.0 f/sec. 72.2 f/sec.

vw9 112/132 263.0 f/sec. 92.8 f/sec.

model in wire frame and rendered, as well as a view of
the multiple resolution scene containing several VWs
rendered using varying LODs.

Finally, a comparison in rendering rates between a
scene composed of several MRBSP tree VWs and a
scene using just the highest resolution polygons for the
same number of VWs was conducted. In this test, eight
instances of the VW model were present in the scene da-
tabase. The MRBSP tree data file produced an approxi-
mate rendering rate of 4.5 to 6.5 frames per second. The
data file containing eight of the highest resolution poly-
gon sets, implemented as an Inventor indexed face set,
was rendered at a rate of approximately 2.2 to 3.0 frames
per second. The polygon set was reused for each of the
instances by using Inventor’s capability to have multiple
references to the same object in a scene graph. However,
caching of the scene graph was turned off to allow com-
parison of the complete scene rendering rates as opposed
to times to render the display lists stored by GL. Even
with the additional overhead of the partitioning tree, the
MRBSP tree representation performed better than the
full resolution polygon representation by reducing the
number of polygons sent to the rendering pipeline.

8 Conclusions and Future Work

This method extends the basic BSP tree construct to
facilitate multiresolution. Such representations still pro-
duce a correct back-to-front ordering of polygons regard-
less of the representation traversed, and this ordered
polygon list is preserved if parts of the scene tree are tra-
versed at differing resolutions. The LOD branch used to
render any portion of this hybrid tree can be selected at
run-time and may be adjusted by the user based on sys-
tem constraints such as minimum acceptable frame rate.
By using differing LOD representations, the rendered

Table 3: Timing Results of a Single Multiresolution
VW, the model file contained 5 LODs

models
rendered

Wire frame
rendering

Filled
polygon

rendering

vw0 & vw3 44.38 - 70.78
frames/sec.

5.098 - 15.01
frames/sec.

vw3 & vw5 69.88 - 156.3
frames/sec.

34.89 - 44.17
frames/sec.

vw5 & vw7 85.45 - 106.8
frames/sec.

36.89 - 47.91
frames/sec.

vw7 & vw9 162.8 - 180.1
frames/sec.

35.11 - 58.67
frames/sec.



image can concentrate most of the processing power on
parts of the scene closest to the view location which
should contribute the most to any major image features
and spend very little of the limited graphics capabilities
on parts of the scene far from the view point that contrib-
ute to only a small number of pixels on the image. The
use of a data structure derived from a BSP tree allows us
to inherit all of the attributes of a BSP tree. The tree pro-
duces a view point independent back-to-front polygon
ordering so the hardware on which the system runs
would not need a traditional Z-buffer. This would mean
that the target hardware platform would not need RAM
dedicated to the Z-buffer nor would it need to do a read-
modify-write memory cycle for each pixel produced by
the pixel processors in the pipeline for each frame. This
should significantly reduce the time needed to process a
pixel in the pixel processor stage of the pipeline.

The MRBSP tree structure was specifically applied
to the problem of viewing terrain with volume data over
it. A method of producing a MRBSP trees of a two di-
mensional height field was developed. This BSP tree
structure allowed insertion of general polygonal objects,
rather than being restricted to quadtrees. In addition, the
BSP tree splitting plane choosing and construction algo-
rithm provides a structure that can be easily moved with-
out needing to reconstruct the entire tree for any regular
rectangularly sampled height field. This allows the in-
memory terrain database to be minimized with only a
small portion of a very large terrain area needing to be in
memory and traversed to render each frame. This should
reduce virtual memory page faults caused by having to
traverse an extremely large scene database.

Future work will include further improvements to
the run-time LOD management function, and modifica-
tion of the MRBSP tree construction algorithm to allow
the resolution of the sets used to construct the tree to vary
as a function of distance from the center rather than the
current single fixed resolution set. Applications of the
MRBSP tree structure to fractal terrain rendering will
also be investigated, as will possible extensions to more
general objects. Heuristics and methods for merging
“good” MRBSP trees also need to be investigated.

9 References

[1] Campbell, A. T., Fussell, D., “Adaptive Mesh
Generation for Global Diffuse Illumination,” Computer
Graphics, Proceedings SIGGRAPH 1990, vol. 24, no. 4,
pp. 155-164, 1990.

[2] Campbell, A. T., Modeling Global Diffuse Illu-
mination for Image Synthesis, Ph.D. Thesis, Department
of Computer Science, the University of Texas at Austin,

Dec. 1991.

[3] Chrysanthou, Y., Slater, M., “Computing
Dynamic Changes to BSP Trees,” EUROGRAPHICS
1992, vol 11, no. 3, pp. 321-332, 1992.

[4] Chrysanthou, Y., Slater, M., “Shadow Volume
BSP Trees for Computation of Shadows in Dynamic
Scenes,” 1995 ACM Symposium on Interactive 3D
Graphics, pp. 45-50, 1995.

[5] DeHaemer, M., Zyda, M., “Simplification of
Objects Rendered by Polygonal Approximations,” Com-
puters & Graphics, vol. 15, no. 2, pp. 175-184, 1991.

[6] Fuchs, H., Kedem, Z., and Naylor, B., “On Visi-
ble Surface Generation by A Priori Tree Structures,”
Computer Graphics, Proceedings SIGGRAPH 1980,
vol. 14, no. 3, pp. 124-133, 1980.

[7] Funkhouser, T., Sequin, C., “Adaptive Display
Algorithm for Interactive Frame Rates During Visual-
ization of Complex Virtual Environments,” Computer
Graphics, Proceedings SIGGRAPH 1993, pp. 247-254,
1993.

[8] Greene, N., Kass, M., Miller, G., “Hierarchical
Z-Buffer Visibility,” Computer Graphics, Proceedings
SIGGRAPH 1993, pp. 231-236, 1993.

[9] Heckbert, P., Garland, M., “Multiresolution
Modeling for Fast Rendering,” Proceedings of Graphics
Interface 1994, pp. 43-50, 1994.

[10] Kajiya, J., Kay, T., “Rendering Fur with Three
Dimensional Textures,” Computer Graphics, Proceed-
ings SIGGRAPH 1989, vol. 23, no. 3, pp. 165-174,
1989.

[11] Koller, D., Lindstrom, P., Ribarsky, W.,
Hodges, L., Faust, N., Turner, G., “Virtual GIS: A Real-
Time 3D Geographic Information System,” Graphics,
Visualization and Usability Center Georgia Institute of
Technology Tech Report 95-14, 1995.

[12] Laur, D., Hanrahan, P., “Hierarchical Splatting:
A Progressive Refinement Algorithm for Volume Ren-
dering,” Computer Graphics, Proceedings SIGGRAPH
1991, vol. 25, no. 4, pp. 285-288, 1991.

[13] Lindstrom, P., Koller, D., Hodges, L., Ribar-
sky, W., Faust, N., Turner, G., “Level-of-Detail Manage-
ment for Real Time Rendering of Phototextured
Terrain,” Graphics, Visualization and Usability Center
Georgia Institute of Technology Tech Report GIT-GVU-
95-06, 1995

[14] Lorensen, W., Cline, H. “Marching Cubes: A
High Resolution 3D Surface Construction Algorithm,”,
Computer Graphics, Proceedings SIGGRAPH 1987,
vol. 21 no. 4, 1987.



[15] Max, N., Hanrahan, P., Crawfis, R., “Area and
Volume Coherence for Efficient Visualization of 3-D
Scaler Functions,” Computer Graphics, vol. 24, no. 5,
pp. 27-33, 1990.

[16] Naylor, B., Amanatides, J., Thibault, W.,
“Merging BSP Trees Yields Polyhedral Set Operations,”
Computer Graphics, Proceedings SIGGRAPH 1990,
vol. 24, no. 4, pp. 115-124, 1990.

[17] Naylor, B., “Interactive Solid Geometry Via
Partitioning Trees,” Graphics Interface ‘92, pp. 11-18,
1992.

[18] Naylor, B., “Constructing Good Partitioning
Trees,” Graphics Interface 1993, pp. 181-191, 1993.

[19] Paterson, M., Yao, F., “Binary Partitions with
Applications to Hidden-Surface Removal and Solid
Modelling,” Proceedings of the Fifth Annual Sympo-
sium on Computational Geometry, June 5-7, 1989.

[20] Pratt, D., A Software Architecture for the Con-
struction and Management of Real-Time Virtual World,
Dissertation, Naval Postgraduate School, Monterey,
CA, June 1993.

[21] Rossignac, J., Novak, M., “Research Issues in
Model-based Visualization of Complex Data Sets,”
IEEE Computer Graphics and Applications, vol. 14, no.
2, pp. 83-85, 1994.

[22] Scarlatos, L., Pavlidis, T., “Hierarchical Trian-
gulation Using Cartographic Coherence,” CVGIP:
Graphical Models and Image Processing, vol. 54, no. 2,
pp. 147-161, 1992.

[23] Schaufler, G., Sturzlinger, W., “Generating
Multiple Levels of Detail for Polygonal Geometry Mod-
els,” Virtual Environments ‘95, pp. 53-62, 1995.

[24] Schroder, W., Zarge, J., Lorenson, W., “Deci-
mation of Triangle Meshes,” Computer Graphics, vol.
26, no. 2, pp. 65-70, 1992.

[25] Shirley, P., Tuchman, A., “A Polygonal
Approach to Direct Scalar Volume Rendering,” Com-
puter Graphics, vol. 24, no. 5, pp. 63-70, 1990.

[26] Silva, C., Mitchell, J., Kaufman, A., “Auto-
matic Generation of Triangular Irregular Networks
Using Greedy Cuts,” Visualization ‘95, pp. 201-208,
1995

[27] Subramanian, K., Fussell, D., “Applying Space
Subdivision Techniques to Volume Rendering,” Visual-
ization ‘90, pp. 150-159, 1990.

[28] Suter, M., Nuesch, D., “Automated Generation
of Visual Simulation Databases Using Remote Sensing
and GIS,” Visualization ‘95, pp. 86-93, 1995.

[29] Teller, S., Sequin, C., “Visibility Preprocessing
For Interactive Walkthroughs”, Computer Graphics,

Proceedings SIGGRAPH 1991, vol. 25, No. 4, pp. 61-
69, 1991.

[30] Thibault, W., Naylor, B., “Set Operations on
Polyhedra Using Binary Space Partitioning Trees,”
Computer Graphics, Proceedings SIGGRAPH, vol. 21,
no. 4, pp. 153-162, 1987.

[31] Torres, E., “Optimization of the Binary Space
Partition Algorithm (BSP) for the Visualization of
Dynamic Scenes,” EUROGRAPHICS 1990, pp 507-
518, 1990.

[32] Westover, L., “Footprint Evaluation for Vol-
ume Rendering,” Computer Graphics, Proceedings
SIGGRAPH, vol. 24, no. 4, pp. 367-376, 1990.

[33] Williams, P., “Visibility Ordering of Meshed
Polyhedra,” ACM Transactions on Graphics, vol. 11,
no. 2, pp.103-126., 1992.

[34] Yagel, R., “Volume Viewing: State of the Art
Survey,” ACM SIGGRAPH ‘93 Volume Visualization
Course Notes, 1993.

[35] Yoo, T., Neumann, H., Fuchs, S., Pizer, T.,
Rhoades, J., Whitaker, R., “Direct Visualization of Vol-
ume Data,” IEEE Computer Graphics and Applications,
vol. 12, no. 4, pp. 63-71, 1992.

[36] Zyda, M., Pratt, D., Falby, J., Mackey, R.,
“NPSNET: Hierarchical Data Structures for Real-Time
Three-Dimensional Visual Simulation,” Computers &
Graphics, vol. 17, no. 1, pp. 65-69, 1993.

[37] Zyda, M., Pratt, D., Monahan, J., Wilson, K.,
“NPSNET: Constructing a 3D Virtual World,” Com-
puter Graphics, 1992 Symposium on Interactive 3D
Graphics, March 1992, pp. 147-156, 1992.



Figure 6: Wireframe Terrain.

Figure 7: Rendered Terrain.

Figure 8: An Isosurface with terrain.

Figure 9: Isosurfaces from two intersecting volumes. Figure 10: Volkswagen Beetle Images.

a) Full resolution VW, wire frame

b) Full resolution VW, rendered

c) Multiple resolution scene, wire frame.

d) Multiple resolution scene, rendered.


